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Background
Reference intervals play an important role in clinical practice in deciding whether a par-
ticular test result measured in a patient should be considered physiological or patho-
logic. As a consequence, proper determination of the reference limits, i.e. the bounds 
that define these intervals, has been extensively discussed in the recent decades, lead-
ing to the proposition of several guidelines [1, 2]. Although prospective approaches 
using only samples from healthy individuals from the reference population are often 
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considered the gold standard for reference interval determination [3], they require com-
prehensive and careful definition of the inclusion criteria and recruitment of an appro-
priate reference population. Together with the recommendations that each laboratory 
should establish its own reference intervals due to potential transferability problems and 
conduct periodical reviews of the resulting estimates, this gold standard is an enormous 
and unmet challenge for most laboratories [4].

This task becomes even more demanding considering that many analytes vary greatly 
with respect to different covariates of the patient [5]. In practice, this problem is often 
solved by splitting the population into subgroups to determine separate intervals. While 
this approach seems reasonable for categorical features such as sex, the decision on how 
to define the cutpoints to differentiate between multiple age groups is substantially more 
challenging. Discretization inevitably leads to discontinuities in the reference limits and 
thus again to increasing uncertainties near these cutpoints. Early work by Virtanen et al. 
[6] already proposes regression based estimation to address this issue, but the applied 
models are rather limited and not sufficient to describe the full conditional distribution 
of most analytes.

Given that age-dependent variations are particularly pronounced during childhood, 
however, it can be difficult to reach sample sizes big enough to establish reliable inter-
vals over the whole age range, as the recruitment of children for medical studies is sub-
ject to strict regulations [7]. Alternative solutions therefore rely on the retrospective 
use of existing data from laboratory databases to estimate “indirect” reference intervals 
[4]. However, these databases are contaminated in the sense that it is rarely possible to 
reconstruct the analyte-specific health status for most entries, as the sampled individu-
als have not undergone a screening process comparable to the strict inclusion criteria 
mentioned above, but laboratory testing was performed as part of a diagnostic workup. 
As a consequence, the retrospective estimation of reference intervals requires addi-
tional precautions in order to avoid corruption by pathological samples. While several 
adequate methods based on statistical procedures have been developed to decompose 
the unlabeled empirical distribution, they mainly focus on estimating reference intervals 
independently from covariates.

In this article, we suggest a new approach to derive reference limits from clinical labo-
ratory databases using mixtures of Gaussian location and scale models via the frame-
work of generalized additive models for location, scale and shape (GAMLSS) [8]. The 
general framework of GAMLSS and other variants of distributional regression have 
a long history in the construction of reference growth charts for children [9–11] and 
are particularly recommended by the WHO for this task [12]. However, these classical 
approaches rely on data from reference populations and hence are not directly suitable 
for our data situation with latent classes (for a Markov-switching GAMLSS approach for 
latent states see [13]).

By incorporating mixtures of GAMLSS to simultaneously model the non-linear 
dependence structure of both mean and variance parameter for the unknown healthy 
and non-healthy components, our new approach allows for a very flexible solution to 
estimate the underlying distributions of reference limits from heterogeneous but unla-
beled data sources. In contrast to recent contributions addressing these issues by split-
ting the data into multiple overlapping windows and subsequently interpolating the 
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individually calculated reference limits [14, 15], our solution provides an integrated 
approach that only requires a single fit to the data. As a consequence, latent class dis-
tributional regression represents the first approach capable of simultaneously account-
ing for both non-linear dependencies of covariates with respect to multiple distribution 
parameters and unlabeled data sources in this setting. We demonstrate our approach by 
estimating continuous hemoglobin reference intervals for boys and girls in a heavily con-
taminated real-world dataset from a tertiary care center.

Results
Simulation study

To investigate whether or not the suggested latent class distributional regression mod-
els are able to approximate the true underlying non-linear components of an unlabeled 
dataset, we examined the performance of our approach using an adaptive simulation 
scenario described in this section. With the regressor variables x standard uniformly dis-
tributed, all responses were sampled from a Gaussian mixture with two components as 
follows:

The first component in each scenario is considered to be the distribution of main inter-
est, i.e. the distribution of what will later be attributed to the “healthy” part of the sam-
ple, with

and

In order to be able to evaluate the performance of the algorithm under varying condi-
tions, an adjustable specification was considered for the second component to account 
for different degrees of overlap and the resulting distinctiveness between the true dis-
tributions. This was achieved by using an additional spacing variable c for the mean 
formula:

With

the variance of the second component is not affected by c and hence the same for all sim-
ulation settings. Consequently, the smaller c the larger the overlap, with expected values 
identical but η(i)1σ < η

(i)
2σ for all i if c = 0. In order to further diversify the simulation setup, 
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of contamination in the data, with α1 always denoting a more dominant “healthy” 
component.

