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Background
Somatic mutations acquired in each cell during and after embryogenesis are passed 
to the descendant cells such that, within the same individual, different populations of 
somatic cells have slightly different DNA, resulting in genomic mosaicism. The accu-
mulation of somatic mutations increases with age [1–3],and is also affected by environ-
mental factors like tobacco smoking and alcohol consumption [4]. Somatic mutations 
can not only cause cancer but also diverse neurological diseases, including cortical mal-
formations, epilepsy, intellectual disability, and neurodegeneration [5, 6]. Some somatic 
mutations might give the cells proliferative advantage, and ultimately cause cancer, or 
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can affect the cellular functions without a proliferative effect. This makes the detection 
of mosaic mutation important for understanding the mechanism of various diseases.

Although whole genome sequencing of bulk tissue has been used for detecting somatic 
mutations, it is not sensitive enough to detect mosaic mutations present below 1% vari-
ant allele frequency (VAF), i.e., a heterozygous mutation present in less than 2% of the 
cells. This hurdle has been overcome by single-cell DNA sequencing (scDNA-seq) which 
in recent times has emerged as an efficient tool for studying mosaic mutations [7–9]. 
Since the starting DNA amount in a single cell is very low, an additional step of DNA 
amplification is required. There are two types of broad methods for DNA amplification: 
cell cloning and enzymatic Whole Genome Amplification (WGA). Depending on the 
experimental design one of the two methods can be used. WGA methods, unlike cell 
cloning, directly isolates extracted DNA from single cells and then amplify it, making it 
possible to sequence the DNA of cells which cannot be cultured, such as neurons. There 
are three types of WGA methods: DOP–PCR (Degenerate Oligonucleotide–Primed 
Polymerase Chain Reaction) [10], MDA (Multiple Displacement Amplification) [11] and 
MALBAC (Multiple Annealing and Looping–Based Amplification Cycles) [12], each 
having its advantages and drawbacks. MDA is the most widely used method for WGA 
owing to its longer fragment length (up to 70 kbps), low error rate during amplifica-
tion and higher fraction of the genome being amplified as compared to the other WGA 
methods [13].

MDA is an exponential amplification method where the DNA is amplified using a high 
fidelity phi29 polymerase with proofreading activity under isothermal conditions [11]. 
However, phi29 polymerase is sensitive to template fragmentation happening during cell 
lysis as well as presence of blocking sites where DNA damage prevents amplification. 
This may lead to uneven coverage, over-fragmented or completely damaged DNA, which 
may further lead to allelic imbalance when one of the alleles is under-amplified and the 
other allele is over-amplified. Even though MDA results in high yield of DNA material, 
introduction of biases such as allelic imbalance and over representation of C to T muta-
tion introduced during lysis can affect the variant detection downstream.

Before moving forward with high coverage Whole Genome Sequencing (WGS), it is 
important to select cells with successful amplification, exhibiting little or no biases. Une-
ven amplification, with the ultimate manifestation of allelic drop-outs (i.e., random and 
drastic overrepresenting of one allele over the other), challenges separating false posi-
tives from real somatic variants. For example, deamination of cytosine happening during 
cell lysis on one strand of one allele are expected to have 25% allele frequency in a bal-
anced amplification and, based on that, can be marked as artifact. However, if the other 
non-deaminated allele is not amplified, the allele frequency for the artifact will become 
50%, making it indistinguishable from a heterozygous variant. So, using a cell with high 
allele drop-out rate will result in more false positives and reduce sensitivity, as variants 
in dropped out regions cannot be discovered.

PCR can be used as a first quality control to test the presence of several random 
genomic loci, usually chosen on different chromosomes, in the amplified DNA. 
Multiplex-PCR of 4 loci in one PCR reaction can for instance be used as a rapid 
quality control where cells are considered to have good quality amplification if at 
least 3 loci are detected [14]. However, this test is quite limited as there might be 
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regions outside of the 4 loci with un-uniform amplification. Similarly, failing the test 
doesn’t imply low amplification quality outside of the 4 loci. It is therefore essential 
to look at the genome as a whole. A few methods for checking amplification qual-
ity in silico from WGS data were proposed. Statistical models have been used to 
detect amplification bias using depth of sequence [15]. Amplification quality prior 
to sequencing has also been determined by using power spectral density to estimate 
uniformity of amplification which can be otherwise masked by non-unique read 
mapping, assembly gaps and locus dropouts (both alleles are not amplified) [16], and 
median absolute difference (MAPD) [17]. However, these methods either rely on at 
least 20×–30× coverage or do not evaluate allelic imbalance, which is important to 
access to have full coverage of all haplotypes in a cell.

