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Background
The enhancer–promoter interactions (EPIs) play a critical role in gene regulation in 
eukaryotes. In genetics, a promoter is a region of DNA sequence upstream of a particular 
gene [1]. The length of a promoter is probably hundreds to thousands of base pairs [2]. 

Abstract 

Background:  Enhancer–promoter interactions (EPIs) play key roles in transcriptional 
regulation and disease progression. Although several computational methods have 
been developed to predict such interactions, their performances are not satisfactory 
when training and testing data from different cell lines. Currently, it is still unclear what 
extent a across cell line prediction can be made based on sequence-level information.

Results:  In this work, we present a novel Sequence-based method (called SEPT) to 
predict the enhancer–promoter interactions in new cell line by using the cross-cell 
information and Transfer learning. SEPT first learns the features of enhancer and pro‑
moter from DNA sequences with convolutional neural network (CNN), then designing 
the gradient reversal layer of transfer learning to reduce the cell line specific features 
meanwhile retaining the features associated with EPIs. When the locations of enhanc‑
ers and promoters are provided in new cell line, SEPT can successfully recognize EPIs in 
this new cell line based on labeled data of other cell lines. The experiment results show 
that SEPT can effectively learn the latent import EPIs-related features between cell lines 
and achieves the best prediction performance in terms of AUC (the area under the 
receiver operating curves).

Conclusions:  SEPT is an effective method for predicting the EPIs in new cell line. 
Domain adversarial architecture of transfer learning used in SEPT can learn the latent 
EPIs shared features among cell lines from all other existing labeled data. It can be 
expected that SEPT will be of interest to researchers concerned with biological interac‑
tion prediction.
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Its function aims to initiate gene transcription of a particular gene. While an enhancer is 
also an important transcriptional regulatory short DNA fragments that further activate 
the level of transcription of its target genes by contacting close physical proximity to 
the promoters in the three-dimensional (3D) nuclear space [3]. Hundreds of thousands 
of enhancers have been estimated to be contained in the human genome. Normally, a 
promoter is under the control of multiple enhancers, and multiple promoters can be 
regulated by a single enhancer. Additionally, the distances between interacting enhancer 
and promoter pairs have varied widely, varying from kilobases to millions of base-pairs 
because of the chromatin folding in the 3D space [4–8]. Moreover, as more and more 
studies reported that enhancer sequence variations are associated with serious human 
diseases [9–12]. Thus, the importance of EPIs for gene expression is matter-of-course.

Over the past decade, many high-throughput experimental approaches, such as chro-
mosome conformation capture-based (3C) [13] and its variants of Hi-C [14] and ChIA- 
PET [1], have been developed to study the chromatin interactions. Although Hi-C and 
ChIA-PET could measure the whole genome DNA-DNA interactions, the genomic reso-
lutions are often low, varying from few kilobases to tens of thousands bases [15–17]. In 
order to study EPIs, very high (< 10 kb) resolution data is needed. All these experimen-
tal approaches are technically challenging, time-consuming and have high false-negative 
rate. What is more, the EPIs vary across different cellular conditions and tissues [18]. 
While the number of 3D chromatin interaction experiments continue to increase, it is 
still not possible to perform chromatin interaction experiments for all types of cell and 
tissues. Therefore, computational approaches are urgently desired to complement exper-
imental protocols.

