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Background
Proteins are made up of hundreds of monomers called amino acids that are attached 
to one another by peptide bonds, forming a long chain defined as primary structure. It 
further constructs the second structure and the tertiary structure of the protein, which 
finally determines the protein function and the optimal condition of its activity [1], such 
as the alkali resistance, or the salt tolerance.

Abstract 

Background:  An enzyme activity is influenced by the external environment. It is 
important to have an enzyme remain high activity in a specific condition. A usual way 
is to first determine the optimal condition of an enzyme by either the gradient test 
or by tertiary structure, and then to use protein engineering to mutate a wild type 
enzyme for a higher activity in an expected condition.

Results:  In this paper, we investigate the optimal condition of an enzyme by directly 
analyzing the sequence. We propose an embedding method to represent the amino 
acids and the structural information as vectors in the latent space. These vectors 
contain information about the correlations between amino acids and sites in the 
aligned amino acid sequences, as well as the correlation with the optimal condition. 
We crawled and processed the amino acid sequences in the glycoside hydrolase 
GH11 family, and got 125 amino acid sequences with optimal pH condition. We used 
probabilistic approximation method to implement the embedding learning method 
on these samples. Based on these embedding vectors, we design a computational 
score to determine which one has a better optimal condition for two given amino 
acid sequences and achieves the accuracy 80% on the test proteins in the same family. 
We also give the mutation suggestion such that it has a higher activity in an expected 
environment, which is consistent with the previously professional wet experiments and 
analysis.

Conclusion:  A new computational method is proposed for the sequence based on 
the enzyme optimal condition analysis. Compared with the traditional process that 
involves a lot of wet experiments and requires multiple mutations, this method can 
give recommendations on the direction and location of amino acid substitution with 
reference significance for an expected condition in an efficient and effective way.
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Enzymes are a kind of catalytic proteins. The enzymes with the same function are 
referred as a family, which have some identical or conserved amino acid fragments in 
sequences that are not prone to mutate. Although these enzymes have the same biologi-
cal function, some of them are more active than others at the same alkaline or tempera-
ture condition, which are caused by the different parts in the sequences, defined as the 
non-conserved fragments. For example, the enzymes in GH11 family can degradate the 
heteroxylans that constitute the plant cell wall in lignocellulosic biomass, but they have 
different optimal temperatures or pHs [2]. In many practical applications, we need to 
find the most active enzyme in a family under a given condition or to select an enzyme 
for a higher activity than the existing enzymes by directed evolution. For these purposes, 
biological researchers generally perform a series of gradient tests to measure the optimal 
condition of each enzyme in a family. Then they adopt the protein engineering to pro-
duce an enzyme with an expected optimal condition [3]. But the above biological meth-
ods analyze only one enzyme at each time such that they cost much time, power and 
resources to get the expected enzyme.

Recently, many works have employed machine learning methods to analyze the opti-
mal temperature or pH for enzymes [4]. For example, Dijk et al. used the ratio between 
the number of residues inside and outside the folding structure of protein as the meas-
ure for its hydrophobicity so as to deduce the temperature dependence of the protein [5]. 
Pucci et al. used temperature-dependent statistical potentials to compute the fold free 
energies at three different temperatures, and used Gibbs–Helmholtz equation to predict 
the protein thermal stability curve [6]. The SCooP method predicted the full T-depend-
ent stability curve by protein structures and host organisms [7]. However, these methods 
require the tertiary structure [8], free energy [9], etc., which are not easy to obtain in 
practice. Another representative method is based on the correlations between the ter-
tiary structure and free energy1 of an enzyme. It judges the stability of the mutant by 
analyzing the change of free energy in this process [10]. For example, Dehouck et al. used 
a linear combination of statistical potentials whose coefficients depend on the solvent 
accessibility of the mutated residues to predict the stability changes caused by single site 
mutations in proteins [11]. Wijma et al. created a library of potentially stable mutations 
by calculating the change in the free energy of mutations, and reduced the size of the 
library by eliminating false positive predictions and chose the most stable combination 
of mutations to mutate [12]. These methods are based on molecular dynamics to simu-
late the state of proteins such that they perform a single protein in one experiment. But 
it can not analyze a group of proteins at the same time.

In this paper, we propose an embedding method to determine which one has a bet-
ter optimal condition for two given sequences directly using the amino acid sequences. 
Amino acids and the construct information in sequence are represented as vectors in the 
same latent space, which are learned by the compatibility between the sites and expected 
condition. We propose the compatibility objectives on both a single-site with an amino 
acid and on multiple sites with different amino acids. Based on these vectors, we can 
predict whether a new enzyme has a better optimal condition than a wild enzyme by 

1  A physics concept to describe the force that causes chemical reactions.
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analyzing its sequence information. We select the enzymes in the GH11 family as the 
practical usage whose optimal pH values are already determined. Since from the view of 
machine learning the quantity of samples is small, we use the statistics to approximate 
the probability distribution on amino acids on each site of the aligned sequences and 
generate more samples for the embedding training.