Figure 1 shows an exemplary simulated data set, where it can be seen that the locations 
of the two distributions slowly diverge and their variances increase for larger values of x . 
Revisiting the details of the true components given above, it is clear that the exponent 
of both variance terms is actually even linearly increasing with respect to x . However, 
we decided to use non-linear prediction functions for all four distribution parameters, 
standard deviations included. First, because we felt that this form of linearity might not 
only be difficult to detect but would also be rarely considered appropriate in most practi-
cal applications, and second, because it allowed us to simultaneously investigate how the 
algorithm deals with over-specification of the model. Parameter estimation regarding 
the different components of the mixture distribution was achieved using the maximum 
likelihood approach implemented in the gamlss-package for R [16, 17] wrapped inside 
an EM-algorithm as described in Algorithm 1 with the convergence threshold ǫ set to 
0.001. Both non-linear terms for each component were estimated using cubic B-splines 
with three degrees of freedom. A reproducible capsule of the R-code used for data gen-
eration and analysis is publicly available on Code Ocean [18].

While many applications of mixture models are initialized using e.g. random assign-
ment of observations, doing so resulted in many unreasonable solutions, especially for 
higher values of c. This was a result of the algorithm quickly running into local maxima 
due to its high flexibility, especially with respect to the variance components. There-
fore, we addressed this issue by providing more informative initial weights based on 
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Fig. 1  Simulation example. Exemplary data with n = 500 cases, gap parameter c = 20 and α = (0.7, 0.3) . 
Figures in the bottom row show the true mixture and component densities for x ∈ (0.1, 0.5, 0.9)
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the cumulative distribution function derived from a somewhat ‘naive’ application of a 
Gaussian GAMLSS that ignores the fact that the data is sampled from a mixture.

Overall, our results are based on 24,000 independently generated datasets, i.e. 1000 
repetitions for each unique combination of c ∈ (5, 10, 15, 20) , α1 ∈ (0.6, 0.7, 0.8) and 
n ∈ (500, 1000) , specifically. In 4.43% of all runs the algorithm encountered problems 
before reaching the targeted convergence threshold of ǫ = 0.001 . About 43% of these 
issues occurred when c was set to 5, which is not that surprising considering the sub-
stantial overlap between both components in these rather extreme scenarios. Interest-
ingly, a feasible solution in most of these cases was to rerun the algorithm with randomly 
assigned component memberships as starting weights, as this resulted in one compo-
nent to quickly take over and explain large parts of the data, while the second addressed 
the most extreme outliers. Although the affected runs did not necessarily result in obvi-
ously wrong estimations of the desired quantiles when using the naive model as initiali-
zation, we decided to omit them from the aggregated results to base the comparisons on 
identical conditions with respect to the initialization strategy. For a more detailed break-
down, see Table 3 in the “Appendix”.

Along with the results of the latent class distributional regression model (LCDR), we 
additionally report the performance of two standard GAMLSS fits. The first is the “naive” 
fit to the full data set used for the initialization of the LCDR, which ignores the true 
nature of the data and should therefore perform rather poorly. The second is a GAMLSS 
fit only to those observations in each simulated dataset that are in fact sampled from the 
“healthy” first component. This model can be considered as the gold standard that could 
have been achieved with a prospective study design. Main objective of all three models is 
the estimation of Q1,0.95(x) , i.e. the 95%-quantile of the first component.

Tables 1 and 2 show the aggregated results of the three models, i.e. latent class dis-
tributional regression (LCDR), “gold standard” (GOLD) and “naive” fit (NAIVE), 
for each scenario with n  =  500 and n  =  1000, respectively. With the predictor 
variable x standard uniformly distributed, we calculate the integrated error (IE) 
∫ 1
0 Q̂1,0.95(x)− Q1,0.95(x) dx as a measure of bias together with the integrated squared 

error (ISE) 
∫ 1
0 (Q̂1,0.95(x)− Q1,0.95(x))

2 dx as a measure of general deviation from the 
true quantile for each run.