Due to the limitations of experimental approaches, the number of available experi-
mental data of EPIs is still limited. Several computational methods have been developed 
to predict EPIs of the genome. Depending on the type of the input data, computational 
methods can mainly be divided into two categories: DNA sequence-based methods 
and epigenomic data-based methods. For DNA sequence-based methods, PEP [19] and 
EP2vec [20] took advantage of natural language processing to learn the feature represen-
tation of DNA sequences, and SPEID [21] used convolutional neural network to learn 
the feature representation of DNA sequences. Recently, Zhuang et  al.[22] introduced 
a novel method to improve the prediction performance of EPIs by using the existing 
labeled data to pretrain a convolutional neural network (CNN), then adopting the train-
ing data from the cell line of interest to continue to train the CNN. Above these methods 
can accurately predict cell line-specific EPIs from genomic sequence, but they work well 
only when the training and testing data are from the same cell lines. For the epigenomic 
data-based methods, IM-PET [23], RIPPLE [24], TargetFinder [2], EpiTensor [25], and 
JEME [26] used many one-dimensional (1D) local chromatin states including but not 
limited to transcription factors (TFs) binding, histone modifications and chromatin 
accessibility signatures to predict EPIs. Though achieving acceptable performance, these 
models rely on labeled training data from the same cell line as the test data, which limits 
their usefulness for new cell lines. Generally speaking, high-resolution chromatin inter-
actions experimental data are hard to get, and the cell-specific models have no accept-
able generalization due to the specificity of EPIs. Therefore, how to predict the EPIs of 
new cell line is an urgent problem. And the very intuitive idea is that to train a generic 
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model which learns shared features between different cell lines, and then to predict the 
EPIs of the new cell line. However, this idea has its drawbacks. The feature distribution 
learned from the general model is different from that of a particular cell line that we care 
about. If the distribution of features learned from multiple cell lines is as similar as pos-
sible to the distribution of features in the cell line that we care about, then we can make 
more accurate predictions. Therefore, it is important to develop an effective method to 
make feature distribution as consistent as possible for transfer knowledge from other cell 
lines to a specific cell line that we care about.

It is well known that transfer learning (TL), an important branch of machine learn-
ing, is widely concerned in image recognition [27] and natural language processing [28], 
which focuses on the application of knowledge transfer onto new problems. Inspired 
by the work of [29], which suggested an adversarial neural network by gradient reversal 
layer (GRL) to fit the feature distribution of source domain and target domain for rec-
ognizing handwritten numbers, we proposed a novel method of SEPT to predict EPIs in 
new cell line. There are no EPI labels information and only has the locations of enhanc-
ers and promoters in a particular cell line. The enhancer–promoter pairs of a particular 
cell line with no labels are defined as target domain, and labeled enhancer–promoter 
pairs from other cell lines are defined as source domain. Our goal is to learn the features 
from the source domain, and further reduce the data distribution differences between 
the target domain and the source domain through adversarial learning. First, we used 
convolution and long short-term memory (LSTM) layers to learn the features of EP pairs 
from the enhancer and promoter sequences. Then, adversarial neural network with GRL 
was used to reduce domain-specific features. GRL could reverse the direction of the gra-
dient by multiplying the gradient with a negative constraints value. Finally, the trained 
model learns the EPI-related features from the source domain to predict the EPIs of the 
target domain.

SEPT is of great significance for three points. (i) It could be used as an alternative to 
the experimental methods, helping other tasks such as identifying mechanisms of SNPs 
from genome-wide association studies (GWAS) [30]. (ii) It could reveal to what extent 
EPIs of one cell line could be recognized by data from other cell lines. (iii) It could 
improve our understanding of gene regulation and disease progression. To this end, we 
adopted two strategies: one is to combine training data of different cell lines into one 
unit, and the other is to design a model of SEPT with transfer learning [31] to trans-
fer the informative features from the combined unit to a new cell line. The experimen-
tal results show that SEPT has better performance than several other methods. Model 
architecture analysis shows that long short-term memory (LSTM) layer, and GRL layer 
are important for across cell line EPIs prediction. Convolution kernels analysis shows 
that SEPT can effectively capture sequence features that determine EPIs.