Based on these embeddings, we analyzed the non-conserved segment and the con-
served segment of these enzymes. These results are consistent with the results on 
WebLogo2 [13, 14]. We then design two experiments for biological purposes. One is to 
compare two enzymes which has a higher optimal pH or which has a higher activity in 
the same pH environment. Another is to quantify the probability that after introducing 
mutations into a given enzyme sequence, whether the enzyme still have high activity for 
an expected optimal condition. Our experimental results are consistent with the biologi-
cal results. Comparing with other methods, the embedding method is more efficient and 
effective.

Notions and dataset
Notions

There are 20 kinds of amino acids commonly used forming proteins in nature. Let 
aa denotes the set of amino acids in bioinformatics, i.e. aa = {Ala,Arg ,Asp,Cys, 
Gln,Glu,His, Ile,Gly,Asn, Leu, Lys,Met,Phe,Pro, Ser,Thr,Trp,Tyr,Val} . Since the 
amino acid sequences in a family are often with different lengths, they are aligned 
before analysis. After alignment, the identical or similar segments are in the successive 
columns, which are helpful to find the functional or evolutionary structure. We denote 
the gap between amino acids as a symbol ′−′ and the set of elements consisting aligned 
amino acid sequences are replaced by A = {−} ∪ aa . Given a family of amino acid 
sequences, denoted by F , the length after alignment is denoted by l. For an amino acid 
sequence, we use k to indicate the kth site of the sequence, ck to represent the amino acid 
at the kth site, and cak for the amino acid of the specific amino acid sequence a at site k.

To learn the correlations between a sequence and the optimal condition, we intro-
duce two metrics. The first is the correlation between a single-site with an amino acid 
in an aligned sequence. We define the event (k,  a) as amino acid cak ∈ A being on the 
kth, k ∈ [1..l] site of an aligned sequence a ∈ F , and introduce the metric of capability 
score s(k, a) to evaluate how this event influences the optimal condition. Taking alkali 
resistance as an example, if the capability score is higher when amino acid ck appears at 
site k, it indicates that the occurrence of this event leads to an increase in the optimal pH 
of the sequence.

Another is the correlation between the optimal condition and multiple amino acids 
appearing on different sites so as to measure how multiple elements together affect the 
optimal condition. We define the event (nai , n

a
j ) as cai  appears on site i and caj  appears on 

site j in the sequence a ∈ F . Then we introduce the suitability score s(nai , n
a
j ) to denote 

how much this event induces a better optimal condition. Different with the single site 

2  A sequence logo is created from a collection of aligned sequences and is widely adopted to depict the consensus 
sequence and diversity of the sequences, such as protein-binding sites in DNA or functional units in proteins. http://
weblo​go.three​pluso​ne.com.

http://weblogo.threeplusone.com
http://weblogo.threeplusone.com
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analysis, the site k and the amino acid cak on it are considered together by concatenating 
their vectors.

A higher score means that the occurrence of event (nai , n
a
j ) induces a better optimal 

condition.
To combine these two objectives together, a hyper parameter α ∈ (0, 1) is introduced 

to balance them in the embedding learning process. Let LT (θ) and LC(θ) denote the 
objective functions for the above scores in the embedding learning process, respec-
tively, where θ denotes all the parameters to be learnd. The whole objective function is 
then defined as L(θ) = α · LT (θ)+ (1− α) · LC(θ) . A larger α induces a higher bias on 
s(k, a). Conversely, a smaller α considers more on the correlations between the optimal 
condition and multiple amino acids appearing on different sites. We would discuss how 
to learn the embeddings in the "Method" section.

Dataset

We crawl the amino acid sequences of the GH11 family on the CAZy website3. In order 
to extract the required optimal pH of each sequence, we investigate the papers related 
to the proteins in the GH11 family. There are 125 amino acid sequences with optimal 
pH condition in the GH11 family and the length of each sequence is within 128 and 335. 
After alignment, the length of amino acid sequences is l = 380 . We choose the higher 
alkali-resistance as the expected condition.

To learn the embeddings of amino acid sequences, we partition F into two subsets. 
Let Sl ⊂ F denote the collection of sequences whose optimal pH values are lower than 
the average and Sh ⊂ F denote the collection of sequences whose optimal pH values are 
higher than the average, respectively.