As should be expected, the LCDR is mostly situated between the two GAMLSS fits. 
With increasing values of c, the underlying components are easier to differentiate and 
LCDR performance generally increases, while the naive model deteriorates. Note that 
the results for the gold standard models only vary with respect to different c because of 
the runs removed due to non-convergence of the LCDR-algorithm on the same dataset.

While outperforming the naive approach in every setup, the LCDR shows a tendency 
to underestimate the true 95%-quantiles for very low c. This can be traced back to initial-
izing the models in a way that they start far away from each other. If the overlap of the 
mixture components is very large, it is harder for the algorithm to bring the components 
close enough together while simultaneously trying to estimate their shape, whereas 
smaller overlap means more favorable and convenient starting positions.

The integrated squared error further affirms this issue. With increasing sample size, 
however, the average ISE of the LCDR improves considerably. Figures  2 and 3 show 
the quantiles estimated from the first 100 generated datasets for four corresponding 
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scenarios. While a few estimated limits deviate heavily from the true quantile in the set-
tings with n = 500 especially at the boundaries of x , such obvious errors are no longer 
present when the sample size is doubled and the true quantile is much better approxi-
mated. Of course, this could have been easily prevented by using linear predictors for 
the variance parameters of the components or rerunning the algorithm with a new set of 
initial weights in the most obvious cases. Therefore, sample size plays an important role 
to avoid running into local maxima due to overfitting random patterns in the data.

In an additional simulation study involving a mixture of gamma distributions, the 
algorithm performs similarly well as in the Gaussian settings. However, the importance 
of a sufficiently large sample is also evident in these scenarios. The corresponding results 
are available in full detail on Code Ocean [18].

Age‑dependent hemoglobin reference intervals

We apply our model to the estimation of pediatric hemoglobin reference intervals. All 
laboratory tests were performed in the context of patient care in the Department of 
Pediatrics and Adolescence at the University Hospital Erlangen, Germany. We used test 
results from all children, irrespective of health status or speciality unit, including inten-
sive care and oncology units.

Table 1  Simulation results for n = 500

Reported are the means and standard deviations of the integrated error and the integrated squared error over all simulation 
runs for latent class distributional regression (LCDR), “gold standard” (GOLD) and “naive” fit (NAIVE)

α1 c LCDR GOLD NAIVE

Integrated error

0.6 20 − 0.185 (2.837) − 0.160 (0.942) 26.60 (1.223)

15 − 0.318 (3.365) − 0.172 (0.936) 19.33 (1.160)

10 − 0.924 (3.753) − 0.169 (0.945) 12.81 (1.087)

5 − 1.997 (3.897) − 0.179 (0.936) 7.410 (0.980)

0.7 20 − 0.496 (2.528) − 0.110 (0.863) 21.86 (1.225)

15 − 0.711 (2.885) − 0.106 (0.859) 15.66 (1.146)

10 − 1.596 (3.297) − 0.090 (0.858) 10.19 (1.058)

5 − 2.895 (3.810) − 0.103 (0.858) 5.760 (0.958)

0.8 20 − 0.563 (2.168) − 0.082 (0.821) 16.18 (1.205)

15 − 0.991 (2.459) − 0.089 (0.824) 11.40 (1.129)

10 − 2.112 (2.943) − 0.064 (0.825) 7.243 (1.030)

5 − 3.599 (3.645) − 0.062 (0.825) 3.967 (0.921)

Integrated squared error

0.6 20 17.05 (17.81) 3.792 (2.770) 747.43 (74.07)

15 22.15 (26.54) 3.804 (2.788) 397.42 (50.93)

10 28.59 (39.72) 3.843 (2.799) 177.19 (31.74)

5 42.32 (57.01) 3.788 (2.759) 61.99 (16.77)

0.7 20 13.06 (11.57) 3.253 (2.325) 509.10 (61.96)

15 16.31 (17.00) 3.250 (2.330) 264.13 (41.33)

10 23.82 (29.69) 3.258 (2.352) 114.47 (24.89)

5 41.57 (56.00) 3.238 (2.310) 39.07 (13.05)

0.8 20 9.919 (8.52) 2.869 (2.154) 284.09 (45.34)

15 13.16 (12.49) 2.883 (2.183) 143.68 (29.81)

10 21.86 (26.45) 2.883 (2.168) 60.38 (17.29)

