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Abstract 

Background:  Long noncoding RNAs (lncRNAs) play an important role in regulating 
biological activities and their prediction is significant for exploring biological processes. 
Long short-term memory (LSTM) and convolutional neural network (CNN) can auto-
matically extract and learn the abstract information from the encoded RNA sequences 
to avoid complex feature engineering. An ensemble model learns the information from 
multiple perspectives and shows better performance than a single model. It is feasible 
and interesting that the RNA sequence is considered as sentence and image to train 
LSTM and CNN respectively, and then the trained models are hybridized to predict 
lncRNAs. Up to present, there are various predictors for lncRNAs, but few of them are 
proposed for plant. A reliable and powerful predictor for plant lncRNAs is necessary.

Results:  To boost the performance of predicting lncRNAs, this paper proposes a 
hybrid deep learning model based on two encoding styles (PlncRNA-HDeep), which 
does not require prior knowledge and only uses RNA sequences to train the models 
for predicting plant lncRNAs. It not only learns the diversified information from RNA 
sequences encoded by p-nucleotide and one-hot encodings, but also takes advan-
tages of lncRNA-LSTM proposed in our previous study and CNN. The parameters are 
adjusted and three hybrid strategies are tested to maximize its performance. Experi-
ment results show that PlncRNA-HDeep is more effective than lncRNA-LSTM and CNN 
and obtains 97.9% sensitivity, 95.1% precision, 96.5% accuracy and 96.5% F1 score 
on Zea mays dataset which are better than those of several shallow machine learn-
ing methods (support vector machine, random forest, k-nearest neighbor, decision 
tree, naive Bayes and logistic regression) and some existing tools (CNCI, PLEK, CPC2, 
LncADeep and lncRNAnet).

Conclusions:  PlncRNA-HDeep is feasible and obtains the credible predictive results. It 
may also provide valuable references for other related research.
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Backgroud
Noncoding RNAs (ncRNAs) are considered as non-protein-coding transcripts [1]. Long 
ncRNAs (lncRNAs) usually refer to the ncRNAs with longer than 200 nucleotides [2] 
and they play an important role in regulating biological activities [3]. For example, lncR-
NAs are players in cardiovascular diseases and atherosclerosis and they have attracted 
attention in cancer research [4, 5]. They are involved in the vernalization-mediated 
FLOWERING LOCUS C repression, which affects the flowering in Arabidopsis [6, 7]. 
lncRNAs are pivotal players on the regulation in a range of developmental processes in 
plant [3, 8]. A growing number of plant lncRNAs have been gradually discovered, but 
their diverse functions are not appreciated enough. The prediction of plant lncRNAs is 
important for exploring the functional lncRNAs expressed in genomes and understand-
ing their mechanisms.

Bioinformatics technology has been widely used in biological prediction. The tradi-
tional methods often use the physicochemical, sequential and structural features (codon 
frequency [9], open reading frame (ORF) [10] and similarity of known proteins [11]) as 
the inputs to train a shallow machine learning model (support vector machine (SVM) 
[12], random forest (RF) [13], k-nearest neighbor (k-NN) [14], etc.) for prediction. CNCI 
is a powerful tool, and it uses adjoining nucleotide triplets to train SVM for classify-
ing protein-coding and noncoding sequences [15]. PLEK, an alignment-free tool, uses 
a computational pipeline based on improved k-mer and SVM to distinguish lncRNAs 
from messenger RNAs (mRNAs) [16]. CPC is a classification tool based on SVM, which 
uses the sequence features to classify coded and noncoding RNAs [17] and its new ver-
sion CPC2 with faster speed and higher accuracy has been published [18]. With the 
development of computer technology, deep learning has showed better performance 
and adaptability than shallow machine learning in many fields [19]. It is an end-to-end 
learning, which extracts the potential features of the data and learns the rule by opti-
mizing the loss function to avoid manually designing rule. LncADeep integrates intrin-
sic and homologous features into the deep belief network to construct models targeting 
full-length and partial-length transcripts for classifying lncRNAs [20]. lncRNAnet incor-
porates the recurrent neural network (RNN) for RNA sequence modeling and the con-
volutional neural network (CNN) for detecting stop codons to obtain an ORF indicator 
in lncRNA classification [21]. However, none of these studies avoids the complex feature 
engineering, which is not only a time-consuming process, but also requires the prior 
knowledge, such as a deep understanding of physicochemical, sequential and struc-
tural features of RNA and the proper use of some bioinformatics tools. It is significant 
to develop an efficient method that only uses RNA sequences to train the models and 
obtains credible predictive results.