To select the appropriate sites for rational design, we take into account the con-
served and non-conserved segments in the aligned sequences, and quantify the 
importance of each site against the optimal pH, namely which sites the amino 
acids being on highly influence the alkali resistance. We adopt the information gain 
as a metric. Give a sequence x, the information entropy H(y) quantify the uncer-
tainty on whether x′s optimal pH y is either higher or lower than the average, i.e. 
H(y) = −

∑
i∈{l,h} p(x ∈ Si) · log p(x ∈ Si) , where p(x ∈ Si) =

|Si|
|F|

 . Then we quantify 
how much a concrete site reduces this uncertainty. For site k, the conditional entropy 
H(y|ck) quantities the uncertainty on the optimal pH after we know the amino acid ck , 
i.e H(y|ck) = −

∑
i∈{l,h} p(x ∈ Si|ck) · log p(x ∈ Si|ck) . The conditional entropy on site k 

is the expectation on different amino acids, i.e. H(y|k) =
∑

ck∈A

|Fck |

|F|
·H(y|ck) , where Fck 

denotes the set of sequences with the amino acid ck on site k. The information gain on 
site k is Gain(k) = H(y)−H(y|k) . The higher this score, the more probability different 
amino acids on site k influences the optimal condition. The results on GH11 family are 
scatter plotted in Fig. 1, where the X-axis denotes sites of aligned amino acid sequences 
and Y-axis denotes the information gain on a site. This point would be considered 
together with a concrete amino acid for mutation, discussed in the next section.

3  The CAZy database describes the families of structurally-related catalytic and carbohydrate-binding modules (or func-
tional domains) of enzymes that degrade, modify, or create glycosidic bonds http://www.cazy.org/.

http://www.cazy.org/
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Results
In this section, we discuss how to use the learnt embeddings for biological purposes 
so as to help biologists for efficient analysis without wet experiments. We consider 
the important task on an enzyme mutant for an expected optimal condition, which 
is better than others in a family. A usual way is first to verify the optimal condition of 
each enzyme in a family by wet experiments and select the one that is most approach-
ing the expected condition. Then biologists introduced some mutations in the non-
conserved regions and conducted wet experiments to verify the activity of the mutant 
under the expected environment, known as the rational design. These biological pur-
poses can be transferred as the following two computational problems: the pH predi-
cation and mutation recommendations.

Sequence based optimal pH predication

Given two amino acid sequences in a family, we aim to determine by computation which 
one has a better optimal condition, such as a higher alkali resistance. We first verify 
whether a general regression is appropriate for the pH prediction task using the learned 
embeddings. For this purpose, we calculate the capability score on each site for a given 
sequence a ∈ F by the learnt embeddings as the input of our model. Then we predict the 
value of optimal pH ŷa and calculate the residual by ŷa − ya with its real optimal pH ya . 
We try different prediction models, and finally choose the Support Vector Regression 
(SVR) [15] method as the prediction model, where the kernel function is rbf, punish-
ment term is 10, and the parameter gamma of rbf is 0.0001. The input of the SVR model 
is the feature vector of the amino acid sequence and the output is the optimal pH.

Since the current related works of predicting the optimal condition are based on 
the tertiary structure and/or free energy, there is not any closely related works on the 

Fig. 1  Information gain for the sites in aligned amino acid sequences in GH11 family
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sequence based predication. Therefore, we select several machine leaning algorithms 
as the comparison methods.

•	 SVR [15]. This is the traditional predication method. We try several kernel func-
tions, such as rbf, poly, linear and sigmoid, respectively, and adjust the parameters 
to verify the effects of the SVR. We select the best results from several variants. 
The corresponding parameters include: poly as the kernel function, 10 as the pun-
ishment term C, 3 as the dimensions of poly functions.

•	 Neural network (NN) [16]. There are many factors affect the results of the Neu-
ral Network method, such as the activation function, optimization function, the 
number of hidden layer and the number of nodes on the neural network model.
We explore the effects on different settings and select the best one as: the number 
of nodes in hidden layer to 1000 in one hidden layer, tanh as the activation func-
tion and adam as the optimization function.

As a comparison to embeddings, we use the one-hot vector on the set aa of amino 
acids as the sample features to feed these methods. Namely, each site k of a sequence 
maps to a vector x ∈ {0, 1}l and xi = 1 indicates the amino acid ck is at rank i in the 
lexicographical order of the set of amino acids. The gap maps to zero in a vector.

