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Abstract 

Background:  RNA-Seq is an increasing used methodology to study either coding and 
non-coding RNA expression. There are many software tools available for each phase 
of the RNA-Seq analysis and each of them uses different algorithms. Furthermore, the 
analysis consists of several steps regarding alignment (primary-analysis), quantification, 
differential analysis (secondary-analysis) and any tertiary-analysis and can therefore be 
time-consuming to deal with each step separately, in addition to requiring a computer 
knowledge. For this reason, the development of an automated pipeline that allows the 
entire analysis to be managed through a single initial command and that is easy to use 
even for those without computer skills can be useful. Faced with the vast availability of 
RNA-Seq analysis tools, it is first of all necessary to select a limited number of pipelines 
to include. For this purpose, we compared eight pipelines obtained by combining 
the most used tools and for each one we evaluated peak of RAM, time, sensitivity and 
specificity.

Results:  The pipeline with shorter times, lower consumption of RAM and higher sensi-
tivity is the one consisting in HISAT2 for alignment, featureCounts for quantification and 
edgeR for differential analysis. Here, we developed ARPIR, an automated pipeline that 
recurs by default to the cited pipeline, but it also allows to choose, between different 
tools, those of the pipelines having the best performances.

Conclusions:  ARPIR allows the analysis of RNA-Seq data from groups undergoing 
different treatment allowing multiple comparisons in a single launch and can be 
used either for paired-end or single-end analysis. All the required prerequisites can be 
installed via a configuration script and the analysis can be launched via a graphical 
interface or by a template script. In addition, ARPIR makes a final tertiary-analysis that 
includes a Gene Ontology and Pathway analysis. The results can be viewed in an interac-
tive Shiny App and exported in a report (pdf, word or html formats). ARPIR is an efficient 
and easy-to-use tool for RNA-Seq analysis from quality control to Pathway analysis that 
allows you to choose between different pipelines.

Keywords:  RNA-seq, Bioinformatics, Pipelines, Genomics, DEA, Pathways, Gene 
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Background
RNA-Seq is a technology for the study of the transcriptome based on next-generation 
sequencing (NGS). Developed since the 2000s, it quickly became one of the methods of 
choice in the study of differential expression in various fields. One of these is the study 
of tumors and among them the leukemias, including acute myeloid leukemias (AML), 
where the RNA-Seq is used with increasing frequency either to characterize the disease 
or for diagnostic and risk assessment prognosis [1]. For this reason, it becomes impor-
tant to use with efficiency and simplicity the tools that allow to operate standard anal-
ysis, from differential analysis to Pathway and Gene Ontology analyses. An automated 
pipeline would be useful for this purpose and would save time for analysis.

There are already many pipelines for the analysis of RNA-Seq data, but often they do 
not include final tertiary-analysis or quality control or there is no possibility to explore 
the results as a whole through an interactive report. Evaluating the 29 pipelines cited on 
Wikipedia [2] we noticed that none met all main requirements that could be of interest 
for an RNA-Seq analysis (see Additional file 1). For this reason, we decided to develop 
our own pipeline that was as complete as possible in dealing with each step.

Given the number of tools available, the first step was to understand which ones to 
introduce into the pipeline. In fact, having the possibility to choose between different 
pipelines can be useful, but at the same time having too many choices can be counter-
productive, also because it requires a higher number of prerequisites to install and con-
sequently also a greater storage space. We have therefore selected eight of the most used 
pipelines in the RNA-Seq analysis and we have chosen six based on the results of sensi-
tivity and specificity obtained on simulation data, as well as for peaks of RAM reached 
and time taken. The aim is not to evaluate which are the best tools in the different phases 
of the analysis, as other papers have already dealt with these aspects [3–7] and for this 
reason we have selected pipelines already published, but simply choose a small number 
of pipelines to include in the tool taking into consideration generic and computational 
aspects.

Implementation

Before using ARPIR, it is necessary to install a series of prerequisites and for this purpose 
a configuration script is provided which can be launched on any Debian-based system. 
In other cases, the script must be edited or it is possible to resort to manual installation.