Here, we describe a method to determine the extent of allelic imbalance introduced by 
MDA into the amplified DNA using shallow (< 1×) sequencing coverage. The method 
is based on considering allele frequency distribution of the heterozygous SNPs, which, 
for diploid genome, should have a Gaussian distribution centered around 50%. In case 
of a non-uniform amplification, the distribution of a majority of the SNPs will support 
homozygosity, suggesting high rate of allelic drop-outs during amplification.

Results
Each single cell sequencing experiment can involve hundreds of single cells. After WGA, 
not all cells are amplified uniformly owing to the allelic imbalance described earlier. 
Allelic imbalance can be checked from the VAF of heterozygous SNPs (HETs) in the cell. 
When sequencing in bulk, the VAF distribution of HETs should be centered at 50% and 
be bell-shaped (Fig. 1a). For a balanced single cell amplification, the distribution should 
follow the same shape, but can have wide dispersion. For an unbalanced amplification 
the distribution will not be bell-shaped, and one allele will be drastically overrepresented 
over the other one.

At shallow coverage, most SNPs will either have just a few or no reads supporting 
them, making assessment of amplification quality impossible (Additional file 1: Fig. S1).
Therefore, the underlying idea of the method is to judge the quality of amplification 
based on VAF of multiple consecutive HETs from the same haplotype, rather than on 
individuals HETs. This however requires that HETs are phased to haplotypes. When 
HETs from the same haplotype are combined, it allows reaching per unit read counts 
that are comparable to those for individuals HET at high sequencing coverage (Fig. 1b). 
Furthermore, it is important to note that the implicit assumption is that multiple consec-
utive SNPs are amplified together. For MDA, which is known to have around 50–70 kb 
amplified fragments [11], it is a valid assumption.

Our QC workflow proceeds as follows (Fig. 1b). First, we determine HETs from a bulk 
sample sequenced at high coverage. These SNPs are then phased into maternal and 
paternal haplotypes using the SHAPEIT2 method [18, 19], which has been shown to be 
the most accurate method for phasing sets of known genotypes [20]. Multiple consecu-
tive HETS are merged to form a SNP unit. The number of SNPs in the SNP unit is deter-
mined by the coverage of the cell. For a high coverage data (~ 30×) with 100 bp reads, we 
use each heterozygous SNP for calculating VAF across the genome. Proportionally, for 
coverage of 0.3× with 100 bp reads, the number of SNPs to be used in a SNP unit is 100 
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(30× divided by 0.30×). The number of SNPs in a SNP unit is inversely proportional to 
the coverage. The reads supporting SNPs within the SNP unit from only one haplotype 
are used to calculate the allele frequency over that SNP unit. An allele frequency plot is 

Fig. 1  Concept and workflow of the approach. a VAF distribution of HETs at 30× sequencing coverage in 
three cases: Bulk sample, uniformly amplified cell, and un-uniformly amplified cell. The distribution from 
bulk shows a peak around 50%, which is expected. Then we have a single cell sequenced at 30× with good 
amplification. The allele frequency plot still has a peak around 50%, but not as sharp as the bulk sample. 
The last example is a single cell also sequenced at 30× but with non-uniform amplification. b Conceptual 
description of the approach. First, SNPs are phased. The reads supporting the SNPs are divided into two 
haplotypes, named maternal and paternal, although the exact origin of each haplotype is unknowns. With 
less than 1 read supporting each SNP (coverage < 1×), multiple SNPs are merged to form a SNP unit. Reads 
supporting SNPs within the SNP unit from only one haplotype are used to calculate the allele frequency 
over that SNP unit. The allele frequency plot for high coverage data closely resembles the one from shallow 
coverage data
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then generated using all the SNP units similar to how it is done for VAF distribution of 
individual HETs at high coverage.

