
A novel computational strategy for DNA 
methylation imputation using mixture 
regression model (MRM)
Fangtang Yu, Chao Xu, Hong‑Wen Deng and Hui Shen*

Background
DNA methylation is one of the most important epigenetic marks in the human genome, 
during which a methyl group (–CH3) is added to the C-5 position of a cytosine of DNA. 
In mammals, more than 98% of DNA methylation occurs in the context of neighboring 
cytosine and guanine nucleotides (CpGs) in somatic cells, while as much as a quarter 
of all methylation appears in a non-CpG context in embryonic stem cells (ESCs) [1, 2]. 
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DNA methylation plays a crucial role in transcriptional regulation. Typically, the occur-
rence of methylation in the promoter region of a gene will suppress the transcription of 
the gene, while the occurrence of methylation in the gene bodies is commonly associ-
ated with transcriptional activation [3, 4]. The significance of DNA methylation medi-
ated epigenetic regulation has been well established by biological functional studies on 
embryonic development, genomic imprinting, X-chromosome inactivation, and the 
pathogenesis of various human disorders [5].

Recent advances in high-throughput microarray and sequencing techniques have made 
it possible to measure DNA methylation level on a genome-wide scale in a large number 
of samples thus facilitate association studies of DNA methylation with the phenotype 
of interest, i.e., EWAS (epigenome-wide association study) [6]. By performing EWAS, 
researchers have identified differentially methylated CpGs (DMCs), regions (DMRs), 
or genes associated with various diseases, including cancer [7], Alzheimer’s disease [8], 
rheumatoid arthritis [9], and diabetes [10]. The gold standard for DNA methylation 
measurement is whole-genome bisulfite sequencing (WGBS), which can comprehen-
sively quantify ~ 26 million of the 28 million CpGs in the human genome [11]. However, 
it is still cost-prohibitive to apply WGBS to large-scale studies [12]. On the other hand, 
the commonly used cost-effective DNA methylation measurement methods only cover a 
small portion of the human genome. For example, the Illumina Infinium HumanMeth-
ylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representa-
tion bisulfite sequencing (RRBS) method only measure approximately 0.1, 2, and 8–10% 
of the total CpG sites, respectively [11]. The low genome coverage of methylation data 
from these techniques considerably limited the scope of the DNA methylation analysis 
in those studies.

To effectively boost the power of detecting DMCs/DMRs in DNA methylation studies 
using low coverage methylation assays, several recent studies have proposed a variety of 
computational approaches [13–18] for in silico prediction of DNA methylation values at 
unmeasured CpG sites. Some of these DNA methylation imputation approaches used 
classical statistical/machine learning methods such as ordinary linear regression, logistic 
regression, random forest, and support vector machine (SVM) approaches [14, 15], while 
others have adopted more advanced methods, including functional regression (13), deep 
learning [16], and gradient boosting [17]. Although these methods have some success in 
imputing the methylation value, there are also some limitations and weaknesses, espe-
cially in the utilization of different kinds of information for imputation. If we assume 
a data matrix of DNA methylation value with rows representing subjects and columns 
representing CpG sites, the information used for imputation of missing values of a data 
matrix can be classified into three categories: (1) external annotation information, (2) 
correlations between subject/samples (rows), and (3) correlations between neighboring 
CpG sites (columns). The annotation information used in the existing methods often 
included co-localization of the CpG sites with DNA sequence annotations (e.g. promot-
ers, gene body, CpG islands), cis-regulatory elements (e.g., DNase I hypersensitive sites, 
specific transcription factor binding sites, and histone modification marks), as well as 
DNA sequence properties (e.g. GC content, integrated haplotype scores) [19]. Some 
imputation methods [14–17] use a large number of annotation information as input fea-
tures for methylation imputation. However, these features are identical for each subject 
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and thus are not informative for predicting subject-specific DNA methylation patterns. 
Also, for some tissue/cell types, many of these annotation features are currently not 
available. Several imputation studies using the correlation between samples as predic-
tion features required measurement of DNA levels available using different platforms 
or from different sets of samples and established site-specific prediction model only 
on the overlapped CpG sites in the two different data types. For example, Zhang et al. 
developed a prediction model for predicting methylation level of 450 K-specific probes 
using the probe shared between the two arrays as predictors, trained and tested on DNA 
methylation data of tumor tissues from 194 patients measured by both 27 K and 450 K 
array [13]. Ma et  al. [18] assumed that locus-specific methylation differences between 
tissues are highly consistent across individuals and they built linear regression and SVM 
model to predict locus-specific methylation in the target tissue based on methylation in 
the surrogate tissue. It remains unclear in those studies if the established model could be 
applied directly to an external dataset to predict methylation levels. Thus, the practical 
value of using only the correlation between samples for methylation imputation is vague: 
if different data types (e.g. DNA methylation data measured in different platforms or 
tissues) are already available for the same set of subjects, there’s no need for research-
ers to impute one data type by the other one. Furthermore, the information of neigh-
boring CpGs was highly trivialized in previous methods. For instance, several methods 
only took an average of the methylation level of one upstream and downstream CpGs 
weighted by the genomic distance [15], or simply drop those features in the regression 
model, without taking into account of the whole methylation profile in a genomic region 
[14]. Fan’s method also assessed the correlation of flanking CpGs in a panel of surro-
gate tissue and selected the WGBS methylation value from the tissue which has the most 
similar local methylation pattern as imputation score for the target locus in a target 
tissue [15], then combined with the weighted sum of methylation levels of the closest 
CpGs. Although this method integrates the correlation between samples and correlation 
between neighboring CpGs, it lacks mathematical rigor. Since the local methylation pro-
file is the only subject-specific information among the three kinds of information afore-
mentioned, it should be modeled and integrated with other types of information more 
carefully to get subject-specific imputation of methylation values. For downstream asso-
ciation analysis in EWAS, only on those CpGs sites with enough variance in methylation 
values across subjects are informative.