In natural language processing and image classification, deep learning technology is 
used to automatically extract and learn abstract information from the data to train the 
model, which shows superior performance and strong adaptability and avoids complex 
feature engineering [19]. Inspired by it, the prediction of lncRNAs can be considered 
as natural language processing and image classification problems. Long short-term 
memory (LSTM) is an appropriate model that has been successfully applied to natu-
ral language processing [22]. The sentences in natural language can be converted into 
the vectors as input of LSTM for training. CNN is appropriate for image classification 
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[23]. The image can be converted into the two-dimensional matrices as input of CNN 
for training. Furthermore, RNA sequences can be encoded into different forms as the 
inputs to train a variety of base models. The ensemble of them not only learns the infor-
mation from multiple encoding forms, but also ensures the diversity of base models, and 
thus obtains better performance than a single model [24, 25]. Therefore, the raw RNA 
sequences can be encoded as vectors and matrices as the inputs to train LSTM and CNN 
respectively, and then the trained models are hybridized to comprehensively predict 
lncRNAs.

Up to now, various methods and tools for predicting animal lncRNAs have been pub-
lished, while few for plant. Since ncRNAs are mainly transcribed by RNA polymerase 
II in animal and transcribed by RNA polymerases II, IV and V in plant [26], and plant 
lncRNAs have low level expression and cross-species conservation [27], the predictors 
for animal do not guarantee the reliability to plant. Facing with these challenges, it is 
urgent and necessary to construct a reliable and powerful predictor for plant lncRNAs.

In this paper, plant lncRNAs are predicted by using hybrid deep learning based on 
two encoding styles (PlncRNA-HDeep). K-means clustering [28] is used to solve the 
undersampling of negative sample in dataset. The raw RNA sequences are first encoded 
as vectors and matrices by p-nucleotide [29] and one-hot [30] encodings respectively. 
Then, the encoded sequences are input into lncRNA-LSTM proposed in our previous 
study [29] and CNN for training respectively. Finally, the trained models are hybridized 
at decision level to obtain the final predictive results. PlncRNA-HDeep only uses RNA 
sequences to train the models for predicting plant lncRNAs. It learns the diversified 
information from two encoding styles and takes advantages of lncRNA-LSTM and CNN. 
The value of p in p-nucleotide encoding is adjusted and three hybrid strategies are tested 
to maximize the performance. PlncRNA-HDeep is more effective than lncRNA-LSTM 
and CNN. It also obtains the best results on Zea mays dataset compared with the shal-
low machine learning methods, such as SVM, RF, k-NN, decision tree (DT), naive Bayes 
(NB) and logistic regression (LR), and the existing tools, such as CNCI, PLEK, CPC2, 
LncADeep and lncRNAnet.

Results
Effects of value of p and hybrid strategy variations

The value of p in p-nucleotide encoding is an important parameter that affects the per-
formance of lncRNA-LSTM and thus the performance of PlncRNA-HDeep. 5-fold cross 
validation is used to evaluate the effects of different values of p in lncRNA-LSTM and 
the results are obtained (Fig. 1).

When p is 3, lncRNA-LSTM obtains the best sensitivity, accuracy and F1 score, its 
precision is the second best among all methods. Thus, the value of p is set to 3 in the fol-
low experiments.

The effects of different hybrid strategies in PlncRNA-HDeep are evaluated using 5-fold 
cross validation and the results are obtained (Fig. 2). Least significant difference (LSD) 
test is used to test statistically the accuracy of them and the significant difference is eval-
uated according to the obtained p value (Table 1).

PlncRNA-HDeep with different hybrid strategies always obtains better results 
than CNN and lncRNA-LSTM. It also shows the significant accuracy over CNN and 
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Fig. 1  Effect evaluations of different values of p in lncRNA-LSTM using 5-fold cross validation

Fig. 2  Effect evaluations of different hybrid strategies in PlncRNA-HDeep using 5-fold cross validation

Table 1  Least significant difference of compared methods

“ + ” means the method obtains better accuracy than the compared method. “−” means the compared method obtains 
better accuracy than the method. There is significant difference between the results obtained by two methods with the 
significance level of 0.05 when p value ⩽ 0.05