Results
Comparison with other existing state‑of‑the‑art methods

We first compared SEPT with other state-of-the-art methods of LS-SVM [32], SPEID 
[21] and RIPPLE [24]. SPEID and LS-SVM are the two sequence-based methods for 
predicting the DNA regulatory elements. LS-SVM [32] widely used the k-mer fea-
tures, and did not take into account the interactions of high-order features. Because the 
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LS-SVM [32] can only take one DNA sequence as an input sample, so we concatenated 
the sequences of the enhancer and promoter to train and test LS-SVM. SPEID [21] used 
deep learning to capture sequence features for predicting the cross-cell-line EPIs, while 
it lacks the ability to contain cell-specific information. RIPPLE [24] is a supervised model 
based on epigenomic data from ChIP-seq and DNase-seq experiments, and it only used 
five cell lines data to train the model, due to HMEC cell line lack of the epigenomic data. 
Our SEPT method simultaneously considers the source and target domain sequence 
information. For each test cell line, data from the other six cell lines were merged into 
a training data set to train SPEID [21], LS-SVM [32] and SEPT. The average results of 
SEPT, RIPPLE, SPEID and LS-SVM on seven test cell lines are shown in Fig.  1, from 
which we can see that SEPT has the highest average AUC values on seven cell lines than 
RIPPLE, SPEID and LS-SVM. SEPT achieves 0.72, 0.76, 0.78, 0.77, 0.78, 0.73, and 0.76 
for GM12878, HMEC, HUVEC, HeLa-S3, IMR90, K562, NHEK cell line, respectively. 
SEPT also has the highest average AUPR and F1-score values on seven cell lines than 
RIPPLE, SPEID and LS-SVM (Additional file 1: Tables S1-S2). These results demonstrate 
that our SEPT can effectively predict the enhancer–promoter interactions.

Influence of different neural network architectures in feature learning phase

We designed a series of computational network architectures in feature learning phase 
(Additional file  1: Table  S3) to investigate the impact of network structure. The first 
network architecture (namely BASE) includes only one convolutional layer in feature 
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Fig. 1  Average AUC of SEPT, RIPPLE, SPEID and LS-SVM on seven test cell lines
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learning phase (Additional file 1: Figure S1(a)). The second network architecture (namely 
BASE + LSTM) includes one convolutional layer and one LSTM layer in feature learn-
ing phase (Additional file  1: Figure S1(b)). The third network architecture (namely 
BASE + FC) include one convolutional layer and one full connection layer in feature 
learning phase (Additional file 1: Figure S1(c)). SEPT includes two convolutional layers 
and one LSTM layer in feature learning phase (Additional file 1: Figure S1(d)). The grid 
search strategy was used to optimize the hyperparameters of four models in this work.

The average results of BASE, BASE + LSTM, BASE + FC and SEPT on seven test cell 
lines are shown in Fig. 2, from which we can see that adding the full connection layer 
(BASE + FC) and the LSTM layer (BASE + LSTM) in BASE model can improve the pre-
dictive performance of EPIs. Especially, the results of BASE + LSTM is better than that 
of BASE + FC, which indicates that the long-range dependency of DNA features such 
as motifs and other features can be captured by the LSTM layer. SEPT shows the best 
performance than BASE + LSTM, BASE + FC and BASE models, indicating that the first 
CNN layer learns the individual patterns in the sequences and the second CNN layer 
learns the high-order interactions between patterns. The high- order interactions may 
be commonalities among different cell lines, and deep neural network architectures can 
extract the high-order EPI features from DNA sequences.

Influence of domain adversarial operation

To validate the effectiveness of domain adversarial operation, we constructed the model 
of SEP, which has no the domain adversarial network architecture compared with SEPT. 
Since SEP has no the domain adversarial operation, the data of target domain cannot be 
utilized in SEP. That is, SEP just used the data of source domain in the training phase. 
Table 1 shows the average AUC results of SEPT and SEP by training model on one cell 
line data and test on another cell line data in running 10 times, from which we can see 
that AUC values of SEPT for each test cell line are higher than that of SEP. The average 
AUPR and accuracy values of SEPT for each test cell line are also higher than that of SEP 
(Additional file 1: Table S4-S5). These results indicate that domain adversarial operation 
can effectively improve the predictive performance of EPIs in new cell lines, and SEPT 
makes use of the EPIs information in other cell lines for recognizing the EPIs in new cell 
lines.
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We also investigated the effectiveness of domain adversarial operation by training 
model on the six cell lines data and test on one other cell line data. The average AUC 
values of SEP and SEPT in running 10 times are shown in Table 2, from which we 
can see that average AUC of SEPT is higher 6% ~ 9% than that of SEP on seven test 
cell lines. The average AUPR, F1-score and accuracy values of SEP and SEPT in run-
ning 10 times are shown in Additional file 1: Table S6. These results show that the 
domain adversarial operation is also effective when using more cell lines data as the 
training data.