Taking the limitations in the previous methylation imputation methods into account, 
we developed a novel computational strategy to impute the methylation value at the 
unmeasured CpG site in the low coverage DNA methylation data. We hypothesized that 
the linear model of radial basis functions (RBFs) can be used to capture the information 
of the local methylation profile, and we proposed a mixture regression model (MRM) of 
RBFs to impute the methylation values in a genomic region for multiple subjects simul-
taneously. The regional modeling is based on recent findings that DNA methylation 
has a similar correlation pattern to that of linkage disequilibrium (LD) in genetic SNP 
variation [20, 21]. Based on the existence of such a correlation structure of neighboring 
CpG sites in DNA methylation data, the RBFs were used to fit the curve of methylation 
profile in predefined regions while the MRM can cluster the multiple methylation pro-
files simultaneously. We fit the MRM in two steps, first across subjects and then across 
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regions (Fig. 1), then ensembled the two imputation values for each missing CpG site 
with stacked regression. By this approach, the MRM of RBFs can effectively impute the 
methylation values at the missing CpG sites by taking advantage of the information of 
neighboring CpGs, the similarities of local methylation patterns not only across subjects 
but also across multiple genomic regions within each subject.

The rest of the article is organized as follows. In “Results” section, we described the 
simulation scheme for evaluating the performance of MRM and presented the perfor-
mance of MRM in both simulated and real methylation data comparing with several 
other commonly used imputation methods. As an empirical demonstration, we also 
applied the MRM method to an RRBS methylation dataset for an association study of 
bone mineral density (BMD). In “Discussion” section, we elaborated on the strength, 
limitations, and some future extensions of our study. In “Methods” section, we intro-
duced in detail the statistical model of the proposed MRM method.

Results
To imputing the methylation values, we first built a regional model, which is independ-
ent for each predefined genomic region across subjects, assuming similarity in local 
methylation profiles across subjects. Then we built a subject model in different genomic 
regions of each subject to get another imputation of the methylation value at the miss-
ing points (Fig. 1, details see “Methods”). The final imputation value is the stacked value 

Fig. 1  A panel of simulated methylation data to demonstrate our model. The blue box represents the 
regional model that integrates the similarities in local methylation patterns across subjects, and green box 
represents the subject model which integrates the similarities in local methylation patterns across multiple 
genomic regions within a subject
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of imputation values from both the regional and the subject model. The performance of 
our method was benchmarked on both simulated and empirical data.

Benchmark the imputation performance on simulated data

We simulated DNA methylation data of multiple regions based on linear models of 
RBFs. For each region, the subjects were randomly assigned to different clusters. The 
MRM along with the other four DNA methylation imputation methods were applied to 
the simulated data, and their performance was evaluated under different conditions with 
varying noise levels, sample sizes, and missing rates.