Method Compared method p value

PlncRNA-HDeep_G CNN 0.001+

lncRNA-LSTM 0.001+

PlncRNA-HDeep_C 0.078+

PlncRNA-HDeep_L 0.745−

PlncRNA-HDeep_C CNN 0.001+

lncRNA-LSTM 0.001+

PlncRNA-HDeep_G 0.078−

PlncRNA-HDeep_L 0.040−

PlncRNA-HDeep_L CNN 0.001+

lncRNA-LSTM 0.001+

PlncRNA-HDeep_G 0.745+

PlncRNA-HDeep_C 0.040+
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lncRNA-LSTM with the significance level of 0.05 from LSD test results. It means that 
the three hybrid strategies are all effective for enhancing the performance of a single 
CNN and lncRNA-LSTM. The PlncRNA-HDeep methods with three hybrid strategies 
are compared with each other. PlncRNA-HDeep_G obtains the best sensitivity, and 
PlncRNA-HDeep_L obtains the best precision. They also obtain the similar accuracy 
and F1 score. PlncRNA-HDeep_C does not obtain the best result in each criterion. From 
LSD test results, PlncRNA-HDeep_L shows the significance on accuracy over PlncRNA-
HDeep_C with the level of 0.05. Although PlncRNA-HDeep_G also obtains better 
accuracy than PlncRNA-HDeep_C, there is no significant difference between their 
results. Accordingly, PlncRNA-HDeep with the predominance of LSTM hybrid strategy 
(PlncRNA-HDeep_L) is selected in the following experiments.

Impacts of balanced and imbalanced sample datasets

The number of negative sample may affect the performance of PlncRNA-HDeep [31]. 
The datasets with different ratios of positive samples and negative samples are used to 
verify the performance (Table 2).

On the imbalanced sample datasets, the performance of PlncRNA-HDeep is signifi-
cantly degraded. Specially, on the imbalanced sample dataset with a ratio of positive 
samples and negative samples of 1:3, the F1 score, AUC and GM decrease 26.1%, 8.2% 
and 15.8% compared with them on the balanced sample dataset respectively. To ensure 
a good performance of PlncRNA-HDeep, the balanced sample dataset is finally adopted.

Performance comparison with shallow machine learning methods

To verify the performance of proposed model, PlncRNA-HDeep is compared with six 
shallow machine learning methods, which are SVM, RF, k-NN, DT, NB and LR (Table 3). 
Moreover, the ROC curves of them are plotted and the AUC values are obtained (Fig. 3).

Table 2  Impact evaluations of balanced and imbalanced sample datasets on performance of 
PlncRNA-HDeep

“Ratio” refers to the ratio of positive samples and negative samples in the dataset

Ratio F1-score (%) AUC (%) GM (%)

1:1 96.5 99.3 96.5

1:2 76.5 91.6 82.7

1:3 70.4 91.1 80.7

Table 3  Performance of PlncRNA-HDeep compared with six shallow machine learning methods

Method Sensitivity (%) Precision (%) Accuracy (%) F1-score (%)

SVM 87.8 92.3 90.6 90.0

RF 95.2 95.1 95.3 95.1

k-NN 90.6 94.0 92.7 92.3

DT 93.9 94.6 94.5 94.3

NB 76.7 80.3 80.0 78.4

LR 84.4 96.4 91.0 90.0

PlncRNA-HDeep 97.9 95.1 96.5 96.5
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PlncRNA-HDeep obtains 97.9% sensitivity, 95.1% precision, 96.5% accuracy and 96.5% 
F1 score. Its sensitivity, accuracy and F1 score are the best and precision is the sec-
ond best among all methods. Its AUC achieves 0.9934 which is also better than those 
obtained by the other methods. RF obtains the second best sensitivity, precision, accu-
racy, F1 score and AUC, where precision is same as PlncRNA-HDeep’s. DT obtains the 
third best sensitivity, accuracy and F1 score, but its precision and AUC are not in top 
three of all methods. Although LR obtains the best precision, its other results are all not 
in top three. SVM obtains the third best AUC, but its other results are unsatisfactory. All 
results of k-NN and NB are not in top three, where NB’s results are the worst among all 
methods.

Performance comparison with existing tools

To further verify the performance of PlncRNA-HDeep, it is compared with five existing 
tools (CNCI, PLEK, CPC2, LncADeep and lncRNAnet) which have been described in 
background section, and the results are obtained (Table 4).