Table 1  Average AUC values of  SEPT and  SEP by  training model on  one cell line data 
and test on another cell line data in running 10 times

Model Test
train

GM12878 HMEC HUVEC HeLa-S3 IMR90 K562 NHEK

SEPT GM12878 * 0.63 0.68 0.66 0.67 0.62 0.62

HMEC 0.59 * 0.57 0.61 0.67 0.56 0.59

HUVEC 0.62 0.62 * 0.66 0.63 0.58 0.64

HeLa-S3 0.61 0.62 0.69 * 0.66 0.63 0.66

IMR90 0.58 0.65 0.62 0.59 * 0.56 0.62

K562 0.64 0.61 0.66 0.66 0.62 * 0.64

NHEK 0.62 0.63 0.66 0.67 0.66 0.59 *

SEP GM12878 * 0.57 0.62 0.59 0.57 0.55 0.55

HMEC 0.51 * 0.53 0.54 0.60 0.50 0.55

HUVEC 0.59 0.55 * 0.58 0.57 0.56 0.55

HeLa-S3 0.56 0.56 0.60 * 0.58 0.54 0.58

IMR90 0.53 0.61 0.56 0.55 * 0.51 0.57

K562 0.56 0.53 0.54 0.53 0.53 * 0.53

NHEK 0.53 0.57 0.56 0.55 0.56 0.50 *

Table 2  Average AUC values of SEPT and SEP by training on the six cell lines data and test 
on one other cell line data in running 10 times

Test cell line Cell line(s) of source domain Model AUC​

GM12878 HMEC, HUVEC, HeLa-S3, IMR90, K562, NHEK SEP 0.65

SEPT 0.72

HMEC GM12878, HUVEC, HeLa-S3, IMR90, K562, NHEK SEP 0.68

SEPT 0.76

HUVEC GM12878, HMEC, HeLa-S3, IMR90, K562, NHEK SEP 0.69

SEPT 0.78

HeLa-S3 GM12878, HMEC, HUVEC, IMR90, K562, NHEK SEP 0.69

SEPT 0.77

IMR90 GM12878, HMEC, HUVEC, HeLa-S3, K562, NHEK SEP 0.72

SEPT 0.78

K562 GM12878, HMEC, HUVEC, HeLa-S3, IMR90, NHEK SEP 0.65

SEPT 0.73

NHEK GM12878, HMEC, HUVEC, HeLa-S3, IMR90, K562 SEP 0.69

SEPT 0.76
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Results comparison of using different number of cell lines as the source domain data

To investigate the influence of different cell line number used in the source domain, we 
used different number of cell lines as the source domain data to predict the EPIs with 
SEPT. For selecting 1, 2, 3, 4, 5, 6 cell lines as the source domain data, each test cell line 
has 6, 15, 20, 15, 6, 1 results, respectively. The AUC results of using different number of 
cell lines as the source domain data to train SEPT are shown in Fig. 3. Each boxplot in 
Fig. 3 represents the results of one test cell line across all combinations of source domain 
cell lines. To make the results more reliable, we repeated 10 times, that is, the AUC value 
of each test cell line is the mean of 10 running results. From Fig. 3, we can see that more 
cell lines as the source domain can achieves higher AUC than less cell lines as the source 
domain. Especially, when 6 cell lines are mixed as the source domain data to train the 
model, SEPT achieves the highest AUC values for every test cell line. With the increase 
of the cell lines number in source domain, AUC value is gradually larger. In addition, for 
different test cell line, the combination of appropriate cell lines as the source data can 
improve the performance of SEPT. These results show that using more existing labeled 
data of EPIs is helpful the prediction of EPIs in new cell line.