Simulation scheme

Simulation by MRM model

To evaluate the imputation performance of the MRM, we simulated methylation of 100 
independent regions each with 50 CpG sites. In each region, the methylation values were 
simulated directly by a mixture regression model of RBFs. Four sub-population clusters 
were generated with the following cluster proportions: π = 10%, 20%, 30%, and 40%. In 
total, we simulated 12 datasets with varying sample size, noise level, and missing rate 
to evaluate the performance of MRM in different settings (Additiaonal file 1: Table S1). 
The sample size was set to be 20, 50, 100, or 200, which is typical in current WGBS 
studies [22]. To mimic the inherent noise, Gaussian noise with mean zero and varying 
variance was introduced to the probability of methylated CpG sites. The missing rate, 
which represents the percentage of CpGs in a region that is not measured, was set to be 
20–80%. The wide range of missing rates could represent either the missing rate within 
the WGBS platform for different subjects or the missing rate in other lower coverage 
platforms compared with WGBS [11].

 Simulation by profile‑based bisulfite sequencing data simulator

We used the pWGBSSimla software [23] to simulate WGBS data that is more similar to 
real data. This algorithm calculated the smoothed methylation rates based on the real 
cell-type-specific methylation profiles. WGBS data in a 100 kb region in chromosome 1 
of mesenchymal stem cells of sample size 20 and 100 were simulated, resulting in a total 
of 850 CpGs per sample. The CpGs were distributed into 17 continuous regions each 
containing 50 CpGs. We randomly deleted 20–80% CpGs to generate artificial missing 
values. MRM models were trained by the remaining CpGs to predict the artificial miss-
ing values. The center parameter µj was set to be equally distributed along the region 
and the number of RBF centers was set to be 50 for each region. The positions were 
scaled between − 1 and 1 and the scale parameter γ of RBF was set to be − 10.

Competing methods

To benchmark the imputation performance of MRM, we compared it with four other 
imputation strategies that have been proposed and applied in previous studies. First, as 
a baseline approach, we computed the weighted sum of methylation values of the closest 
upstream and downstream CpG sites. The weight was inversely proportional to the dis-
tance from the target CpG [15]. Using the four features (methylation value and distance 
of the closest upstream and downstream CpG sites), we trained a random forest (RF) 
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model on each region. This was essentially the same method as proposed in [14], but 
without adding any external annotation information, in order to ensure that informa-
tion used for imputation by different methods only comes from methylation data itself 
so that the comparison was fair. We also applied the k-nearest neighbors (KNN) algo-
rithm, which has been widely used for imputing missing values in gene expression data 
[24] and also been proposed for imputing DNA methylation data by [14]. As practiced 
previously [24, 25], the input of the KNN algorithm is a matrix of methylation values 
with CpG sites in the rows and subjects in the columns. For each CpG site with miss-
ing values, the KNN algorithm finds the k nearest neighbors (CpGs) using a Euclidean 
metric between the columns for which that CpG is not missing and all the columns of 
each other CpGs in the genomic region, and impute the missing elements by averaging 
those non-missing elements of its neighbors. If all the neighbors are missing in a par-
ticular CpGs, the algorithm will use the regional column mean for that CpG. Finally, we 
compared our method to a recently developed method, Melissa (MEthyLation Inference 
for Single cell Analysis), a Bayesian hierarchical method to cluster cells based on local 
methylation patterns [26]. At each genomic region, Melissa imputation performs clus-
tering for local methylation profiles, which is similar to our model. However, the Melissa 
model get the cluster membership by clustering the whole methylome of cells instead of 
clustering in each region independently. As designed for single cell bisulfite sequencing 
data, the input need to be binary values (0 or 1) indicating the methylation status and the 
output is a continuous value from 0 to 1. To make the comparion feasible, we binarized 
the methylation values using cutoff 0.5 to generate the input for Melissa model.

Effect of noise level

To evaluate the robustness of imputation methods to noise, we simulated five datasets 
by adding different levels of Gaussian noise with varying standard deviations from 0.1 to 
0.9. The sample size was set to be 20 and the missing rate to be 20% in all datasets. Fig-
ure 2 shows the comparison of different imputation methods with varying noise levels. 
The performance of all algorithms decreased with the increasing noise level, in terms 
of significant decrease of correlation, increase of RMSE, and decrease of AUC (test sta-
tistics in Additiaonal file 1: Table S2). However, the MRM method consistently outper-
forms all the other tested methods, and the performance exceedance of MRM over other 
methods also increases with increasing noise levels.