All values obtained by PlncRNA-HDeep are the best compared with the other tools. Its 
accuracy is 17.6%, 21.4%, 6.2%, 16.5% and 23.6% better than that of CNCI, PLEK, CPC2, 
LncADeep and lncRNAnet respectively. The sensitivity and precision of PlncRNA-HDeep 
are 97.9% and 95.1% respectively and the difference of them is 2.8%, which shows good 
robustness of PlncRNA-HDeep. CPC2 obtains the second best accuracy and the difference 

Fig. 3  ROC curves and AUC values obtained by PlncRNA-HDeep and six shallow machine learning methods

Table 4  Performance of PlncRNA-HDeep compared with five existing tools

Tool Sensitivity (%) Precision (%) Accuracy (%) F1-score (%)

CNCI 64.5 90.5 78.9 75.3

PLEK 93.3 68.4 75.1 78.9

CPC2 88.4 91.9 90.3 90.1

LncADeep 66.6 91.0 80.0 76.9

lncRNAnet 72.0 73.3 72.9 72.6

PlncRNA-HDeep 97.9 95.1 96.5 96.5
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between its sensitivity and precision is 3.5%. The accuracies of CNCI, PLEK and LncADeep 
achieve 75% but not more than 80%. The sensitivity of CNCI and LncADeep are about 
25% worse than the precision of them respectively, which indicates that they tend to pre-
dict lncRNA as the negative sample. The sensitivity of PLEK is obviously better than the 
precision of it, which indicates that it tends to predict mRNA as lncRNA. The difference 
between the sensitivity and precision of lncRNAnet is 1.3%, which shows the best robust-
ness. However, its accuracy does not achieve 75%.

Discussion
lncRNA-LSTM with p = 3 in p-nucleotide encoding obtains the best results, which means 
that when every three continuous nucleotides in RNA sequence are regarded as a word, 
the sample can be better characterized. For the negative samples (mRNAs), this may due 
to every three continuous nucleotides determine a codon, which further determines the 
amino acid [32]. For the positive samples (lncRNAs), this may due to that the conservative 
triplet codon characteristics are needed to perform their functions, such as matching the 
interacted protein sequence [9]. From another perspective, when the value of p is 1 or 2, 
each sample can only be encoded by 5 or 17 integers (including zero-padding), which is not 
enough to characterize the sample, especially for lncRNA with longer than 200 nucleotides. 
When the value of p is more than 3, the sample length is greatly shortened after encod-
ing, and the information that can be extracted is limited, which is not conducive to model 
training.

PlncRNA-HDeep with the predominance of LSTM hybrid strategy obtains the best 
results, which means that lncRNA-LSTM is used as the main model and CNN is used 
to assist in prediction. On the one hand, lncRNA-LSTM is an improved model that it is 
more suitable as the main model than the basic CNN [29]. On the other hand, p-nucleotide 
encoding characterizes the sample with a variety of integers, while one-hot encoding char-
acterizes the sample with a 0–1 matrix, thus lncRNA-LSTM learns more information from 
the sample than CNN to show better performance.

In view of the successful application of LSTM and CNN in natural language processing 
and image processing respectively, the RNA sequences are encoded into vectors and matri-
ces to train lncRNA-LSTM and CNN respectively [22, 23]. It takes advantage of the two 
deep learning models and further enhances the performance through hybridization [24, 
25]. Therefore, PlncRNA-HDeep performs better than a single deep learning or shallow 
machine learning model. Since lncRNAs are different in animal and plant, the predictors 
for animal do not guarantee the reliability to plant [26]. It is conceivable that the plant pre-
dictor PlncRNA-HDeep obtains better results than other tools on plant lncRNA prediction. 
In addition, PlncRNA-HDeep only needs to input RNA sequences to complete training and 
prediction, which is simple and friendly for users. As a representative species, Zea mays 
is widely cultivated in the world. PlncRNA-HDeep has a good performance on Zea mays 
dataset, which indicates that it has potential to be applied to many other plant species.

Conclusions
In this paper, a hybrid deep learning using two encoding styles, PlncRNA-HDeep, is 
presented to predict plant lncRNAs. It encodes the sample sequences using p-nucleo-
tide and one-hot encodings for training lncRNA-LSTM and CNN respectively, and 
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hybridizes the two models at decision level. It only uses the RNA sequences as the inputs 
to learn diversified information and takes advantages of lncRNA-LSTM and CNN. The 
performance of PlncRNA-HDeep is verified by comparing with the shallow machine 
learning methods, including SVM, RF, k-NN, DT, NB and LR, and the existing tools, 
including CNCI, PLEK, CPC2, LncADeep and lncRNAnet. The experiment results show 
that PlncRNA-HDeep is quite an efficient method. It may also provide valuable refer-
ences for other related studies.