Motifs identified by SEPT

As to investigate the motifs, we identified sequence features for each model by com-
paring patterns of the convolutional kernels in the first layer with sequence motifs 
from the database HOCOMOCO Human v11. We reconstructed the output of the 
first convolutional layer for each input sample sequence, then extracted the subse-
quence that best match each kernel to compute the position frequency matrix (PFM) 
from the aligned sub sequences for each kernel. The motif comparison tool of Tom-
tom [33] was used to match these PFMs to known TF motifs. After obtaining the 
sequence motifs of the two models, we defined a formula to measure the relative 
importance of motifs. The formula will consider the occurrence times of the same 
motif in both models and the ranks of the occurrence times of the motif in SEPT. 
If a motif appears more in SEPT and less in SEP, then the greater the effect of the 
motif in SEPT, the higher its relative importance score will be. The formula is defined 
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as: Relativeimportance = (1−Nwo/Nw)/Rankw . Here Nw and Nwo are the occur-
rence times of motif learned from SEPT and SEP, respectively; Rankw is the rank (in 
descending order) of the motif in the motif set of SEPT according to the occurrence 
times. The closer the value is to 1, the more important the motif is in SEPT. To avoid 
contingency, this process was repeated five times.

We found a set of potentially important transcription factor binding motifs by the 
transfer model. For each test cell line, top five import motifs involved in EPIs are show 
in Additional file 1: Table S7. For different test cell lines, the models learned common 
important TF motifs such as ZNF563, THAP1, RXRA, and SP3, which are involved in 
many important processes, such as the transcriptional regulation and cell-cycle reg-
ulation. Interestingly, we found many of potentially important transcription factors 
that are associated with the corresponding cell lines (Table  3). For instance, MAFB 
motif learned by SEPT in the K562 cell line is associated with regulating lineage-
specific hematopoiesis. This is consistent with the fact that K562 belong to a blood 
related cell line. NR4A1 motif learned by SEPT in GM12878 cell line was reported 
to play a role in the vascular response to injury, while ZNF341 motif learned by both 
SEPT and SEP in GM12878 cell line was reported to involve in the regulation of 
immune homeostasis. It is consistent with the fact that GM12878 is lymphoblastoid 
related cell lines. We also provided other motifs identified by both SEPT and SPEID 
(Additional file 1: Table S8). These results show that our SEPT can learn important 
motifs, and these motifs are relevant to enhancer–promoter loops of a novel cell line.

Table 3  Examples of specific motifs identified by the first convolution layer of SEPT

Motif logos are downloaded from public database HOCOMOCO Human v11.
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Discussions
One important factor in SEPT is how to aggregate the labeled data of different cell lines 
into a source domain. We investigated the aggregation of different number of cell lines, 
and found that aggregating all available labeled data of cell lines as the source domain for 
training model can yield better performance than aggregating partial cell lines data as 
the source domain. In addition, there is redundancy among different cell lines. Redun-
dancy not only slows down model training, but also damages prediction performance. 
Thus, how to aggregate different cell lines as the source domain data is important.

How to integrate other features such as histone modifications, chromatin accessibility 
and DNA shape into one model for predicting EPIs is also important factors. Although 
we only use sequence information in this work, the results of are still better than other 
methods which integrate the sequence and epigenomic information. Thus, if more infor-
mation related to enhancers and promoters is integrated into our SEPT, it is hope that 
SEPT can significantly improve the performance of EPIs prediction.

Although SEPT can predict the potential EPIs in new cell line, it needs to provide the 
location of the enhancers and promoters in advance. Therefore, it is need to develop new 
methods for identifying the EPIs in specific cell line without enhancer and promoter 
location information.

Conclusions
Although some deep learning methods have been developed to predict EPIs within the 
same cell, they cannot get a good performance for predicting EPIs in the unlabeled cell 
lines, due to lack of understanding of the interested cell lines. In this work, we proposed 
a transfer learning model to predict EPIs in interested (or “new”) cell lines. To better 
leverage the existing EPIs knowledge, we adopt the adversarial learning mechanism to 
learn useful features in the existing labeled cell lines and interesting unlabeled cell lines. 
Experiment results with the domain adversarial operation indicate that it is helpful to 
predict EPIs in new cell lines. We expect that the model could learn informative features 
cross domains and reveal some commonalities (common TFs) between source and tar-
get domains. By learning commonalities between the source and target domains, SEPT 
outperforms other state-of-the-art methods for predicting EPIs in new cell lines.