5 45.80 (58.75) 2.880 (2.176) 20.39 (8.814)
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After removing samples taken at subsequent visits of the same person, nf = 60424 and 
nm = 75464 observations of girls and boys aged between 1 and 18 years are available. 
The model is estimated as a mixture of two Gaussian distributions conditional on age 
and sex using

for both m ∈ (1, 2) components, where I(·) is the indicator function. As in the simula-
tions, we used B-splines with three degrees of freedom for all non-linear model terms. 
Figure  4 shows 5000 randomly selected data points from the full dataset. The shaded 
areas represent the estimated distribution for the healthy values of hemoglobin concen-
tration enclosed by the 2.5% and 97.5% quantiles depicted by red or blue solid lines. Fit-
ting the models separately to the data from boys and girls with age as single non-linear 

ηmµ = βm0µ + βm1µ · Ifemale(sex)

+ hm1µ

(

age · Ifemale(sex)
)

+ hm2µ

(

age · Imale(sex)
)

ηmσ = βm0σ + βm1σ · Ifemale(sex)

+ hm1σ

(

age · Ifemale(sex)
)

+ hm2σ

(

age · Imale(sex)
)

Table 2  Simulation results for n = 1000

Reported are the means and standard deviations of the integrated error and integrated squared error over all simulation 
runs for latent class distributional regression (LCDR), “gold standard” (GOLD) and “naive” fit (NAIVE)

α1 c LCDR GOLD NAIVE

Integrated error

0.6 20 − 0.200 (2.110) − 0.059 (0.652) 26.66 (0.872)

15 − 0.218 (2.601) − 0.060 (0.651) 19.38 (0.828)

10 − 0.309 (2.755) − 0.056 (0.653) 12.87 (0.773)

5 − 0.987 (3.057) − 0.057 (0.656) 7.501 (0.706)

0.7 20 − 0.436 (1.876) − 0.056 (0.594) 21.92 (0.871)

15 − 0.482 (2.183) − 0.057 (0.594) 15.72 (0.825)

10 − 0.680 (2.314) − 0.061 (0.594) 10.23 (0.764)

5 − 1.621 (2.53) − 0.063 (0.594) 5.808 (0.689)

0.8 20 − 0.394 (1.637) − 0.061 (0.565) 16.17 (0.845)

15 − 0.540 (1.908) − 0.054 (0.568) 11.42 (0.793)

10 − 1.010 (2.022) − 0.057 (0.570) 7.263 (0.733)

5 − 2.199 (2.560) − 0.050 (0.570) 4.009 (0.660)

Integrated squared error

0.6 20 8.326 (8.142) 1.910 (1.378) 746.50 (52.97)

15 11.69 (14.89) 1.911 (1.380) 396.38 (36.42)

10 13.47 (17.26) 1.913 (1.383) 176.55 (22.58)

5 19.92 (28.98) 1.914 (1.384) 61.46 (12.09)

0.7 20 6.764 (5.920) 1.692 (1.185) 506.36 (43.79)

15 8.532 (7.778) 1.694 (1.187) 262.09 (29.60)

10 10.02 (10.58) 1.692 (1.186) 112.57 (17.90)

5 17.01 (25.73) 1.685 (1.181) 37.64 (9.275)

0.8 20 5.150 (4.574) 1.495 (1.007) 279.49 (32.28)

15 6.634 (5.876) 1.494 (1.009) 140.29 (21.19)

10 8.354 (9.089) 1.494 (1.003) 58.09 (12.47)

5 19.34 (27.67) 1.500 (1.010) 18.94 (6.266)
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predictor led to almost identical quantiles depicted by dashed lines. The solid black lines 
show the corresponding quantiles based on estimations available from an alternative 
approach, that has been evaluated extensively but requires splitting of the dataset and 
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subsequent interpolation of discrete reference intervals. Overall, both methods provide 
very similar estimates.

Discussion
In this article, we propose an algorithm that generally extends the framework of latent 
class regression models to settings with distributional response variables. We use the 
resulting model to estimate age-specific hemoglobin reference limits derived from labo-
ratory databases containing unlabeled samples from both healthy and children with a 
wide range of diseases. While the framework is by no means limited to these specific 
scenarios and can be used for a large variety of research questions associated with unob-
served heterogeneity, the proposed approach clearly presents a valuable contribution 
to the field of reference interval estimation, where methods capable of simultaneously 
accounting for both non-linear dependencies of covariates with respect to multiple dis-
tribution parameters and unlabeled data sources are still lacking.