The future work will try to implement PlncRNA-HDeep for using online or down-
loading free. As the research progresses, the public databases of plant will become more 
abundant and more lncRNAs will be published. The widely application of PlncRNA-
HDeep is also worth expecting.

Methods
Datasets

Zea mays is a kind of model plant which is widely used as research subject and has an 
important research significance. To train the deep learning model adequately and avoid-
ing under-fitting, a large amount of published lncRNA data of Zea mays with abundant 
genetic annotation information were selected. 18,110 validated lncRNA sequences were 
downloaded from Green noncoding database (GreeNC) v1.12 [33] as the positive sam-
ples. 18,000 samples of them were selected randomly to generate a positive dataset.

From RefSeq database (https://​www.​ncbi.​nlm.​nih.​gov/​refseq/), 57,776 mRNA 
sequences were downloaded, the repeated sequences were filtered out, and 54,282 
sequences were obtained as the negative samples. To generate a balanced sample data-
set, the negative samples were undersampled. k-mer frequency of each negative sample 
sequence was extracted [9]. K-means, an unsupervised clustering method [28], was used 
to cluster these negative samples based on their k-mer frequencies. k was set to 1 and 2 
and the clustering center point was set to 200 to save time and reduce the computational 
complexity. The number of samples in each cluster was recorded as xi (i = 1, 2, …, 200). 
Oi (i = 1, 2, …, 200) samples were selected randomly from the i-th cluster as follows:

where round() is the rounded function. The 18,000 selected samples were used to gener-
ate a negative dataset. Other two imbalance sample datasets were also generated using 
the above method, where the positive dataset kept 18,000 samples and the ratios of posi-
tive samples and negative samples were 1:2 and 1:3 respectively [31].

80% of the samples from the positive and negative datasets were selected randomly for 
training and validation, and the other 20% of the samples were tested.

Two encoding styles

Word segmentation is an important step in natural language processing and it encodes a 
sentence into a number vector [34]. Each RNA sequence is composed of nucleotide per-
mutations, which is considered as a sentence. Thus, it can be encoded by “word segmenta-
tion” according to its biological characteristics. In the datasets, each sample was a chain-like 
molecule and composed by four bases (A, T, C and G) [35]. Each of the continuous p 

(1)Oi = round
( xi

54282
× 18000

)

https://www.ncbi.nlm.nih.gov/refseq/
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nucleotides (p-nucleotide) in RNA sequence was regard as a “word”. The value of p could 
be 2, 3, 4, ..., which corresponded to 16, 64, 256, … p-nucleotide formats respectively. Each 
p-nucleotide format is represented by a unique positive integer from 1 to 4p. A window with 
both length and step size of p slid along the RNA sequence to encode each p-nucleotide for-
mat into a corresponding positive integer. To ensure that all samples have the same length 
after encoding, the samples with a length less than the longest one are zero-padded. Then 
each sample is encoded into a number vector (Fig. 4a).

One-hot is a common encoding style [30]. Here the rule of one-hot encoding is set to that, 
A is encoded as (1, 0, 0, 0)T, T is encoded as (0, 1, 0, 0)T, C is encoded as (0, 0, 1, 0)T and G 
is encoded as (0, 0, 0, 1)T. Then each sample sequence is encoded into a 0–1 matrix (similar 
as a two-dimensional grayscale image) of four rows and N columns, where N is set to the 
sequence length of the longest one among all samples. For those samples whose sequence 
length is less than N, the zero-padding is performed on their empty columns (Fig. 4b).

Feature extraction of RNAs

k-mer frequency is the common sequence feature of RNAs [9]. For a sample consisting of 
A, T, C and G, a k-mer contains k continuous bases to generate 4k different forms. If the 
value of k is too large, it increases the training and test time, and leads to many zeros in 
the feature vector to adversely affect the model training. The k-mer frequency with a large 
proportion also affects the role of other types of feature in model training. Therefore, 1-mer, 
2-mers and 3-mers frequencies were extracted. A sliding window of length k was used to 
match k-mer along the sequence, the sliding step size was set to 1, and the frequency fj was 
recorded as follows:

(2)sk = L− k + 1, k = 1, 2, 3

(3)ak =
1

43−k
, k = 1, 2, 3

Fig. 4  Two encoding styles. a p-nucleotide encoding when the value of p is 3. b one-hot encoding
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where sk is the total number of matches, L is the length of the RNA sequence, ak is a 
parameter to make each k-mer frequency has the same effect, cj is the number of 
matches of the j-th form.