Although SEPT can effectively predict EPIs in specific cell lines from enhancer and 
promoter sequences, it can be further improved by considering the following factors. 
(1) SEPT just uses the sequence information of enhancers and promoters. Integrating 
other experimental data such as core histone modification ChIP-seq data or DNase-seq 
data can improve the performance of SEPT. (2) Each cell line is treated equally in the 
source domain, but the contribution of different cell lines should be different for the test 
cell line. Determining which cell lines should be used as training data is still needed to 
be explored, as more and more labeled data will become available. (3) Some EPIs maybe 
have the cell line specificity, while others are universal across many cell lines. Thus, dif-
ferent samples within the same cell line should have different contribution for cross-cell 
prediction. Assigning a proper weight to each sample can also improve the performance 
of SEPT. It can be expected that SEPT can be helpful in other biological interactions pre-
diction scenarios [44, 45], such as the detection lncRNA-miRNA interactions.
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Material and methods
Data and preprocessing

We used the same Hi-C data as [2], and downloaded the Hi-C data of seven cell lines 
of K562 (mesoderm-lineage cells from a patient with leukemia), GM12878 (lympho-
blastoid cells), HeLa-S3 (ectoderm-lineage cells from a patient with cervical cancer), 
HUVEC (umbilical vein endothelial cells), IMR90 (fetal lung fibroblasts), NHEK (epi-
dermal keratinocytes) and HMEC (mammary epithelial cells) from Gene Expression 
Omnibus (GEO) GSE63525. The human reference genome hg19 was used to define 
the genomic locations. Promoters and activate enhancers in the first four cell lines 
were identified using segmentation-based annotations from both ENCODE Segway 
[46] and ChromHMM of Roadmap Epigenomics [47], only ChromHMM annotations 
were used in the other cell lines. Then, RNA-seq data from ENCODE were used to 
select activate promoters according to the rule of their mean FPKM > 0.3 with irrepro-
ducible discovery rate < 0.1 for each cell line. The genome-wide Hi-C measurements 
were used to annotate all enhancer–promoter pairs as interacting or non-interacting 
in each cell type. For each enhancer–promoter pair, the distance between promoter 
and enhancer of the pair is more than 10 kb and less than 2 Mb [2]. To exclude the 
effect of distance on determining EPIs, interacting enhancer–promoter pairs were 
assigned to one bin (the total bin number is 5) based on quantile discretization of 
the distance between the enhancer and promoter. Random non-interacting pairs of 
active enhancers and promoters were assigned to their corresponding bin and then 
subsampled as the same number of positive samples within each bin. The subsampled 
non-interacting pairs were considered as negative samples. Table 4 gives the numbers 
of positive and negative pair in each cell line.

For each positive/negative sample, sequences of enhancers are extended or cut to 
3 kb flanking regions on location center of enhancers, and promoter are extended or 
cut to 2 kb flanking regions on location center of promoters. One-hot coding format 
of enhancer and promoter sequence is used as input data of model.

We examined the overlapping number of positive EPIs between any two cell lines. 
For any two positive EPI pairs from any two cell lines, if the position of the two 
enhancers and the position of the two promoters both same, the two EPI pairs are 
considered to overlap. By comparison, positive samples of different cell lines have 
very little overlap (Additional file 1: Table S9).

Table 4  Number of  enhancer–promoter interactions, enhancers and  promoters in  each 
cell line