ARPIR can be launched through a graphical interface, developed through the zen-
ity [8] software in a bash script GUI_ARPIR.sh. Once the interface has been started, in 
the first window you are asked to enter: project name, which will be the name of the 
main folder; pool name, which represents a subfolder in which the results will be writ-
ten; sample names, separated by comma, without spaces and ordered to have first the 
controls and then the treated (both at least in duplicate); sample types, in the same order 
of names and separated by comma, represent the belonging of the samples to one or the 
other group; log name, that is the name of the file in which the analysis log will be saved; 
comparisons of interest. In the second window it should be specified if it is a paired-
end or single-end analysis. It is then requested to select, in order: the read 1 and any 
read 2 belonging to the various samples, the reference genome (and related indexes), the 
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BED file, the genome PhiX (a control genome commonly used as a control for Illumina 
sequencing runs), the ribosomal genome 1 (5s rDNA) and 2 (rDNA), the GTF file, the 
reference genome, the directory where the scripts are located, the output directory, the 
directory in which to save the log, the library type, the pipeline desired for alignment, 
quantification and Differential Expression Analysis (DEA), if you want to make a final 
tertiary-analysis, and if so, the number of categories you want to display in the final plots 
(numbers above five tend to decrease readability), the number of threads to use. Finally, 
there is a summary table to check all inputs and parameters entered.

For launching from the command line the same information is required. The com-
mand in this case can be launched using a template (see Additional file 1).

The Pipeline

The main analysis is the Python script ARPIR.py (Fig. 1), in which all the various scripts 
are recalled, with the exception of the Shiny App, which can be launched from the com-
mand line once the analysis is complete.

After a series of checks to verify the existence of the input files and the correctness of 
the parameters, the first script called is the alignment (alignment.sh, alignment_se.sh for 
single-end). In addition, an input.csv file is created in which the sample information will 
be saved, which are necessary for subsequent analysis. The alignment script acts on one 
sample at a time, in the order in which they are inserted.

Before the actual alignment, a quality control is performed with FastQC [9] on the 
supplied files and the report for the various samples is saved in the “Quality” folder. Then 
the analysis with FastQ Screen [10] follows to identify the genome contaminant and also 
in this case the results are saved in the “Quality” folder.

Then the pre-processing phase for PhiX and ribosomal genome removal begins. 
Through bwa mem [11] the FastQ files are aligned on the contaminant genome and 

Fig. 1  Workflow of ARPIR pipeline. The ARPIR pipeline, starting from the input files and parameters, performs 
an RNA-Seq analysis. First of all the primary-analysis, a quality control on the FastQ files occurs, followed by 
a pre-processing and alignment, which can be done through TopHat2, HISAT2 or STAR​, finally there is a new 
quality control on the BAM files. The secondary-analysis is the quantification and differential analysis, which 
can follow the featureCounts-edgeR, featureCounts-DESeq2 or Cufflinks-cummeRbund pipelines. Then an 
optional tertiary-analysis follows, composed of a GO analysis and a Pathway analysis. The results obtained can 
then be viewed in a Shiny App and possibly downloaded to a report
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the reads filtered with samtools [12, 13] to keep only the best alignments. The proce-
dure is repeated both for the PhiX genome and for the ribosomal genome (for each 
sample).

Then the actual alignment phase follows, which can be performed with TopHat2 
[14], HISAT2 [15] and STAR [16]. On the BAM files obtained, a quality control is per-
formed using RSeQC [17], in particular by using inner distance, junction annotation, 
junction saturation, bam statistics, and read distribution. The results are saved in a 
“RSeQC” folder inside the folder with the BAM files.

In addition to the BAM files, bigwig and bedgraph files are also produced in the 
same folder; they are useful to generate tracks that can be loaded—for visual inspec-
tion and comparison analysis—on genome browsers (e.g. UCSC Genome Browser, 
IGV and similar).

In this phase, two summary tables are also generated, saved in the “report” folder, 
with information regarding both the parameters used and the reads removed from 
the samples during the pre-processing.

The next script that is invoked is the one for quantification and DEA, quantifica-
tion.py. Quantification can occur through featureCounts [18] or Cufflinks and in both 
cases the data contained in the input.csv file are used to trace the metadata and path 
of the samples. In the case of Cufflinks, quantification takes place through a series of 
successive steps that involve the cufflinks, cuffmerge and cuffquant functions and to 
these follows the differential analysis phase with cuffdiff (as described in [19]).

The R scripts for the final DEA analysis are then called. In the case of feature-
Counts, runedgeR.R or runDESeq2.R can be called and in the case of Cufflinks 
runcummeRbund.R. In all three cases, first the FPKM matrix for the samples is calcu-
lated and used to create the PCA plot, saved in the “Quantification and DEA” folder 
both in png and in pdf format.