ORF is a segment of the RNA sequence that has the potential translation ability. The 
ORF coverage rate of mRNA is significantly higher than that of lncRNA [10]. The ORF 
information of each sample was obtained by TransDecoder v3.0.1 (https://​github.​com/​
Trans​Decod​er/​Trans​Decod​er), and the integrity (int), coverage (cov) and normalized 
ORF (nORF) were extracted as follows:

where n is the number of ORF, lm is the length of the m-th ORF.
Structure of RNA forms an important intermediate level of description of nucleic 

acids. The stability of the structure is related to the number of base pairs in the sequence 
and GC content. The more stable the structure, the more free energy it releases. The 
structure information of each sample was obtained by RNAfold in ViennaRNA Package 
v2.4.11 [11], and the number of base pairs, GC content (GCcont) and normalized mini-
mum free energy (nMFE) were extracted as follows:

where NA, NT, NC and NG are the number of A, T, C and G in a sample respectively, 
MFE is the minimum free energy.

All extracted features were combined into a 90-dimensional vector as input for shal-
low machine learning methods in the comparison experiment. The extracted 1-mer and 
2-mers frequencies were also used for clustering the negative samples in the creation of 
the datasets.

Architectures of lncRNA‑LSTM and CNN

LSTM is a kind of RNN with gated structure [36]. Bidirectional LSTM is a further exten-
sion to solve the problem that LSTM only processes single direction information. It 
extracts information to update the network from both the positive and negative direc-
tions as follows:

(4)fj = ak
cj

sk
, k = 1, 2, 3, j = 1, 2, ..., 84

(5)int =

{

0, there is no integratedORF
1, there is integratedORF

(6)cov =

∑n
m=1 lm

L

(7)nORF =
n

L

(8)GCcont =
NG+NC

NA+NT+NC+NG

(9)nMFE =
MFE

L

https://github.com/TransDecoder/TransDecoder
https://github.com/TransDecoder/TransDecoder
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where σ() is the sigmoid function, h is the vector in the hidden layer, “→” and “←” are 
the positive and negative directions respectively, t is the time, W is the weight, x is the 
input, b is the bias. The output of the two networks is superimposed as follows:

where y is the output.
lncRNA-LSTM is a LSTM-based model constructed in our previous study [29]. Its 

architecture contains a word embedding layer, a bidirectional LSTM layer and a fully-
connected layer. In the bidirectional LSTM layer, the units was set to 64 and the dropout 
rate was set to 0.4. In the fully-connected layer, “sigmoid” was selected as the activa-
tion function. The binary cross entropy loss function was selected to calculate the loss 
which was optimized by using the “Adam” optimizer. The parameters of each layer were 
updated by backpropagation. Each p-nucleotide encoded sample sequence was input as 
a 4p-dimensional vector into lncRNA-LSTM. Different from the overview of lncRNA-
LSTM in [29], here the output was mapped to [0, 1] interval to obtain the confidence 
probability instead of the label. Its value indicated the confidence that the corresponding 
sample was predicted as a lncRNA (Fig. 5).

CNN is a popular deep learning model, a basic CNN structure usually includes the 
convolutional layer, pooling layer and fully-connected layer [19]. The convolutional layer 
outputs feature maps by convolving the feature maps of the previous layer with a set of 
filters as follows:

(10)
→

h t = σ

(

W
x
→

h t
xt +W→

h
→

h

→

h t−1 + b→

h

)

(11)
←

h t = σ

(

W
x
←

h t
xt +W←

h
←

h

←

h t−1 + b←

h

)

(12)yt = W→

h y

→

h t +W←

h y

←

h t + by

Fig. 5  Architecture of lncRNA-LSTM



Page 12 of 16Meng et al. BMC Bioinformatics          (2021) 22:242 

where Fmout is the output feature maps, Fmin is the input feature maps, Ftj means the j-
th filter, Nf is the number of filters, b is the bias. The pooling layer combines the outputs 
of one layer of neuron clusters into a single neuron in the next layer, and the commonly 
used schemes are max-pooling and average-pooling. The fully-connected layer connects 
every neuron in one layer to every neuron in another layer.