The algorithm performs very promising in our simulation study even in the most difficult 
scenarios with extreme overlap between the components. Our simulation study had been 
motivated by the actual application, however, further research is warranted to extend the 
approach to more complex scenarios that have not been considered at the moment: First, 
we restricted our simulations to scenarios with two components, one for the healthy and 
another one for the pathologic samples. This is perfectly fine if the majority of pathologic 
values are either higher or lower compared to those considered healthy, as is the case in 
our application. For other analytes, it may be necessary to specify an additional pathologic 
distribution to cover deviations from the healthy range in both directions. Moreover, our 
simulations so far only focused on mixtures of Gaussian and gamma distributions, which 
may not always represent the best choices in all situations. However, both aspects can gen-
erally be addressed by increasing the overall number of components M and using differ-
ent probability distribution functions for those components. Although the simulation study 
addresses only scenarios with a single predictor variable, the very similar solutions of the 
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joint and separate models for boys and girls regarding pediatric hemoglobin reference lim-
its further offer a promising perspective for expandability towards scenarios with more 
than one covariate.

Currently, the algorithm uses unpenalized B-splines to estimate the non-linear model 
terms. Therefore, the degree of smoothness of the effects has to be specified in advance, 
which will not always be a straightforward decision in practice. A natural expansion of the 
proposed algorithm is hence the introduction of a penalty to reduce the risk of overfitting. 
However, the model is already very flexible in its current implementation, which makes the 
solutions strongly depend on the initial observation weights. As a consequence, the stability 
of the suggested solutions of the algorithm should be further evaluated in practice by using 
multiple sets of different starting weights or bootstrapped data sets. Since straying into local 
maxima is strongly determined by the extent to which the first iterations pick up misleading 
patterns, an important extension would hence be the search for possibilities to absorb these 
early missteps. Reducing the dependence on the initialization can then extend the applica-
bility of the model to situations in which theoretically meaningful assumptions about the 
class memberships are not available in advance. In the context of indirect reference interval 
estimation, introducing model constraints that prevent crossing of the location parameters 
could further guide the algorithm to avoid theoretically unreasonable solutions, especially if 
the model involves separate components for low and high pathologic measurements.

Currently, another limitation are the mixture weights α , which are estimated constant 
with respect to the values of the predictor variable(s). It is actually not entirely unlikely, 
however, that the mixture ratio of the components depends on some external factor as 
well. Regarding the values of analytes sampled from children, for example, the propor-
tion of healthy samples may eventually be decreasing with age, as routine examinations 
become less frequent and many of the samples obtained in everyday care are taken from 
children who probably visit the hospital for reasons that may also affect the analyte of 
interest. Therefore, approaches that are able to estimate dynamic mixture weights as well 
could be a valuable extension of the model framework. Further possible improvements of 
our approach involve the implementation of lower bounds for certain distribution param-
eters like the Gaussian variance parameter to avoid potential problems with respect to 
unbounded likelihoods.

Conclusion
Latent class distributional regression models provide a both practical and theoretically 
sound framework suitable for, but not limited to, the estimation of reference limits from 
contaminated databases. Due to the possibility to allow for very flexible model components, 
the application requires careful considerations from the researcher with respect to mean-
ingful initial weight vectors and degrees of freedom for the non-linear effects. Moreover, 
these efforts should also be supported by an appropriately large sample in relation to the 
desired degree of flexibility.

Methods
Finite mixture models

Applying a (parametric) statistical model to a dataset usually requires the assumption of 
a probability density function that describes the distribution of the variable of interest. In 
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the context of the retrospective estimation of reference limits, however, it is reasonable 
to assume that measurements taken from patients with specific diseases are differently 
distributed than those taken from patients considered healthy. If there is not enough 
information about the origin of the samples to either separate them before the analysis 
or adjust the model formulation accordingly, this latent heterogeneity means that the use 
of a single density function does not sufficiently describe the entire distribution of the 
analyte in the database. As a result, using the quantiles of the estimated distribution as 
reference limits would most likely overestimate the quantiles of the healthy population, 
as many pathologic measurements are either substantially higher or lower and thus tend 
to give more weight to one or both tails of the composite empirical distribution.

In these situations, given the number of components M, a weighted sum of 
m = 1, . . . ,M probability density functions fm(x(i), θm) with corresponding parameter 
vector θm can be used to construct a finite mixture distribution

where ψ = (α1, . . . ,αM , θ1, . . . , θM) contains all unknown weights and parameters to 
be estimated. With αm > 0 and 

∑M
m=1 αm = 1 , f (x(i),ψ) is a convex combination of all 

fm(x
(i), θm) and thus a probability density function itself.