Then the actual differential analysis follows. For edgeR [20], we first have a selec-
tion of genes that are represented at least one counts per million (CPM) in at least 
two samples; the filtering is performed independently of which sample belongs to 
which group so that no bias is introduced. Then follows a normalization through the 
Trimmed Mean of M values (TMM) method, an estimate of the dispersions (in order 
common, trended and tagwise dispersions) and finally the differential analysis, with a 
first fit to the Generalized Linear Model (GLM) followed by a Likelihood Ratio Test 
(LRT). TMM is the recommended for most RNA-Seq data where the majority (more 
than half ) of the genes are believed not differentially expressed between any pair of 
the samples [21]; for this reason it is the default method used for normalization in 
edgeR. For DESeq2 [22] a predefined analysis is performed through the steps: esti-
mation of size factors, estimation of dispersion, and Negative Binomial GLM fitting 
and Wald statistics. The results are then subjected to a logarithmic transformation. 
As already mentioned, in the Cufflinks pipeline the differential analysis has already 
been done, so cummeRbund is used only to import and make the results readable. 
Finally, in all three cases the results are written in tables in csv format, where we can 
find the name of the gene, the value of log2-Fold Change, the adjusted p value and the 
values of FPKM for the various samples. A series of plots are also created and saved 
in png and pdf format: a volcano plot, showing the Fold Change and the p value for all 



Page 5 of 14Spinozzi et al. BMC Bioinformatics 2020, 21(Suppl 19):574

the genes, a heatmap of the 100 genes with greater variance for all the samples, a cor-
relation heatmap between the samples, to verify the similarity between replicates and 
between samples subjected to different treatment.

The last invoked script is GO_pathway.R for the tertiary-analysis. An enrichment anal-
ysis is performed in the Gene Ontology database [23] on genes with an adjusted p value 
of less than 0.05 and an absolute value of log2-Fold Change greater than 1.5 using the 
clusterProfiler package [24]. The results are saved in two tables: one presents the terms of 
Gene Ontology enriched in order of p value and the list of genes present in each group, 
with the relative information of p value, q value and count; the other presents a gene 
enriched by row, the GO term for which it is enriched and the value of Fold Change. 
Furthermore, three types of graphs are generated: a treemap with all the terms of GO 
enriched and in which the dimensions are proportional to the number of genes; three 
dotplots (one for each GO domain), in which the five (default) most enriched categories 
are shown; three cnetplots, in which the same categories and their genes are shown in the 
form of networks. Then the Pathway analysis follows, performed using an enrichment 
test (via the clusterProfiler package) in the KEGG database [25–27]. Even in this case the 
results are saved in a csv table and in a dotplot and in a cnetplot. Furthermore, images of 
the most enriched pathways are generated with the Fold Changes of genes through the 
pathview package [28].

All results are saved in specific folders with the tables in csv and the plots in pdf and 
png.

To make the pipeline automated and not require a massive user intervention in the 
choice of parameters, we have made ARPIR a rigid pipeline, in which it is not possible to 
add tools or methods other than those provided.

ShinyApp and reporting

You can view them interactively via the Shiny App with the command:

The results are shown in a series of tabs divided according to the analysis step (see 
Additional file 1 for further details) and the whole can be downloaded in a pdf, docx or 
html report. In addition to the results, the report also includes the parameters used and 
a brief description of the various steps taken during the analysis.

The summary tab of the Shiny App contains two tables. The first table shows the 
parameters chosen for the analysis, while the second shows a summary for the various 
samples. In particular, for each sample is reported the type (control or treated), the num-
ber of raw reads, which are the reads in the initial FastQ file, the number of PhiX reads, 
which are the reads removed because they are part of PhiX contaminating genome, and 
the number of ribosomal reads, which are instead the reads removed because belonging 
to the ribosomal RNA.

The FastQ quality tab contains the plots obtained from the quality analysis carried 
out with FastQ-Screen and FastQC on the various samples. The first plot is the output 
of FastQ-Screen and shows the percentage of DNA of sample reads mapped on human, 
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murine, PhiX and ribosomal genomes. The second plot is instead the output of FastQC 
and shows the quality of the reads of the sample calculated using the Phred Score con-
tained in the FastQ files. The quality is showed through boxplots based on the position 
on the read. The values found in the green zone are considered of good quality. The 
drop-down menu in sidebar allows to browse through the various samples.