The described approach was implemented in a modular pipeline written in python. 
The pipeline consists of three scripts and each script can be run independent of each 
other as long as the user has the required input file (Fig.  2). Script-1 takes a VCF file 
from the bulk sample (the germline SNPs can be called either using sequencing or any 
other genotyping methods), subsets it into SNPs present in the catalogues of germline 
variants provided by the 1000 Genomes Project [21], followed by phasing the SNPs using 
SHAPEIT2, and provides a phased VCF file. Script-2 uses the phased VCF and the low 
coverage bam file from the single cell to generate allele frequency over all SNPs. Script-2 
can be used independently of Script-1, which allows users to use phasing tools other 
than SHAPEIT2 as long as the input is in VCF format. Script-3 takes the allele frequency 
of the SNPs from Script-2 and the phased VCF from Script-1 (or user specified phased 
VCF) to generate the allele frequency plot and ranks cells using only one of the parental 
haplotypes. The SNP unit is automatically calculated and applied by default using the 
equation mentioned earlier. It must be noted that, for coverage lower than 0.3×, the 
number of SNP in a SNP unit increases beyond a single MDA amplified fragment and 
can lead to averaging of multiple amplified fragments. In case of very low coverage, this 

Fig. 2  Flowchart of method implementation. Script 1 through 3 should be executed in sequence, however, 
they are independent of each other and as long as the input are correct, user can start with any script. The 
final Script-3 produces a VAF plot for each sample. Two examples of uniformly (on the left) and un-uniform 
(on the right) amplified cells are shown
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may lead to a poorly amplified cell being represented as a good cell (Additional file 1: 
Fig. S2). For this reason, we also provide an option where the user can override this with 
their own SNP unit. The result of the final script is a plot showing the distribution of the 
SNP units allele frequency (Fig. 2).

To test our method, we did shallow sequencing on human iPSC-derived single neu-
ronal cell which were amplified using MDA. Cellular DNA was sequenced at various 
read coverages (0.11–0.38) and data were then processed through Scelector. SNP unit 
size was determined for each cell based on read coverage. Based on the obtained VAF 
distribution and allelic dropout rate, we ranked single cells as having good, moderate 
and bad amplifications. Cells with standard deviation less than 0.26 were considered as 
uniformly amplified (good) cells and cells with standard deviation between 0.26 and 0.35 
were considered moderate cells (Additional file 1: Fig. S3). Bad cell with standard devia-
tion higher than 0.35 were used as negative control. Out of 14 single cells with shallow 
sequencing we picked 2 good cells, 5 moderately good cells, 1 bad cell as a negative con-
trol and 1 cell (i.e., B01) for which amplification quality could not be determined due to 
too shallow (0.11×). The selected 8 cells were then re-sequenced at high coverage (at 
least 30×) using DNBseq platform and their amplification quality was assessed through 
VAF distribution for individual HETs.

We saw a good concordance between shallow and deep coverage indicating that our 
method can accurately estimate the effects of non-uniform amplification from shallow 
sequencing data (Fig.  3a). We noticed that the standard deviation was slightly higher 
in the deep coverage data. We reasoned that this is because SNP units can span more 
than one MDA amplified fragments (of typical size of 50–70 kbp), which averages the 
amplification bias making it seem less to that of high coverage data. Using Spearman 
correlation, we estimated the concordance between high and low coverage data for 
the same cells to be 0.92 (Fig. 3b). We also found similar high correlations using allelic 
dropout rate only and additive effects of standard deviation and allelic drop out. Above 
mentioned cell B01, which was excluded due to low coverage also turned out to be well 
amplified (Additional file 1: Fig. S4).

Usage guidelines

Bias in amplification may result not only in allelic imbalance but also in non-uniform 
coverage across genome. We found that the quality of amplification measured using our 
method correlates with coverage uniformity (Additional file  1: Fig. S5) and more bal-
anced amplification likely to results in more reliable CNV calls (Additional file  1: Fig. 
S6). Furthermore, there is an increase in percent of not covered bases as the standard 
deviation and allelic dropout rate increases (Additional file  1: Fig. S5). Additionally, 
our analysis suggests that our method is more sensitive than pairwise bin comparison 
approach like MAPD (Additional file 1: Fig. S10). Finally, allelic imbalance is independ-
ent of combination of nucleotide substitution in SNPs (Additional file 1: Fig. S7). There-
fore, we suggest haplotype imbalance as a universal indicator of biased amplification.