As the results shown in Fig.  2, we can see that, on one side, the residuals by the 
embedding model follow the Gaussian distribution G(0, 0.9225), which is better than 
the comparison methods. On the other side, although the best result has a very small 
variance 0.9225, it is still not good enough by taking into account the biology context 
of an enzyme mutant. Since a mutant is expected to survive in higher pH condition 
such as 1 pH larger than before, the statistics only convinces about 35% cases satis-
fying this condition, i.e. µ+ σ . The reason that results in this unaccepted result is 
that from the perspective of machine learning the amount of labelled data, i.e the 125 

Fig. 2  Probability distribution on the predication residuals ŷ − y . The ŷ is the predicted value of optimal pH 
for a given sequence, and the y is the real optimal pH
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amino acid sequences with labels of optimal pH condition in the GH11 family, are far 
less than required, which makes the model over-fitting and less robust.

Thus it is not appropriate to directly predict the pH value for a given sequence 
although the introduce of embedding to amino acid sequence and site help the opti-
mal condition analysis. Then we adopt the ranking metric for pH predication. For 
two given amino acid sequences, we predict which one has a better optimal condi-
tion by comparing their pH values. We use the accuracy as the evaluation criteria. If 
the result is consistent with the real ranking between them, it is a correct judgment. 
Otherwise, it is incorrect. The accuracy is computed by the ratio of correct judgments 
against the number of independent experiments. By a series of this ranking compari-
son, we can quickly find an appropriate one from a candidate enzyme set.

In this experiment, we also compare with other methods and show the results in 
Fig.  3, together with several settings on the ratio between the training set and the 
test set. The threshold of the information gain ω is set 0.0478, and the dimension of 
embeddings is set 30 and the preference of the combinative objectives α is set 0.4. We 
use the 10-fold cross-validation method to verify the accuracy, and adopt the aver-
age of 10 repeated experiments for each ratio. The results show that the embedding 
method gives the best results in most cases comparing with other methods.

Consequently, in consideration of the current size of the data set and the above 
results, we choose to use a comparison method to give reasonable and constructive 
opinions on the rational design of enzymes.

Experiment on the influence of parameters

In this subsection, we discuss the influence by the super parameter, including the 
dimensions of embeddings d, the preference of the combinative objectives α for 
embedding learning and the threshold of the information gain ω for selecting the sites 
on computation of score.

Fig. 3  The accuracy of the embedding method and comparison methods in different ratios on training data
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First, we discuss the influence of different dimensions of embeddings on the accu-
racy. We try several settings on the dimension of embeddings, i.e. d = 5, 10, 30, 50, 90 
and 130, respectively,and list the results in Table 1.

Considering the influence by the dimension of embeddings, we verify the accuracy 
against different settings. We can see that after the dimension is larger than a thresh-
old 30, there is not obvious difference on accuracy. This illustrates that a small dimen-
sion cannot hold much implicit information of biological semantics on 20 amino acids 
and the sites of the aligned sequences. However, a too large dimension may induce 
the sparse problem and include too much noise. Consequently, it is difficult for con-
vergence due to a small quantity of samples.

Considering the ratio of the training set and the test set, a larger ratio often induces 
a higher accuracy. Because when the ratio is small, the training set can not reflect 
the probability distribution of the whole dataset. But a dominate ratio, i.e. 90%, may 
induce the number of test set too small such that the results are with more random-
ness and can not reflect the representative results.

Since these experiments are performed only on real enzymes, the number of sam-
ples is small either on training set or testing set, i.e. totally 125 amino acid sequences 
with optimal pH condition in the GH11 family. However, the enzyme activity and 
optimal conditions are different from each other. The contingency in each experiment 
is unavoidable. So, we further analyze the stability of performances under different 
settings by the standard deviation of the results. In most cases, the standard deviation 
of performances under each setting is within [0.005, 0.052]. Under the setting of ratio 
8:2 and dimension 50, the performances are most stable with a low standard deviation 
0.007 and a high accuracy 0.803. Under the setting of ratio 8:2 and dimension 30, the 
accuracy expectation is the highest 0.813 with a low standard deviation 0.016. These 
settings are recommended.

In the following experiments, the embedding dimension is set 30, and the ratio 
between training set to test set is 8:2. We choose the threshold ω as 0.111, 0.0478, 
0.026, 0.0105 and 0.002, and α as 0, 0.1, 0.2, 0.3,..., 1, respectively. The accuracy results 
against different parameters, i.e. the balance factor α and the threshold ω on informa-
tion gain, are shown in Fig. 4.