Fig. 2  Box plot of a Correlation, b RMSE, c AUC of six imputation algorithm on simulated data under 
the effect of the noise level. Each colored boxplot indicates the imputation performance on 20 subjects. 
Abbreviations RF-random forest; KNN-k nearest neighbors; average: one upstream and one downstream 
weighted sum
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Effect of sample size

Imputation accuracy may be influenced by the sample size of the dataset. A smaller 
sample size will lead to increases in the variance of imputed values [27]. For algorithms 
that use many features, the design matrix tends to be ill-conditioned if the sample size 
is limited. To evaluate the effect of sample size on the performance of our imputation 
method, we simulated four datasets with sample size 20, 50, 100, and 200. The standard 
deviation of Gaussian noise was set to be 0.2 and the missing rate was fixed to be 20% at 
random. As shown in Fig. 3, our method significantly outperformed other methods in 
terms of correlation, RMSE, and AUC at all sample sizes (test statistics in Additiaonal 
file 1: Table  S3). For most algorithms, the variance in correlation and RMSE are gen-
erally increasing with the decrease of sample size. However, the changes of correlation 
and RMSE of our method with varying sample sizes were less dramatic, highlighting the 
performance stability of MRM. On the other hand, the performance of RF and Melissa 
methods even declined with the increasing sample size, suggesting that larger sample 
size might not always be beneficial for those imputation frameworks that using global 
features if the methylation data only have regional cluster patterns.

Effect of data missing rate

We tested the DNA methylation imputation methods on four simulated data sets with 
different levels of missing rate (20%, 40%, 60%, and 80%). Like the comparisons for other 
conditions, our MRM methods significantly outperform other tested methods in terms 

Fig. 3  Box plot of a correlation, b RMSE, c AUC of six imputation algorithm on simulated data under the 
effect of sample size. Each colored boxplot indicates the imputation performance on the given number of 
subjects. Abbreviations see legend of Fig. 2

Fig. 4  Box plot of a correlation, b RMSE, c AUC of six imputation algorithm on simulated data under the 
effect of the missing rate. Each colored boxplot indicates the imputation performance on 20 subjects. 
Abbreviations see legend of Fig. 2
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of correlation, RMSE, and AUC, under each missing rate level (Fig. 4, test statistics in 
Additiaonal file 1: Table S4). As expected, we observed significant decrease of correla-
tion, increase of RMSE, and decrease of AUC with increasing missing rate for all tested 
methods, particularly for algorithms using simple local features, e.g. KNN and up/down-
stream weighted sum algorithm. However, the decrease of imputation performance of 
our MRM method is much less dramatic than the other methods, demonstrating the 
exceptional robustness of our methods even when the missing rate is high. This might be 
due to the utilization of complementary information across subjects, neighboring CpG 
sites, and other genomic regions.

We also compared the imputation performance on pWGBSSimla simulated data with 
different levels of missing rate (20%, 40%, 60%, and 80%) at sample size 20 and 100. 
Although the performance of all methods on pWGBSSimla data was relatively low, the 
MRM methods still significantly outperform other tested methods under both sample 
size settings (Additiaonal file 1: Figure S1, Table S5).

Benchmark the imputation performance on real methylation data

Dataset

We downloaded a WGBS dataset measured from subcutaneous adipose tissue (SAT) of 
19 subjects in the Multiple Tissue Human Expression Resource (MuTHER) cohort from 
the ArrayExpress database [access ID: E-MTAB-3549]. The subjects were Caucasian 
females aged between 40 and 87 years old. The WGBS data measured ~ 27 million CpG 
sites, with mean genome coverage 6.3-fold (1.0–12.9) and CpG-discovery saturated at 
sixfold coverage [28].

Data preprocess

For demonstration purposes, we only applied the imputation methods to chromosome 
18. We clustered the CpG sites on this chromosome into regions based on their physi-
cal distance and the similarity of methylation values of two CpG sites by an R package 
Aclust [29]. Specifically, the algorithm first scanned all the CpG sites in WGBS dataset 
to identify pairs of CpG sites for which the physical distance between the two CpG sites 
is smaller than 3000 bp and the Pearson correlation of the methylation values at the two 
sites is greater than 0.3, then the two CpG sites with all the sites wedged in between 
them were merged into one region. Only two adjacent regions can be merged at each 
iterative step. The similarity of methylation values in two regions was defined using the 
average correlation between all sites in the two regions.