Currently, VAF distribution of HETs from bulk is the target that none of single cell 
amplification methods can achieve. We also note that there exists no clear standard 
about what is good and what is bad amplification. To address this issue, we take an 
empirical approach by considering amplification quality of single cell from different 



Page 7 of 10Sarangi et al. BMC Bioinformatics          (2020) 21:521 	

Fig. 3  Validation of Scellector using 9 cells subjected to shallow sequencing by high coverage sequencing. 
a Side by side comparison of the allele frequency plots from shallow coverage and high coverage. b Scatter 
plot showing high correlation between the shallow and high coverage. Three comparison using allele 
dropout, standard deviation and a combination of standard deviation and allele dropout (AD) show similar 
results
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independent studies, including our own, Lodato et al. [7] and Sanchez-Luque et al. [22] 
data. From these studies the consensus emerges that standard deviation of ~ 0.27 with 
allelic dropouts of less than 10–15% indicate the best currently achievable amplification 
(Additional file 1: Fig. S8). As discussed above, using SNP units large than typical length 
of amplified fragments leads to averaging amplification bias and we therefore recom-
mend using for QC coverage of ~ 0.3× of higher. Using these guidelines, we estimated 
that study of single cell genomes can save a significant amount of funds on sequencing 
(Additional file 1: Fig. S9).

Discussion
Single cell omics experiments are becoming increasingly crucial for mapping cell het-
erogeneity in tissues and organs from many different perspectives, from transcriptom-
ics and DNA variations to epigenomic such as chromatin accessibility (i.e. scATAC-seq). 
Single cell sequencing experiments can be very costly, and it is important to optimize the 
sequencing cost by choosing cells which have been amplified uniformly over the whole 
genome. We have developed a tool Scellector which implements a method to detect 
amplification quality from shallow coverage data (< 1×) and prioritizes well amplified 
cells for high coverage sequencing. With the advent of single cell DNA sequencing from 
companies like Chromium Single Cell CNV profiling solutions (10× Genomics), which 
uses an isothermal amplification protocol similar to MDA, we believe that our tool can 
be extended to estimate uniformity of amplification from these platforms. This platform 
can profile hundred to thousand cells in a single sample to detect copy number variation 
and provide information on genomic heterogeneity as well as clonal evolution. Not all 
cells will have uniform amplification and Scellector can be used to detect and remove 
low quality cells, which will make the downstream analyses of CNV detection more 
robust. Scelector is an open source tool and source code can be found at https​://githu​
b.com/abyzo​vlab/Scell​ector​.

Conclusion
We have developed a method and its implementation, ‘Scellector’, which uses low cover-
age whole genome sequencing data for detection of allelic imbalance introduced during 
whole genome amplification process such as MDA. We have shown our method works 
very well for detection of ununiformly amplified single cell from low coverage data.

Methods
Cell samples origin and genome amplification

Single cell DNA used here for validation of Scellector originated from a human induced 
pluripotent stem cell line (9230–03#8, Vaccarino Laboratory) differentiated into neurons 
following an established protocol [23]. Single cells were isolated after 30 days of termi-
nal differentiation by flow cytometry (BD FACS Aria II) in 2.5µL PBS, frozen on dry ice 
and conserved at − 80 °C before amplification. Amplification using MDA were obtained 
through Accusomatic service (SingulOmics), which consisted of a custom cold lysis pre-
liminary step followed by amplification with REPLI-g kit (Qiagen) and DNA purification 
with AMPure XP-beads kit (Beckman Coulter). To be selected for sequencing, amplifi-
cation samples were selected based on total yield (above 5 µg) and 4-loci PCR test [14].

https://github.com/abyzovlab/Scellector
https://github.com/abyzovlab/Scellector
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Bulk DNA sample of induced pluripotent stem cell was used as a reference genome. 
DNA was purified through DNeasy Blood and Tissue kit (Qiagen) before sequencing at 
high coverage.

Sequencing

The low coverage sequencing was conducted at Yale Stem Cell Center Genomics Core 
facility. The library preparation was done using Nextera XT (DNA library kit, Illumina) 
and the samples were pooled together to be sequenced on Hiseq4000 (2 × 100  bp) at 
low coverage per sample (0.1× to 0.4×). For the high coverage sequencing (requested 
coverage above 30×) of bulk and validated amplified DNA, the library preparation and 
sequencing (DNBseq) were conducted by the BGI sequencing company (China).

Data analysis

The bulk sample, shallow and high coverage samples were analyzed using the same pipe-
line.We started with raw fastq files which were aligned to the GRCh37 human reference 
genome using BWA mem version 0.7.10 [24], the bam files were then realigned and 
recalibrated using GATK 3.6. The germline variant calling for the bulk sample was per-
formed using GATK haplotype caller version 3.6(25). The resulting bam files and vcf file 
were analyzed using Scellector.
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