Considering the threshold of the information gain ω for selecting the sites on com-
puting the score, a suitable ω is required. The best setting is at ω = 0.0478 , colored 

Table 1  Summary on  the  accuracy against  different ratios on  training data, 
the dimensions of embedding, and comparison methods

The best is denoted in italics

Train:test Dimension of embedding vector

5 10 30 50 90 130

5:5 0.734 0.753 0.706 0.704 0.694 0.685

6:4 0.755 0.752 0.744 0.751 0.749 0.746

7:3 0.743 0.77 0.787 0.792 0.794 0.794

8:2 0.751 0.793 0.813 0.803 0.804 0.801

9:1 0.745 0.773 0.787 0.794 0.799 0.799



Page 9 of 19Li et al. BMC Bioinformatics          (2020) 21:512 	

red. A large threshold on the information gain ω induces fewer sites being selected 
and some important non-conserved sites being ignored. Conversely a small ω may 
introduce more conserved sites in calculating the score such that it reduces the 
accuracy.

Considering the preference on α , both the type of amino acids on single site and inter-
actions between multiple sites contribute to accuracy. When α is at 0.4, i.e. the type of 
amino acids on single site, our method achieves the best. When α is less than 0.4, our 
optimization objectives would consider more interaction of different sites. The special 
case α = 0 learnt less about the semantics on amino acids, which only considers the cor-
relations between the optimal condition and multiple amino acids appearing on different 
sites. However a larger α > 0.4 does not influence much on predication. Empirically, the 
appropriate setting is α = 0.4.

Embedding based mutation suggestion

In this subsection, we discuss how to guide mutations on enzymes so as to help biolo-
gists wet experiments. Given a family of enzymes and an expected optimal condition like 
alkali-resistance, we design a new amino acid sequence such that it has a better optimal 
condition than the wild-type enzymes.

For a given wild-type enzyme, we propose two rules for a single-site mutation: (1) 
Do not mutate the site that is filled by gap ′−′ so as to remain the original length of 
the amino acid sequence. (2) Do not mutate the sites with information gain smaller 
than 0.0478. Then we calculate the scores of different single-site mutations and select 
the mutant with the highest score. For multiple-sites mutation, we combine single-site 
mutations to get multi-sites mutants on a wild-type enzyme, and retain the mutant with 
the highest score.

Fig. 4  The accuracy against different parameter settings. Each curve represents the accuracy under the given 
threshold ω
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We perform single-site and multi-sites mutations on the known wild-type amino 
acid sequences in GH11 family. From a biological point of view, the more mutation 
sites, the larger the uncertainty of the mutation and the higher the cost of mutation. 
So we only do at most 3-sites mutation for an amino acid sequence. We use Neural 
Network model to predict the optimal pH of mutants, and calculate the change of 
optimal pH after mutation. The results are shown in Fig. 5, where the X-axis repre-
sents the change of optimal pH and the Y-axis represents the number of amino acid 
sequence under the change.

For both mutations, the optimal pH of the 88% amino acid sequence increases. 
From the prediction results, both mutation suggestions can increase the optimal 
pH of amino acid sequences and the effect of multi-sites mutation suggestion is bet-
ter than that of single-site mutation suggestion. Specially, The optimal pH of the 5% 
amino acid sequence in single-site mutation and 10% amino acid sequence in multi-
sites mutation increase more than 1.0.

Bioinformatics verification

In this subsection, we verify the computational results with the biological wet experi-
ments. We take the enzyme xylanase A from the GH11 family as an example whose 
optimal pH is 6.0. Ruller et  al. generated 5 mutants on xylanase A which can sur-
vive in alkaline environment by multiple mutation experiments and determine their 
activity at pH 8.0 environment by wet experiments [17]. We use Eq. 1 to calculate the 
activity scores of xylanase A and the 5 mutants, which consists of two parts: the com-
patibility of the amino acid on each site s(k , ak) and the influence induced by multiple 
amino acids on different sites s(nai , n

a
j ) . The higher the score, the higher the activity of 

the enzyme at the same pH environment.

Fig. 5  Statistical of the change of optimal pH. Each cylinder represents that how many mutants change their 
optimal pH. X-axis represents the change in optimal pH
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Both the activity at 8.0 pH [17] and the scores of these enzymes calculated by our 
method are together listed in Table 2. By comparing the changes in activity and scores 
between mutants and wild-type xylanase A, we can see that the trend of activity are con-
sistent with the scores. These are positive correlations.

A special case is mutant5, which may be caused by the mutation on site 31. Since the 
information gain on this site is only 0.039 and is lower than the threshold 0.0478, it is not 
included in calculating the score. But considering the little change in activity after muta-
tion, it is not important to select this mutant for an expected optimal condition.