Finite mixture distributions have quite a long history [19, 20], are comprehensively 
described in the statistical literature [21–23] and continue to provide useful approaches 
to a wide range of applications (e.g. [24, 25]). The most common strategy to estimate the 
unknown parameters is the expectation maximization algorithm [26]. A well known lim-
itation of EM algorithms, however, is that they become easily trapped in local maxima 
[27]. Other limitations involve identifiability problems for certain mixtures of density 
functions or when the number of components is misspecified [28]. In order to address 
this issue, several approaches based on bootstrapping methods have been suggested [29, 
30].

Generalized additive models for location, scale and shape

While the assumed distribution of an outcome y is mostly described by multiple param-
eters, the main focus of most regression problems lies on using a set of given input var-
iables X to model only the mean. Generalized additive models for location, scale and 
shape (GAMLSS) [8] extend the original framework of generalized additive models 
(GAM) [31] by defining additional additive predictors to model the dependency on the 
covariates of up to four distribution parameters θk=1,...,4:

Here, gk(·) denotes a known monotonic link function and xk1, . . . , xkpk the pk (possi-
bly different) input variables for each predictor ηθk with hjθk (·) describing the shape 
of the effect of xkj on θk . The four parameters are also referred to more specifically by 
θk = (µ, σ , ν, τ ) . Set up properly, this model class therefore allows to model patterns 
in the data that are for instance responsible for differences in the residual variance of 

f (x(i),ψ) =
M
∑

m=1

αmfm(x
(i), θm),

gk
(

θ
(i)
k

)

= β0k +
pk
∑

j=1

hjθk (x
(i)
kj ) = η

(i)
θk
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Gaussian regression or the dispersion parameters for negative binomial regression. The 
model parameters are usually estimated via (penalized) maximum likelihood by means 
of either a Newton–Raphson or Fisher scoring algorithm. Later, the use of gradient 
boosting algorithms was proposed to allow for inference in high-dimensional settings 
via implicit regularization [32].

Latent class distributional regression

In order to be able to simultaneously address both highly dynamic dependence struc-
tures of the distribution of interest as well as the problem of unlabeled observations 
from possibly multiple sources, we propose to combine the GAMLSS framework with 
the concept of mixture models. With a pre-specified number of components M, this 
results in a latent class distributional regression model

with mixture weights α = (α1, . . . ,αM) and ξ (i) = (θ
(i)
1 , . . . , θ

(i)
M ) containing all obser-

vation and component specific distribution parameters. A schematic overview of the 
steps performed for model estimation is shown in Algorithm 1. After providing initial 
values for all individual observation weights w(i,0)

m  , the algorithm starts by fitting suit-
able GAMLSS for all of the M components, with data each time re-weighted using the 
corresponding vector w(0)

m  . In the same step, the initial mixture weights α(0)
m  are com-

puted. Subsequently, the parameters θ̂
(i,0)

m  of the initial model fit are then used to derive 
updates for the observation weights by computing the likelihood for each observation 
to be part of the separate models. With new weights w(i,1)

m  available, the data is obvi-
ously re-weighted differently and refitting the models for each component again leads to 
new sets of parameter estimates θ̂

(i,1)

m  . Cycling through these alternating updates steadily 
increases the log-likelihood of the full mixture model and eventually converges to a solu-
tion where additional iterations will not bring any substantial improvements.

f
(

y(i)
∣

∣x(i),α, ξ (i)
)

=
M
∑

m=1

αmfm

(

y(i)
∣

∣x(i), θ (i)m

)

,
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As mentioned in the introduction of mixture models, however, solutions found by 
the expectation-maximization approach may not always represent the global optimum. 
For example, unboundedness of the likelihood might occur at the edge of the param-
eter space, making the solution of the algorithm strongly depend on the provided initial 
observation weights [33]. Moreover, identifiability of standard linear regression models 
might not be guaranteed even if the regressor matrix has full rank [34].
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Appendix
See Table 3.

Table 3  Number of  non-converged runs (out of  1000) per  setting for  latent class 
distributional regression (LCDR)

c n = 500 n = 1000
∑

α1 α1

0.6 0.7 0.8 0.6 0.7 0.8

5 79 87 125 24 58 86 459

10 51 63 105 14 26 60 319

15 23 34 96 3 7 30 193

20 4 17 55 0 1 16 93
∑

157 201 381 41 92 192 1064
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