We mapped the CpG sites to promoter regions of up to ± 5 kb around the transcrip-
tion start site (TSS) of UCSC genes. The promoter region containing more than 50 
measured CpG sites were then filtered by variance, skewness [30] and runs test for non-
randomness [31]. The promoter region was kept for imputation only if the methylation 
data in that region was available for more than 15 subjects, with variance > 0.1, skew-
ness > − 1, and the number of runs < 15. As many CpG sites are either completely meth-
ylated or unmethylated across individuals in a genomic region [18] the filtering criteria 
were applied to make sure the pattern of methylation profile in the selected region fol-
lows the assumption of the mixture of regression models. After applying the clustering 
and filtering, a total of 47 regions with more than 50 CpGs were selected. And we define 



Page 9 of 17Yu et al. BMC Bioinformatics          (2020) 21:552 	

this scenario as Condition 0. To imitate the conditions of various missing rates, we ran-
domly deleted the measured DNA methylation values at 20%, 40%, 60%, and 80% of CpG 
sites in the selected regions of each subject to generate artificial missing values.

While the clustering and filtering procedures aimed to ensure the existence of LD-like 
patterns [20] in the selected genomic regions and to make the assumptions of MRM sat-
isfied, we further investigate the performance of MRM in the following two more gen-
eral conditions in which the assumption of MRM might be violated: Condition 1 We 
randomly selected 2500 continuous CpGs without clustering or filtering and divided 
them into 50 sliding windows with 50 CpG; Condition 2 We randomly selected 50 pro-
moter regions and pruned them to regions that contain 50 CpGs (25 CpGs upstream and 
25 CpGs downstream the TSS), without performing clustering and filtering.

Imputation

After generating the artificial missing values, the methylation data of the remaining 
CpGs were used to train the MRMs. The center parameter µj and scale parameter of 
the RBFs was set to be the same as the pWGBSSimla simulated data (see “Simulation by 
profile-based bisulfite sequencing data simulator” in “Result”). We applied our proposed 
method to impute the missing values at the target CpG sites based on the regional model 
only and the stacked model (weighted sum of the regional and the subject model). The 
other four methods were also used to impute these missing values and then compared 
with our methods under different settings of missing rates.

Performance on real data

The comparison of correlation, RMSE, and AUC between our methods and other meth-
ods for imputing the DNA methylation values at the targeted CpG sites were shown 
in Fig.  5. Consistent with the simulation results, we observed decreased correlation, 
increased RMSE, and decreased AUC with an increasing missing rate for all methods. At 
the lower missing rate (r = 0.2 and 0.4), MRM exhibited comparable performance with 
KNN and outperforms all the other tested imputation methods. However, the correla-
tion drops dramatically for KNN and up/downstream weighted sum methods, similar to 
the simulation results. MRM also outperformed other methods at higher missing rates 
(r = 0.6 and 0.8), highlighting the strength of MRM for taking advantage of information 
from multiple sources. It is noteworthy that the Melissa algorithm performs relatively 

Fig. 5  Box plot of a correlation, b RMSE, c AUC of six imputation algorithms on real WGBS data under the 
effect of the missing rate. Each colored boxplot indicates the imputation performance on 19 subjects. 
Abbreviations see legend of Fig. 2
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stable under the influence of the missing rate compared with other methods. Addition-
ally, MRM using only the regional model performs slightly better than using the stacked 
regional and subject model, indicating that the local methylation patterns across multi-
ple genomic regions within a subject introduced more noise than useful information for 
methylation imputation. The performance of MRM under conditions 1 and 2 is similar 
to that under condition 0 (Additiaonal file 1: Figures S2, S3). However, the performance 
of MRM at the same missing rate across different conditions are significantly differ-
ent (Additiaonal file 1: Table S6). The MRM achieves the best performance in regions 
selected with clustering and filtering (condition 0) among the three conditions. Although 
its performance in regions defined by the sliding window approach (condition 1), which 
ignored the correlation pattern in methylation data, is inferior to the other two condi-
tions, the MRM methods still outperformed other methods at a high missing rate. This 
result also emphasized that the regional correlation pattern is important for MRM to 
make accurate imputation.