Discussion
Understanding the biological semantics of embeddings

In this proposed method, the learnt embeddings are expected to include the biological 
semantics for an expected optimal condition. Since the embedding vectors are in the 
latent space, we adopt the distributed stochastic neighbor embedding (t-SNE) method 
[18] to reduce the high-dimension vectors to 2d coordinates for illustration.

We first verify whether the capability of amino acids with the sites of a sequence is 
embedded in the vectors. The learned capability scores s(k,  a) are illustrated as the 
thermodynamic chart in Fig.  6, where the X-axis denotes the sites and Y-axis denote 
the amino acids. Red color maps to high scores, while green color maps to low scores. 
The green areas 1–20, 157–166, 215–238, 250–254 and 366–380 indicate amino acids 
on these sites influence less the optimal pH, while the red areas indicate that different 
amino acids on these sites highly influence the optimal pH. Compared with the results 
by biologist analysis, these areas are mapped to the conserved segments and the poten-
tial non-conserved segments, which is the basic task for analyzing the enzymes in a fam-
ily. This convinces the semantics of embeddings.

(1)Score(a) = α ·

l∑

k=1

s(k , ak)+ (1− α) ·

∑l
i,j=1 s(n

a
i , n

a
j )

l

Table 2  The activity at pH 8.0 and the activity score on xylanase A and Mutant

Wild and Mutants Mutation sites Activity at pH 8.0 Score

Wild xylanase A N/A 1.29 U/ml 4022.35

Mutant1 S22P 2.87 U/ml ↑ 4024.73 ↑

Mutant2 G13R 0.99 U/ml ↓ 4018.68 ↓

Mutant3 Q7H/G13R/S22P 1.71 U/ml ↑ 4022.88 ↑

Mutant4 S22P/H56L/S179C 0.88 U/ml ↓ 4024.73 ↑

Mutant5 S31Y 1.68 U/ml ↑ 4022.35*

Fig. 6  The thermodynamic chart for the capability scores on PH for the GH11 family. The X-axis represents 
the aligned 380 sites of sequences and the Y-axis represents amino acids and the gap in set A
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Then we verify the biological differences between amino acids. We select Top10 infor-
mation gain sites and two alkali-resistance amino acids Lys and Arg, as well as two acid-
resistances amino acids Asp and Glu. We combine the embeddings of each pair of them 
and color them as points in Fig. 7 by t − SNE . The results show that the points that are 
combined with the same amino acid are clustered together rather than others. Moreover, 
the points combined with the alkali-resistance amino acids, colored green and pink, are 
clustered more closely than with the acid-resistance amino acid, colored blue and red.

At last we compare the sites with different information gain, the top2 sites 278, 80 and 
the bottom2 sites 1 and 380. The combinative embeddings by sites and amino acids are 
colored differently in Fig.  8, where they are obviously clustered into two groups: sites 

Fig. 7  The t − SNE coordinates of the embeddings. Each point denotes a combinative embedding by a site 
and an amino acid. The selected amino acids Ala, Glu, Arg, Asp and Lys are colored by orange, red, green, blue 
and pink, respectively

Fig. 8  The t − SNE coordinates of the embeddings. The sites 1, 80, 278 and 380 are colored brown, pink, 
purple and green, respectively
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with high information gain and sites with low information gain. We zoom in the details 
on site 80 and 278, and the results in Fig. 9 show that the pink and purple points co-exist 
in pairs. The points related to alkali-resistance amino acids are clustered together, while 
the points related to acid-resistance amino acids are clustered together. Comparatively, 
the points on alkali-resistance amino acids are closer than the acid-resistance amino 
acids. It illustrates that the embeddings have learned much information on distinguish-
ing the amino acids and their influences on alkali-resistance functions.

Future work

By comparing the optimal pH between different amino acid sequences from the same 
family, we use the embeddings to predict the sequence with better alkali resistance. We 
also plan to design a more dedicated model by collecting and combining more datasets 
such that it can directly predict the optimal condition for a given sequence. Besides, 
we plan to analyze the optimal conditions of proteins in different families. Since they 
have different protein structures and aligned sequences, it would be more complex and 
challenging to analyze their conserved and non-conserved sequences and learning the 
embeddings of sites. Another interesting direction is to analyze multiple optimal con-
ditions together. For different optimal conditions, the effectiveness of sites and amino 
acids in a protein may be different. The multi-objective analysis would help us find the 
relationships between different optimal conditions. This requires an elaborate design on 
the embeddings method so that they can contain more information to distinguish the 
features of different optimal conditions.