The quality of the BAM files was evaluated using RSeQC software. In particular, in the 
first table statistics related to the reads mapping are reported, in the second table reads 
fractions mapped on the coding exon part, on the 5′-UTR region, on the 3′-UTR region 
and on the intronic or intragenic regions are reported. The first image shows the distri-
bution of the internal distance between paired reads; the second image shows number of 
splicing junctions per percent of total reads and splits junctions in all, known and novel; 
the third and the fourth images show percentage of novel splicing junctions and events.

For the differential expression analysis, a summary table with the results and FPKM 
values for each sample is given. Then a series of summary plots follows and in particular: 
a PCA to evaluate the differences between the samples; a volcano plot, which reports the 
values of Fold Change and p-value for all genes; a heatmap of the 100 genes with greater 
variance, in which the value of the Z-score is reported and therefore the distance from 
the mean for the various samples; a heatmap showing the distances between the sam-
ples, calculated in a distance matrix using the Euclidean distance method.

The outputs of the Gene Ontology analysis are two summary tables, the first one show-
ing a GO term for each line while the second one a gene for each line. Then three inter-
active networks follow, one for each category of GO, which allow to view the enriched 
genes and their Fold Change. Finally, there are a treemap, where the size of each rec-
tangle is proportional to the number of genes, and three dotplots, which report the five 
terms of GO that were more enriched for the genes.

For the Pathway analysis a summary table with enriched pathways is shown, followed 
by an interactive network similar to that of GO. Finally, there is a dotplot with the five 
most enriched pathways.

Materials and methods
The in vitro data we analyzed came from RNA-Seq experiments performed on two dif-
ferent AML cell lines with NPM1 mutation: OCI-AML3 [29] and IMS-M2 [30]. In both 
cases the treatment conditions were compared with the conditions without treatment. 
For each condition the experiment was done in triplicate. The kit used for the prepara-
tion of the sample was the TruSeq RNA [31], while the sequencer used for the sequenc-
ing was HiSeq 2500 by Illumina [32] in rapid run and with a flow cell. Sequencing 
occurred in paired-end and using two lanes for sample. The two lanes corresponding to 
the same sample have been merged into a single file before the alignment phase.

To validate the results of DEA, we used also in silico RNA-Seq data. We have 
resorted to the R package polyester [8] to generate a set of samples in paired-end 
belonging to two different groups and with three replicates per group (see Additional 
file 2). The FastQ files thus obtained were analyzed through the eight pipelines until 
the differential expression data were obtained (see Additional files 3, 4, 5, 6, 7, 8, 9, 
10). To obtain sensitivity and specificity values that were representative of the entire 
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pipeline, we also considered missing alignments and false alignments [33] (see Addi-
tional file 1 for more details).

Both the data obtained from the cell line samples and the simulated RNA-Seq data 
were submitted to the same analysis.

An initial quality analysis was performed on FastQ files using FastQC [9] software 
and a contaminant genome evaluation using FastQ-Screen [10]. We then removed the 
PhiX genome and the ribosomal genome by identifying sequences through alignment 
on samples with bwa.

The eight pipelines we have considered are those that use some of the most popu-
lar tools (Fig. 2). In particular, for alignment we considered three different aligners: 
TopHat2 [14], HISAT2 [15], STAR [16] and kallisto [34]. The first three are based on 
a classical alignment performed on the genome through different algorithms, while 
the fourth one uses a pseudo-alignment on the transcriptome. As for quantification, 
we have selected four software: Cufflinks [35], StringTie [36], featureCounts [18] and 
kallisto [34] itself, which in addition to the alignment also performs quantification. 
The first two resort to a statistical approach to quantification, while the third resort 
to a simple read count. Finally, for the differential analysis we used five different R 
packages: cummeRbund [37], Ballgown [38], DESeq2 [22], edgeR [20] and sleuth [39]. 
Each uses a different statistical approach, except cummeRbund which merely shows 
the results, while the true analysis is performed by Cufflinks.

Results and discussion
For the eight pipelines, we analyzed the time taken for the various processes and the 
peaks of memory used. The data in Table  1 show the values for the analysis in the 
pipelines using 4 threads per process. The data shown are related to the analysis on 
the 6 samples of the IMS-M2 cell line (see Additional file 1 for more details).