Application to an epigenomic association study

After benchmarking the imputation accuracy of MRM, we further demonstrated the 
empirical implementation of our method by applying the MRM to an RRBS dataset from 
our recent epigenomic association study of BMD [32]. In this study, DNA methylation 
profiles of peripheral blood monocytes (PBM) were determined by RRBS in 118 Cauca-
sian females, including 64 subjects with high hip BMD (Z-scores ≥ 0.8) and 54 subjects 
with low hip BMD (Z-scores ≤ − 0.8). The BMD Z-score was defined as the number of 
standard deviations a subject’s BMD differed from the mean BMD of their age-, gender-, 
and ethnicity-matched population. We are particularly interested in imputing meth-
ylation values on chromosome 17 because recent studies have found several genes on 
chromosome 17 were associated with BMD [33] and the methylation level of a set of 
CpGs on chromosome 17 mediated the association between SNP and BMD [34]. MRM 
was applied to promoter regions ( ± 5 kb around TSS) where more than 50 CpGs were 
measured in each region taking all the subjects into account. To increase the compu-
tational speed, only the regional model is applied. We used methylKit [35] to identify 
DMCs between low BMD and high BMD group, adjusting for age, body mass index 
(BMI), drinking status, smoking status, and 1st principal component (PC) of methyla-
tion. Before imputation, only CpG sites with ≥ threefold coverage in at least 30 subjects 
in each BMD group were included in the association analysis, while after imputation, 
all the CpG sites in the processed promoter regions were included. CpGs with signifi-
cant difference in methylation levels (Bonferroni adjusted p-value < 0.05) between the 
two BMD groups were defined as DMCs. The DMCs were annotated to the genes cor-
responding to the promoter region. The Genomic Regions Enrichment of Annotations 
Tool (GREAT) v3.0.0 [36] was used to evaluate whether the nearby genes of DMCs are 
enriched in any gene and human phenotypes ontology terms.

We limited our analyses to 35,713 CpGs in 1,369 qualified promoter regions on chro-
mosome 17 for demonstration purposes. Without imputation, we only identified 348 
DMCs with p-value < 1.49E−6 (0.05/35,713) significantly associated with BMD. In 
contrast, by applying the MRM algorithm, we imputed methylation values for 309,165 
CpGs in the tested promoter regions and identified 2459 significant DMCs with 
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p-value < 1.62E−7 (0.05/309,165), among which 2452 were new DMCs. The DMCs were 
distributed in 594 unique promoter regions (median number of DMCs in a promoter 
region = 2). The GREAT analysis showed the nearby genes of the imputed DMCs were 
significantly enriched in some BMD related terms of mouse phenotype (Table  1). We 
further checked the functions of the 42 genes whose promoter regions contained more 
than 10 imputed DMCs. Interestingly, six genes (SPECC1, SPATA20, USP36, SMG6, 
MYO1D, and ASB16-AS1), have been found to be associated with BMD or bone-related 
phenotypes in previous studies [37–43] (Table  2, Additiaonal file 1: Table  S7). These 
results indicated that our algorithm can successfully impute the methylation values 
at the unmeasured CpG sites and enhance the power to identify novel DMCs in epig-
enomic association studies.

Discussion
We proposed a novel computational strategy, MRM of RBFs, to impute the missing or 
unmeasured CpG methylation values by effectively integrating three kinds of informa-
tion: the information of neighboring CpGs, the similarities in local methylation pat-
terns across subjects, and the similarities in local methylation patterns across multiple 
genomic regions within a subject, thus addressed the low coverage problem of the meth-
ylation data generated in many cost-efficient platforms. The MRM method can be used 
to impute methylation values in pre-defined genomic regions, for example, the promoter 
region or to impute methylation values on the genome-wide scale using sliding windows. 
The real data benchmarking results of MRM performance under several preprocess-
ing conditions indicated that this method is more suitable for imputing missing values 
on a regional basis, especially when the regions have an LD-like correlation pattern. In 
this study, we only implement the MRM on selected genome regions for demonstration 

Table 1  Mouse phenotype enrichments for BMD-associated DMCs

Term name Fold enrichment FDR Q-Val

Brachyphalangia 21.48521 3.95E−33

Short metacarpal bones 21.48521 3.95E−33

Short metatarsal bones 21.48521 3.95E−33

Decreased trabecular bone mass 21.48521 3.95E−33

Decreased trabecular bone connectivity density 9.427838 3.95E−21

Table 2  DMC enriched genes that were associated with BMD or bone metabolism

Gene Number of imputed 
DMCs

Traits GwasCatlog Study ID PMID

SPECC1 16 Heel BMD GCST006433 30048462

SPATA20 23 Heel BMD GCST007066 30595370

USP36 11 Heel BMD GCST006979 30598549

SMG6 13 Heel BMD GCST006979 30598549

Heel BMD GCST006433 30048462

MYO1D 13 Osteoclast differen‑
tiation

NA 21567867

ASB16-AS1 12 BMD NA 29763751
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purposes. The computation time of MRM is practicable for implementing on a whole 
genome scale, although the computation time is longer compared with other methods 
under different sample sizes for imputing simulated data (Additiaonal file 1: Table S8). 
Considering the excellence in performance at a high missing rate, it worth trading a rea-
sonable increase amount of computation time for the imputation accuracy. The MRM 
imputation does not require any external information, such as regulatory annotation and 
DNA sequence properties. It is straight forward to fit the output of MRM as a new local 
feature into some existing methylation imputation frameworks as [15] and [14].