Conclusion
In this paper, we propose an embedding method to represent the amino acids and the 
construct information as vectors in the latent space. These vectors contain information 
about the correlations between amino acids and sites in aligned amino acid sequences. 
Based on these embeddings, we then compare the two sequences, and determine the 

Fig. 9  The t − SNE coordinates of the embeddings. The sites 80 and 278 with different amino acids are 
labeled pink and purple, respectively
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sequence with the more optimal conditions in the same family. Subsequently, we design 
a scoring method to suggest the site and direction of a mutation for an expected condi-
tion. We adopt the amino acid sequences in glycoside hydrolase GH11 family for the 
verification of our method. And we design two computational experiments and verify 
the results by previous wet experiments, which are to predict better performance in pH 
tolerance such as alkali resistance and to give a mutation suggestion. Compared with 
the traditional method, this method does not require the tertiary structure of a protein 
or the situation of free energy of the amino acid sequence, which is more efficient and 
effective.

These advantages attribute to two aspects. One is that we take into account both the 
correlations between the amino acid at a single site and the interaction between mul-
tiple-sites. Another is that the vectors we have learnt reveal the information about the 
optimal condition implied in amino acids sequence.

Method
In this section, we present the details on the embedding method and the learning 
process.

The embedding objectives

The optimal condition of an amino acid sequence is determined by which amino acids 
consist the enzyme and how they construct together in the sequence. Motivated by 
this point, we introduce two objective functions to learn the correlations between the 
optimal condition and the sequence: (1) the influence by one amino acid on each site. 
(2) the mutual influences by two amino acids on different sites. We propose an embed-
ding method to combine these two objectives together by modeling the sites and the 
amino acids of a sequence into the vectors in the same latent space, denoted by v, c ∈ Rd , 
respectively.

The first objective learns the correlations between the optimal condition and the type 
of amino acid on each site. We define the event (k, a) as amino acid cak ∈ A being on the 
kth, k ∈ [1..l] site of an aligned sequence a ∈ F , and introduce the metric of capability 
score s(k, a) to evaluate how this event influences the optimal condition, formalized by:

where vk , cak ∈ Rd are the embeddings of site k and the amino acid cak , respectively. A 
higher score means cak on site k resulting the sequence a better activity under a given 
condition.

Let E be the set of all occurrences of different events, namely the combination of 
amino acids and sites. We adopt the softmax function to model the probability of such 
an event.

where θ denotes the parameters in this model. To maximize the likelihood of the occur-
rences, the objective loss function is formalized by

(2)s(k , a) = vk · c
a
k

(3)pθ (k , a) =
exp(s(k , a))∑

(k ′,a′)∈E exp(s(k
′, a′))
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Since the normalization part in the denominator in Eq. 3 cost much computation, we 
use the Noise Contrastive Estimation (NCE) method, proposed by Gutmann et al. [19], 
to estimate the optimal parameters θ∗ . It treats the normalization part as an additional 
parameter, denoted by C. The Eq. 3 is then re-written as:

According to NCE, we add artificially generated noise data to the training set. The 
parameters in probability density function and normalization part can be estimated by 
discriminating the original data and noise data. Let p(D = 1|(k , a), θ) denote the prob-
ability that the optimal condition gets higher when cak ∈ A appears on site k in sequence 
a ∈ F . Let p(D = 0|(k , a), θ) denote the probability that the optimal condition gets lower 
when cak appears on site k.

where σ(x) = 1
1+exp(−x) is the sigmoid function and pn(k , a) is the artificial noise 

distribution.
We fit the model by maximizing the expectation of log-posterior probability over the 

mixture of observed samples and noise samples. The expectation and loss function are for-
mulated by Eqs. 8 and 9:

The second embedding objective learns the correlations between the optimal condition 
and multiple amino acids appearing on different sites, namely how multiple elements 
together affect the optimal condition. Different from the single site analysis, the site k 
and the amino acid cak on it are considered together by concatenating their vectors,

where vk , cak ∈ Rd are the embeddings of site k and the amino acid cak , respectively, and 
na
k ∈ R2d is their joint embedding. We define the event (nai , n

a
j ) as cai  appears on site i 

and caj  appears on site j in the sequence a ∈ F . We also introduce the suitability score 
s(nai , n

a
j ) to denote how much this event induces a better optimal condition.

(4)LT (θ) = −
∑

(k ,a)∈E

log pθ (k , a)

(5)pθ (k , a) = exp(s(k , a)+ C)

(6)
p(D = 1|(k , a), θ) =

pθ (k , a)

pθ (k , a)+ pn(k , a)

= σ(log pθ (k , a)− log pn(k , a))

(7)
p(D = 0|(k , a), θ) = 1− p(D = 1|(k , a), θ)

= 1− σ(log pθ (k , a)− log pn(k , a))

(8)Epθ [log p(D = 1|(k , a), θ)] + Epn [log p(D = 0|(k , a), θ)]

(9)
LT (θ) = −[log σ(log pθ (k , a)− log pn(k , a))

+ log(1− σ(log pθ (k
′, a′)− log pn(k

′, a′)))]

(10)na
k = vk ⊕ cak

(11)s(nai , n
a
j ) = na

i · n
a
j = (vi ⊕ cai ) · (vj ⊕ caj )
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A higher score means that the occurrence of event (nai , n
a
j ) induces a better optimal con-

dition and the probability is formalized by equation 12.