By first evaluating the pipelines in terms of time consumption it was found that the 
slowest pipeline is that of TopHat2 and the fastest is that of kallisto. From the point of 
view of memory consumption, all pipelines are quite similar. Interestingly, however, 
note that all the peaks are kept below 5  Gb, so the analysis in all cases can be car-
ried forward even on a normal PC. However, this is not the case with STAR, which 
requires 30 Gb of RAM to work at its best.

Fig. 2  Plot of the eight tested pipelines. We tested different pipelines with the most used tools. We 
considered four aligners, four software for quantification and five R packages for differential analysis
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As well as comparing time and RAM memory performance, we then compared the 
pipelines through the results obtained. We calculated sensitivity and specificity using 
the simulated RNA-Seq data (see Additional file 1 for more details) (Fig. 3).

In the light of these results, it emerges that, although kallisto is the method that 
requires shorter times, the bad results in terms of sensitivity and specificity make it 
unreliable compared to other pipelines. Pipelines that use STAR​ or HISAT2 for align-
ment and featureCounts for quantification are the ones that give better results, as 
they present the best values of sensitivity and specificity. In terms of time they require 
highly less time than the TopHat2 pipeline. However, STAR pipelines are the ones 
that require more consumption of RAM and for this reason we preferred to choose 

Table 1  Table of  the  times and  the  RAM memory peaks reached during  the  RNA-Seq 
analysis for the eight pipelines

The longest pipeline was found to be TopHat2-Cufflinks-cummeRbund, while the shorter kallisto-sleuth. The RAM memory 
peaks are maintained in all cases except for STAR pipelines below 5 Gb

Alignment Quantification DEA Time (h) RAM (Gb)

1° pipeline TopHat2 Cufflinks cummeRbund 35 3.3

2° pipeline Hisat2 StringTie Ballgown 4 4.3

3° pipeline Hisat2 featureCounts DESeq2 4 4.3

4° pipeline Hisat2 featureCounts edgeR 4 4.3

5° pipeline STAR​ Cufflinks cummeRbund 5 30

6° pipeline STAR​ featureCounts DESeq2 4 30

7° pipeline STAR​ featureCounts edgeR 4 30

8° pipeline Kallisto Kallisto Sleuth 2 2.2

Fig. 3  Sensitivity and specificity values for the eight pipelines. Sleuth and Ballgown give the worst 
results, while DESeq2 and edgeR are distinguished by the low number of false negatives (sensitivity) and 
cummeRbund due to the low number of false positives (specificity)
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one of the other pipelines as the default option, as they can also be launched on a nor-
mal PC. edgeR and DESeq2 have very similar results both for time and for RAM peak 
and for sensitivity and specificity, but edgeR proves slightly higher in the differential 
analysis.

We have thus chosen to include in the tool TopHat2-Cufflinks-cummeRbund, STAR-
Cufflinks-cummeRbund, STAR-featureCounts-DESeq2, STAR-featureCounts-edgeR, 
HISAT2-featureCounts-DESeq2 and HISAT2-featureCounts-edgeR pipelines and to 
make the latter the default option (Fig. 4).

Automatic RNA-Seq Pipelines with Interactive Report (ARPIR) carry out the entire 
RNA-Seq analysis and can be used by command line, but a graphical interface is also 
available that, through a series of successive windows, allows to choose between differ-
ent methods of alignment, quantification and differential expression analysis. In addition 
to the standard analysis, ARPIR also performs a series of quality controls and a pre-
processing, as well as an optional final tertiary-analysis. In particular, it makes quality 
control on FastQ files, pre-processing, alignment, quality control on BAM files, tran-
script quantification and differential expression analysis. Given the input files and the 
working directory, ARPIR is completely automated. First, quality control on FastQ files 
is performed with FastQC e FastQ-Screen. FastQC makes quality control and creates one 
report for sample. FastQ-Screen estimates approximately the percentage of reads that 
can be mapped on genomes other than human, like ribosomal genome, PhiX genome 
and mouse genome. This allows to evaluate the presence of contaminating genomes. 
Pre-processing follows quality control: the reads are aligned on PhiX genome and ribo-
somal genome to eliminate contaminations. Alignment can be performed with TopHat2, 
HISAT2 or STAR​; in the first case quantification is performed with Cufflinks and DEA 
with cummeRbund, in the second case quantification is performed with featureCounts 
and DEA with DESeq2 or edgeR, in the third case it is possible to choose one of the pre-
vious methods for quantification and DEA. A second intermediate quality control is also 
performed on the aligned BAM files with some of the RSeQC scripts and in particular: 
inner distance, junction annotation, junction saturation, bam stat, read distribution.