#  Denotes the number

Cell line #true EPIs #all EPIs #Enhancers #Promoters

IMR90 1254 2504 108,996 5253

NHEK 1291 2571 144,302 5254

HUVEC 1524 3044 65,358 8180

HeLa-S3 1740 3480 102,460 7794

K562 1977 3952 82,806 8196

GM12878 2113 4226 100,036 8453

HMEC 1342 2684 155,328 5267
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For comparison with RIPPLE based on epigenetic data, we used data sets from the 
Roadmap project for the six cell lines. Because we want to make prediction across cell 
lines, we downloaded the peak files of 14 data sets that are measured in all six cell lines. 
These data sets include CTCF, POLR2A, H2AZ, H3K27ac, H3K27me3, H3K36me3, 
H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3, H4K20me1 and 
DNase-seq. An enhancer or promoter sample is represented as a binary vector in which 
each dimension corresponds to one of the epigenetic data sets. The feature vectors of 
enhancer and promoter are concatenated to represent each EPI pair. In addition, we also 
used other two features (i.e., the Pearson’s correlation of the 14 signals associated with 
the enhancer–promoter pair, and the mRNA level of the gene associated with the pro-
moter) to represent each EPI pair.

SEPT

Domain adaptation [28] is defined as that source domain and target domain share fea-
tures and categories, but feature distribution is different. The source domain samples 
with rich information are used to improve the performance of the model in target 
domain prediction. The source domain has abundant supervised labeling information, 
and the target domain has no or few labels. Because SEPT used the idea of domain adap-
tation, we therefore describe the input data in domain adaptation terms. As focusing on 
the task of EPIs prediction across cell lines, we assume that there is no labeled training 
data available in test cell line, only the locations of enhancers and promoters are pro-
vided. So, we can utilize the abundant supervised labeling information of other cell lines 
(called source domain) to improve the performance of EPIs prediction in new cell lines 
without labeled data (called target domain).

An overview of SEPT is shown in Fig.  4a. For predicting the EPIs in cell line #A, 
unlike the existing two methods which extract the specific features (in Fig.  4b) or 
shared features (in Fig. 4c) of cell lines, SEPT uses the rich information of cell lines #B 
and #C to extract the features that are relevant to the EPIs in cell line #A by using the 
transfer learning (TL). As shown in Fig. 4a, SEPT mainly includes feature extractor, 
domain discriminator and EPI predictor. SEPT simultaneously trains two classifiers of 
the main label classifier and the domain discriminator. These two classifiers share fea-
ture extractor layers. It is worth mentioning that we used GRL to design the domain 
discriminator. GRL reverses the direction of the gradient during the back propaga-
tion, but it does nothing when forward propagation. The mixed data of labeled EP 
pairs of cell line #B and cell line #C are used as the source domain data, and the data 
of unlabeled EP pairs of cell line #A are used as the target domain data. Each training 
sample has a domain label, with 0 indicating that the sample belongs to the source 
domain, and 1 indicating that the sample belongs to the target domain. Each mini-
batch training data contains an equal number of samples from both source and target 
domains. In each training iteration, the parameters in feature extractor layers and EPI 
label predictor layers are updated on the source domain data, while the parameters 
in feature extractor layers and domain discriminator layers are updated on both the 
source and target domains data. In other words, in each training iteration, the fea-
ture extractor layers learn the features related to EPI from the samples of cell line #B 
and #C during the first back propagation, while during the second back propagation, 
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the features learned in the feature extractor layers cannot distinguish which cell line 
the samples come from due to the GRL. With the training going on, SEPT gradually 
learns the features which are related to EPI and not related to cell lines.

Feature extractor consists of two convolution layers, two max-pooling layers, two 
dropout layers, and one recurrent long short-term memory (LSTM) layer. Domain 
discriminator consists of the GRL, one dense layer, one dropout layer, and the out-
put. EPIs predictor consists of one dense layer, one dropout layer, and the output. 
Since informative features may differ between enhancers and promoters, we use two 
convolution layers, rectified linear unit (ReLU) and max-pooling layers for enhancers 
and promoters, respectively. Thus, the inputs are two one-hot matrixes to represent 
enhancer and promoter sequence, respectively. Because large number of kernels can 
sufficiently extract the features, and motif features of DNA sequences are short than 
40 bp, so each convolution layer consists of 300 ‘kernels’ with length 40. Max-pooling 
layer reduces the output dimension with pool length 20, stride 20. The outputs of the 
two branches are concatenated into one tensor, which is input to the dropout layer 
with dropout rates of 0.25. The dropout layer randomly selects partial input data to 
next layer to avoid overfitting. The recurrent LSTM layer is used to extract feature 
combinations of the two branches, and the output dimension of LSTM is 100. For 
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domain discriminator, the output of LSTM layer feeds into GRL, and a dense layer 
maps the learned distributed features to the domain label space. It contains 50 units 
with ReLU activations. The output feeds into a sigmoid unit to predict the domain 
probability after dropout layer with dropout rates of 0.5. For EPI predictor, the out-
put of LSTM layer feeds into dense layer, which further maps the learned distributed 
features to the sample label space. It contains 100 units with ReLU activations. The 
output feeds into a sigmoid unit to predict the probability after dropout layer with 
dropout rates of 0.5.