Based on our simulation result, the MRM method could recover the WGBS data (cor-
relation = 0.8) after deleting 80% of data points. This missing rate could represent the 
difference in genome coverage between WBGS and RRBS. Thus, our method could be 
applied to most of the existing RRBS data to expand the coverage and achieve better 
imputation accuracy. However, genome coverage of microarray-based methods are even 
lower, analogous to WGBS data with a missing rate > 97%. It will be unrealistic to recover 
whole-genome methylation data with that high missing rate without reference or exter-
nal information. We would suggest not use MRM to impute microarray data only. If 
WGBS data from the same cell type were available, users could combine methylation 
data from different platforms (i.e. WGBS and microarray) as input, and the higher cover-
age methylation data will perform as a reference for imputation.

Despite the advantages of the MRM algorithm, we noticed that it is important to eval-
uate the discrepancies between the real methylation data and the statistical model we 
proposed. As opposed to the simulated data, the subject model provided more noise 
than useful information in the real data and thus the stacked model performed less well 
than the regional model. This may due to the fact that the selected regions in our study 
do not share common patterns across the genome, which conflicts assumption of the 
subject MRM model. We believe that common patterns exist across certain genome 
regions, e.g. promoters of genes in the same pathway or regulatory network. To ensure 
the stacked model works better, the users may need to incorporate some prior annota-
tion information in selecting specific regions they want to impute. Otherwise, we rec-
ommend using the regional model in general.

Some other future directions of the MRM algorithm are worth exploring. First, since 
MRM is a finite mixture regression model, the number of clusters has to be specified. It 
is computationally burdensome to fit multiple MRMs and do model selection based on 
the model likelihood. Instead of doing the model selection from several models with dif-
ferent cluster number, we recommend users choose a reasonably larger cluster number. 
As we found in the simulation study that when the number of clusters is set to be larger 
than the real number of clusters, the performance of MRM as good as if the number 
of clusters is correctly specified (Additiaonal file 1: Figure S4). An alternative scheme 
would assume a mixture model with an unknown number of components and the most 
common choice of the prior distributions for this clustering problem is the Dirichlet 
process (DP) [44]. The DP mixture model has been successfully used to perform clus-
tering of gene expression data by microarray [45, 46], and could be extended to DNA 
methylation analysis in future studies. Besides, the association analysis after imputation 
is conducted throughout a large number of CpG sites, which will lead to severe multiple 
testing problems. It has been well recognized that DMRs might have more prominent 
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biological significance compared with single CpG sites [47]. Therefore, we will attempt 
to integrate the MRM imputation algorithm with region-based differential methylation 
analysis approaches [21, 48–50] to develop novel computation tools that could simulta-
neously do DNA methylation imputation and region-based association testing.

Conclusions
The proposed MRM method provided a state-of-art performance for methylation data 
imputation. On both simulated and empirical DNA methylation data, the MRM method 
achieved a better imputation performance over a set of competing methods, particularly 
when the missing rate is high. By applying the proposed method to an in-house DNA 
methylation for osteoporosis, we identified some novel differential methylation signals 
that are significantly associated with BMD and demonstrated that this method is well 
applicable to existing methylation studies that were conducted with commonly used, low 
genome coverage methylation analysis platforms and is expected to significantly enhance 
the discovery of novel DNA methylation regulated genes and mechanisms underlying 
various human disorders/traits.

Methods
Statistical modeling of the methylation profile

As in many previous practical studies, we are interested in imputing the methylation 
level of a CpG site as a ratio ranging from 0 to 1, where 0 represents no methylation and 
1 represents 100% methylation at a CpG site. We assumed that the methylation data of 
the m-th genomic region in the n-th subject is represented by a vector ymn of length I , 
where m = 1, 2...,M and n = 1, 2, ..., N.

Regional model

A subject-specific model was developed for methylation profiles in each predefined 
region. For each region m , we assumed that the methylation profiles of the N  subjects 
can be partitioned into at most K  clusters. Suppose there are I measured CpG sites. For 
one subject, let x = (x1, x2, . . . xI ) be a vector of the CpG locations; f (x) be a function 
representing the methylation profile. We assumed f (x) is a linear combination of a set of 
radial basis functions hj() of the input space x

where H is an I × J  design matrix with element hij = exp
(
−δ

∣∣∣∣xi − µj

∣∣∣∣2
)
 ; xi are the 

component of vector x ; µj are the selected centers of the basis functions; δ is the scale 
parameter; w =

(
w1, . . . ,wJ

)T ; µj represents the RBF centers; J  represents the number 
of RBF centers.