It is possible to perform an optional tertiary-analysis on the results. It consists in Gene 
Ontology enrichment and KEGG Pathway enrichment analyses on the differentially 
expressed genes (with absolute log2-Fold Change value higher than 1.5 and adjusted 
p value lower than 0.05). The tertiary-analysis part has been developed exclusively for 
the human genome at the moment, although the rest of the pipeline can also work for 

Fig. 4  Workflow of HISAT2-featureCounts-edgeR pipeline. The alignment, launched in bash, requires FastQ 
files and the reference genome and leads to BAM files, which in turn become inputs for featureCounts that 
generates a count matrix. Finally, the differential analysis with edgeR generates a differential expression matrix
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different genomes. One of the future goals is to expand the genomes available also for 
tertiary-analysis.

Finally, the results obtained and saved in the appropriate folders can be viewed in 
an interactive Shiny App [40], from which you can also download a report with all the 
results. The advantage of showing the results in this form is that, once the Shiny App is 
launched, it is intuitive and easy to use even for those who are not familiar with com-
puter science. The Shiny App shows the results of the RNA-Seq analysis divided into a 
series of tabs for each phase: the summary tab contains two tables that show the initial 
setting parameters and details about pre-processing on the FastQ files; the FastQ qual-
ity tab contains the FastQC and FastQ-Screen outputs; the BAM quality tab contains the 
RSeQC outputs obtained from the quality analysis on the aligned files; the differential 
expression analysis tab contains a result table and a series of plots and in particular a 
PCA, a volcano plot, a heatmap of the 100 genes with greater variance, a heatmap show-
ing the distances between the samples; the Tertiary-analysis tab is divided into two sub-
tab, one for GO analysis and the other for Pathway analysis, both containing a result 
table and a series of dotplots and interactive network plots (see Additional file  1 for 
more details).

Although ARPIR is not ready for High Performance Computing architecture (HPC), 
there are no limits for sample management. The memory management that ARPIR uses 
is very optimized and multiple sequencing runs can be managed in parallel, regardless of 
the number of samples.

RNA-Seq runs with 10–15 samples can be analyzed even in a normal personal com-
puter with 8–16 GB of RAM. For larger runs, the use of a workstation with 64 GB of 
RAM is recommended.

Other aspects of interest in the use of a tool for RNA-Seq analysis are reproducibil-
ity and transparency, important elements especially in view of scientific publications, 
where often it is required to describe in detail each step of the analysis [41–43]. How-
ever, this is not considered in most tools. The analysis performed with ARPIR is entirely 
reproducible since the code is open access and the individual steps are executed by dif-
ferent scripts, so that it is also possible to reproduce them separately. Furthermore, to 
offer the greatest possible clarity regarding the steps addressed, the log produced dur-
ing the analysis is saved in the selected folder. Finally, in the markdown report that can 
be downloaded from the Shiny App, all the parameters used (both optional and default) 
are reported with an explanation of their function, as well as a brief description of each 
phase with related outputs.

Conclusions
In order to identify a reference pipeline for RNA-Seq analysis, we evaluated some of 
the most used tools by combining them in eight different pipelines. We considered 
consumption in terms of time and RAM memory and we also evaluated the sensitivity 
and specificity of the different pipelines through RNA-Seq simulation data. What has 
emerged is that the HISAT2-featureCounts-edgeR pipeline is the best in terms of time, 
RAM consumption and sensitivity, but good performances are also in the HISAT2-fea-
tureCounts-DESeq2, in the TopHat2 and in the STAR​ pipelines.



Page 11 of 14Spinozzi et al. BMC Bioinformatics 2020, 21(Suppl 19):574

We have therefore developed a single tool, ARPIR, which contains the six pipelines 
and automatically performs the entire standard analysis, from quality control on FastQ 
files to Pathway and Gene Ontology analyses. In addition, multiple comparisons can be 
made between different groups within a single run. In order to make ARPIR easier to use 
even for those not familiar with computer science, we have also provided a configura-
tion script for installing prerequisites and the possibility of being launched through a 
graphical interface (Additional file 11), as well as from the command line using a tem-
plate script. Furthermore, to make the results more easily accessible, we have developed 
an interactive Shiny App, from which it is also possible to download a summary report. 
These features make ARPIR a complete tool, easy to use and a reference point for our 
institute in the field of RNA-Seq analysis [44].
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