SEPT model training

We trained SEPT for 80 epochs with mini-batches of 64 samples by back-propagation. 
In the training phase, source domain data were used to train the feature extractor and 
the EPI predictor, and both source and target domain data were used to train the fea-
ture extractor and the domain discriminator. SEPT seeks to minimize the loss of EPIs 
label and domain discriminator. Binary cross-entropy loss function for both EPIs label 
predictor and domain discriminator is used, which is minimized by stochastic gradient 
descent (SGD) with initialized learning rate initialized equals 0.001. In view of the two 
optimization objectives, SEPT learns a discriminative representation for EPI prediction 
and indistinguishable representation for domain prediction. The objective function of 
the SEPT is defined as follows:

Here, Ly is the loss of EPIs label predictor, Ld is the loss of domain discriminator, Gf is 
a mapping that maps the input x to a feature vector,Gy is a mapping that maps the fea-
ture vector to the EPIs label, Gd is a mapping that maps the feature vector to the domain 
label, xi is the i-th sample, θf is the parameters of mapping Gf , θy is the parameters of 
mapping Gy , θd is the parameters of mapping Gd , yi is the EPI label of the i-th sample, di 
is the domain label of the i-th sample, N is the number of labeled EPI training samples, 
M is the number of unlabeled EPI training samples but they have the domain labels, and 
� is a constant that controls the tradeoff between two objectives.

It is a problem of minimax optimization, that is, we attempts to seek a saddle point 
of the functional E

(
θf , θy, θd

)
 that is delivered by parameters θ̂f,θ̂y , and θ̂d. At the saddle 

point, the loss of EPI label predictor and domain discriminator is minimized. The loss of 
EPI label predictor is minimized by the feature mapping parameter θf , while the loss of 
domain discriminator is maximized by θf on account of the GRL that changes the sign of 
the gradient during the back-propagation. In the end, SEPT learns the features that are 
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discriminative and domain-invariant. The features learned from the cell lines with label 
information (source domain) are effective for the new cell lines (target domain).

The training procedure of SEPT can be described as follows: (i) Randomly separating 
the dataset of target domain into approximate equal two parts, one as the training data 
in which each sample has domain label but no EPI label, and the other as the testing 
data. (ii) Mixing the data from other six cell lines and randomly shuffling the data. The 
mixed data are used as source domain dataset in which each sample has both domain 
and EPIs labels. (iii) Training SEPT with the source domain data and target domain data. 
(iv) Evaluating the performance of SEPT with the test data in target domain.

All the experiments are based on Python by using the scikit-learn machine learning 
library [48] and Keras framework (https​://keras​.io/) with Tensorflow as back-end [49].

Evaluation metrics

We adopted the metrics of Accuracy, Precision, Recall, F1-score, AUC and AUPR to 
assess the performance of SEPT. These metrics are defined respectively as the following 
[50–53].

where TP is the number of correctly predicted EPIs, TN is the number of correctly pre-
dicted non-EPIs, FP is the number of incorrectly predicted EPIs and FN is the number of 
incorrectly predicted non-EPIs. AUC is the area under the receiver operating character-
istic (ROC) curve which is the plot of the true-positive rate (i.e., sensitivity) as a function 
of false-positive rate (i.e., 1-specificity) based on various thresholds. AUPR is the area 
under the precision-recall curve which is the plot of the precision as a function of recall 
based on various thresholds.
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