Parameters w in model [1] can be obtained simply by solving the normal equation

For N  subjects from K  clusters i.e. regression with K  specific set of regression coef-
ficients, the probability that subject n belong to cluster k is πk . The methylation profile of 
subject n region m can be written as

(1)y = f (x,w) =
∑J

j=0
wjhj(x) = Hw

(
H ′H

)
ŵ = H ′y
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where znk is a latent indicator variable of whether subject n belongs to cluster k , 
znk ∈ {0, 1} and p(zkn = 1) = πk.

The observed methylation data (x, y) can be viewed as data repeatedly measured from 
N  subjects, each has I observations. Thus, the conditional log-likelihood of Y  can be 
written as a weighted sum of K  Gaussian distributions.

To impute the missing values, we first need to learn the model parameters of each 
cluster and the posterior probability that a subject belongs to cluster k using the avail-
able data in a genomic region of all subjects. Then, given the genomic position of the 
missing point, the methylation value can be computed based on Eq. (2). The regression 
coefficient wk can be learned by maximizing Eq.  (3). But the H matrix could become 
high dimensional as the number of RBFs increases and the number of observed CpG 
sites remains fixed. To ameliorate this issue, we maximize a penalized version of Eq. (3), 
by adding an l1 regularization term to the log-likelihood function which will encourage 
the weights to decay to zero as proposed by Stadler [51].

The parameter set θ = {πk ,wk ,�} was estimated by maximizing the penalized likeli-
hood function using the EM algorithm using functions in R package FlexMix [52].

Since we don’t know the true clustering of subjects, we fit the MRMs with different 
numbers of clusters ( K  ). The maximum number is set to be proportional to the sample 
size N  . The model with K clusters that yields the lowest ICL (Integrated completed like-
lihood) was retained, which has been proven to be a very popular approach to choose 
the number of clusters in model-based clustering [53]. The penalty parameter � is cho-
sen in grid search by a tenfold cross validation.

Subject model and stacking

While the regional model assumes similarity in local methylation profiles across sub-
jects, some studies also found that the methylation profile in proximal regions with simi-
lar annotation properties may share the same patterns [13, 14]. Thus, we fit the MRM 
model in different genomic regions of each subject to get another imputation of the 
methylation value at the missing points (Fig. 1). The model fitting process is analogous to 
the regional model.

To integrate multiple imputation models, we used a least-square regression model 
to combine the outputs from the regional and subject models. This stacking approach 
forms linear combinations of different predictors at each locus to improve the prediction 
accuracy [54].

(2)yin = f (x,w) =
∑J

j=0
wkjmnexp

(
−δ

∣∣∣∣xi − µj

∣∣∣∣2
)
if zkn = 1

(3)L(y|x) =
∑N

n=1

∑I

i=1
log

∑K

k=1
πkN (H(xin)wk |�)

(4)Lpen
(
y|x

)
=

∑N

n=1

∑I

i=1
log

∑K

k=1
πkN (H(xin)wk |�)+ �

∑K

k=1
πk ||wk ||1

(5)β = argmin
[
y−

(
βr ŷr + βsŷs

)]
s.t.βr ,βs > 0
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where ŷr and ŷs are imputed methylation values from the regional and the subject 
models, respectively. The non-negative regularization has been shown to produce stack-
ing predictors with substantially reduced prediction errors [54]. To train the stacking 
regression model, we adopted bootstrapping to randomly generate artificial missing val-
ues at the locations which were not overlapped with true missing locations. The weights 
were estimated by Eq. (5) based on the imputed and true values on the artificial miss-
ing points. The averaged value of each weight on 100 times bootstrapping was used for 
prediction.

Evaluation metric

The performance was evaluated by the root mean squared error (RMSE) and the cor-
relation between the true and imputed values, which are defined as the following:

where yim and ŷim are the true and imputed value of the i-th missing point in the m
-th region of the genome in a subject, respectively, Im is the number of missing points 
in region m and M is the number of genomic regions. In addition, to make fair com-
parisons with Melissa which only takes binary methylation values as input, the area 
under the receiver operating characteristic curve (AUC) of the true and predicted val-
ues with a cut-off of 0.5 was also calculated for all the tested imputation methods. 
We performed t-tests to compare the AUC, correlation, and RMSE under different 
settings to determine whether observed differences between the performance were 
statistically significant.
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