Similar to the discussion of Eq. 5–Eq.9, the loss function is formulated as follow:

We model the loss function as a linear combination of the above two loss functions, 
where α ∈ [0, 1] is a preference parameter.

The embedding learning process

We adopt the stochastic gradient descent algorithm to optimize the parameters, pro-
posed by Adam [20]. Given the set of amino acid sequences in a family, we partition 
them into two sets: one for training and another for test. For the expected optimal con-
dition, the training set is further classified into the high optimal condition set Sh and 
the low optimal condition set Sl . For example, if a higher pH is expected as the optimal 
condition, the amino acid sequences in Sh have higher pH than those in Sl . We select a 
sequence a from Sh and the amino acid cak on site i of a as a positive sample, i.e. the pair 
(i, a). A negative sample (j, b) is similarly chosen by site j on b ∈ Sl so as to calculate the 
gradient of parameters. Taking Eq. 9 as an example, the gradient of the embedding vi of 
site i in the loss function is calculated by:

To calculate Eq.13, we need two positive samples (i, a), (j, a) to compose event (nai , n
a
j ) , 

and two negative samples (i′, b) , (j′, b) to compose event (nbi′ , n
b
j′).

In our experiments, we choose the higher alkali-resistance as the expected condition. 
Then the proteins with the optimal pH higher than 7 are classified into Sh and others into 
Sl . When learning the embeddings, we select one or more samples from the two sets for 
each time. The learning process would stop until the objective function is converged.

The approximation method

Since the size of a family dataset is small, we adopt the approximation method to gener-
ate more samples by the statistics on amino acids in the training dataset. To understand 
how this method works, we compare the probability distribution on the training samples 
and all samples by the KL distance, an often adopted metric to evaluate two probability 
distributions [21],

(12)pθ (n
a
i , n

a
j ) =

exp(s(nai , n
a
j ))∑

(i′,j′)∈E exp(s(n
a
i′ , n

a
j′))

(13)
LC(θ) = −[log σ(log pθ (n

a
i , n

a
j )− log pn(n

a
i , n

a
j ))

+ log(1− σ(log pθ (n
a
i
′
, naj

′
)− log pn(n

a
i
′
, naj

′
)))]

(14)L(θ) = α · LT (θ)+ (1− α) · LC(θ)

(15)
∂LT

∂vi
= −[σ(log pθ (i, a)− log pn(i, a))− 1]cai

(16)
∂LC

∂vi
= −[σ(log pθ (n

a
i , n

a
j )− log pn(n

a
i , n

a
j ))− 1]na

j
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where Pi and Qi denote the distribution on the amino acids at site i of an aligned 
sequence in two datasets, respectively. The smaller, the better. We set the proportion 
50%, 60%, 70%, 80%, and 90%, respectively, to randomly select samples as the training 
part. The comparison results against the proportion are listed in Fig. 10, where X-axis 
represents the site and the Y-axis represents the KL distance. We can see that the differ-
ence decreases with an increasing size of training set. Together taking the embedding 
based optimal predication and mutant, as the results shown in the Experiment section, 
we have best results on 80% for learning.

The quantitative score

After having the embeddings, we introduce the quantitative score as the predicted opti-
mal condition for a specific sequence a ∈ F . It considers two parts: the compatibility of 
the amino acid on each site and the influence induced by multiple amino acids on differ-
ent sites. As the score functions s(k, a) and s(nai , n

a
j ) defined in the Notions section, they 

are combined by the preference parameter α , defined as:

This score is used to predict the optimal condition of a new enzyme and to judge 
whether a mutant is appropriate for an expected condition.

Abbreviations
GH11: Glycoside hydrolase family 11; CAZy: Carbohydrate-active enzymes; NCE: Noise contrastive estimation; KL Dis-
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(17)KL− D(Pi � Qi) =
∑

c∈A

Pi(c) · log
Pi(c)

Qi(c)

(18)Score(a) = α ·

l∑

k=1

s(k , ak)+ (1− α) ·

∑l
i,j=1 s(n

a
i , n

a
j )

l

Fig. 10  Evaluation on the approximate method
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