The architecture of CNN in this paper was mainly constructed by two convolutional 
layers, two pooling layers and a fully-connected layer. In the convolutional layers, the 
number of filters were set to 32 and 64 respectively. In the pooling layers, the max-
pooling schemes were used. In the fully-connected layer, the dropout rate was set to 0.4 
and “softmax” was selected as the activation function. The categorical cross entropy loss 
function was selected to calculated the loss which was optimized by using the “SGD” 
optimizer. The parameters of each layer were updated by backpropagation. All parame-
ter selections were referred to the related studies [37] and our previous experiences [38]. 
Each one-hot encoded sample sequence was input as a 4 * N matrix into above CNN. The 
output was mapped to [0, 1] interval to obtain a 2-dimensional confidence probability 
vector. The values of this vector indicated the confidence that the corresponding sample 
was predicted as mRNA and lncRNA respectively (Fig. 6).

Hybrid deep learning

lncRNA-LSTM and CNN were trained respectively, and used to predict the input sam-
ple sequence to output the confidence probabilities. Then they were hybridized on deci-
sion level based on three hybrid strategies.

The first was the greedy hybrid strategy (the method is denoted as PlncRNA-
HDeep_G), which was inspired by greedy selection [39]. It always selected the higher 
one of the two confidence probabilities obtained by two models respectively as follows:

where abs() is the absolute value function, Cp is the confidence probability that the sam-
ple is predicted as a lncRNA, CpL and CpC are Cp obtained by lncRNA-LSTM and CNN 
respectively.

The second was the predominance of CNN hybrid strategy (the method was denoted 
as PlncRNA-HDeep_C). It selected the confidence probability obtained by CNN. How-
ever, when this confidence probability was not high enough, it selected the confidence 
probability obtained by lncRNA-LSTM as follows:

The third was the predominance of LSTM hybrid strategy (the method was denoted as 
PlncRNA-HDeep_L). It was similar as the predominance of CNN hybrid strategy except 
that CNN and lncRNA-LSTM were exchanged as follows:

(13)Fmout =

Nf
∑

j=1

Ftj × Fmin + b

(14)Cp=

{

CpC , abs(2CpL − 1) ≤ abs(2CpC − 1)
CpL, other

(15)Cp =

{

CpL, abs(2CpC − 1) ≤ 0.5
CpC , other
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The final obtained confidence probability Cp was mapped to [0, 1] interval. The 
label, as the output of the hybrid deep learning, could be 1 (when Cp ≥ 0.5) or 0 (when 
Cp < 0.5), which indicated the corresponding sample was predicted as lncRNA or not 
respectively.

Implement of PlncRNA‑HDeep

PlncRNA-HDeep was implemented by Keras 2.2.4 and all parameters used the default 
values from Keras documentation (https://​keras.​io/). All scripts were written by Python 
3.6.5. The whole project was implemented on PC with 2.81 GHz CPU, 6 GB GPU and 
8 GB RAM memory under a Microsoft Windows 10 operating system.

Evaluation criteria

The performance evaluation criteria in the experiments are as follows:

(16)Cp =

{

CpC , abs(2CpL − 1) ≤ 0.5
CpL, other

Fig. 6  Architecture of CNN

https://keras.io/
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where true positive (TP) refers to the number of true lncRNAs which are correctly pre-
dicted, false negative (FN) refers to the number of true lncRNAs which are incorrectly 
predicted as mRNAs, false positive (FP) refers to the number of true mRNAs which 
are incorrectly predicted as lncRNAs, true negative (TN) refers to the number of true 
mRNAs which are correctly predicted. Sensitivity is the percentage of the correctly pre-
dicted lncRNAs in all true lncRNAs. Precision is the percentage of the correctly pre-
dicted lncRNAs in all samples predicted as lncRNAs. Accuracy is the percentage of the 
correctly predicted samples in the total samples. F1 score (F1-score) is a harmonic aver-
age of sensitivity and precision. Geometric mean (GM) is a common criterion that gives 
a more accurate evaluation on imbalanced sample dataset. In addition, area under curve 
(AUC) from receiver operating characteristic (ROC) curve is also used for evaluation. 
The value of AUC ranges from 0 to 1, where AUC = 1 stands for the perfect prediction.
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