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Background
Although the impressive advances have been witnessed in life sciences and technology 
and genomics over the past years. To bring a new drug to patients still takes ~ 15 years 
and 800 million to one billion of dollars [1–3]. Traditional drug research and develop-
ment (R&D) process requires testing for side efforts and safety through cellular model 
systems, extensive animal model and clinical trial experimental validation. The average 
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cost of new drug discovery has significantly increased and more than 90% of drug candi-
dates fail during development, which caused pharmaceutical R&D tremendously expen-
sive, time costing and high risky [3, 4]. This further directly led to a small quantity and 
high price of new drugs on the market. Drug repositioning or drug repurposing, identi-
fying new clinical indications for those approved drugs has been used as an important 
strategy to maximize the potential usage of the existing drugs and increase the num-
ber of new drugs [5, 6]. Compared with the traditional drug R&D process, drug reposi-
tioning has two major advantages. The first is the safety of the approved drugs has been 
verified by rigorous clinical trials, the repositioning candidates have passed all necessary 
tests usual to de novo drug R&D, so these drugs are safe to use. Another advantage is 
drug repositioning has an abridged process of drug discovery and preparation, which 
means saving time and money.

In recent years, the establishment of online public databases on pharmacochemical 
properties, drug molecules chemical structure, drug–drug interactions, disease–dis-
ease interactions, related genomic sequences and side efforts has promoted the study 
of drug–disease interactions and drug repositioning [7]. Such as KEGG [8], OMIM [9], 
CMap [10], DrugBank [11], STITCH [12] and ChEMBL [13]. The goal of drug reposi-
tioning is to find potential indications for existing approved drugs and apply the new 
identified drug candidates to the clinical treatment for other disease than originally tar-
geted disease. Integrated data from these various sources, to date, many machine learn-
ing methods are developed [14–25].

For instance, Chiang et al. conducted a ‘guilt-by-association’ network-based model to 
predict potential drug–disease associations, this method assumes that if the two dis-
eases have similar treatment profiles, then the drug used for only one of the two dis-
eases can be used for the other, thus recommending the new use of a drug. However, this 
approach tends to older drugs with multiple different uses and diseases with manifold 
different treatments [26]. Gottlieb et al. [27] demonstrated a method for large-scale pre-
diction of drug indications, named PREDICT, which uses comprehensive drug–drug and 
disease–disease similarity measures to obtain discriminative features. Napolitano et al. 
[28] proposed a multi-class Support Vector Machine (SVM) classifier to predict novel 
drug–disease interactions and they defined drug similarities by using combined drug 
datasets. Moreover, some network-based methods also be put forward in recent years 
[29, 30]. Wu et al. [31] introduced a weighted drug–disease heterogeneous network to 
predict new use of drug by clustering based on experimental proved drug–target inter-
actions and gene–disease relationships. Wang et al. [32] also constructed a heterogene-
ous network integrated drug targets, diseases and drugs into a unified framework, which 
can rank candidate drugs for each disease by an iterative approach. Martinez et al. [33] 
proposed DrugNet to perform drug–disease and disease–drug prioritization based on a 
network-based prioritization method, which can integrate extensive types of data from 
complex networks involving interconnected drugs, proteins and diseases.

More recently, some recommendation system based methods have been developed 
for computational drug discovery [34, 35]. Luo et  al. [5] presented MBiRW model to 
identify new interactions for known drugs, which applied comprehensive similar-
ity measures and Bi-Random walk algorithm. Thereafter, Nagaraj et al. [4] developed a 
novel drug discovery strategy DrugPredict, which combined computational model with 
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biological testing in cell line in order to rapidly identify novel drug candidates for epithe-
lial ovarian cancer. Their work exploited unique repositioning opportunities rendered 
by a vast amount of disease genomics, phenomics, treatments and genetic pathway [4]. 
Matrix factorization methods have also been used to identify novel drug–disease inter-
actions, which takes one input matrix and obtained two related matrices as output, while 
the two are multiplied to approximate the originally input matrix, e.g. kernel Bayesian 
matrix factorization, collaborative matrix factorization method and so on. Most existing 
methods rely on the properties of some important drugs or diseases to exploit the drug 
similarity and disease similarity measures. However, there are some known interactions 
between drugs and diseases that previous studies have not considered to utilize, which 
yet have valuable information can be exploited to improve similarity measures.

In this study, we propose a deep learning model for potential Drug–Disease Interac-
tions Prediction, named DDIPred. It applied gated recurrent neural network for pre-
dicting new indications of existing drugs using comprehensive similarity measures and 
Gaussian interaction profile kernel features. The workflow of this study is demonstrated 
as shown in Fig.  1. More specifically, the similarity measures are calculated based on 
drug chemical structures, disease phenotypes and known drug–disease interactions. 
Furthermore, the Gaussian interaction profile (GIP) kernel was applied to exploit 
effective feature of drug and disease based on known drug–disease interactions. The 
truncated singular value decomposition (TSVD) is further used to reduce the dimen-
sionality of these combined two feature [17]. Finally, we fed these discriminative features 
into deep gated recurrent units (GRU) model as input to learn and predict the novel 

Fig. 1  The workflow of DDIPred
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drug–disease interactions, which means potential new use of existing drugs. Moreo-
ver, the performance of the proposed model is evaluated on two gold standard datasets 
under ten-fold cross-validation. And we further made case studies to verify the predic-
tive ability of our model. Experimental results demonstrate that the proposed model has 
the superior capability to discover potential new use of drugs.

Materials and methodology
In this section, the dataset used in this study will be introduced first. And then, based on 
the basic hypothesis that the similar drugs have similar indications, we proposed a novel 
deep learning approach of integrating comprehensive similarity measures and Gaussian 
interaction profile kernel with GRU model to predict potential drug–disease interac-
tions. We will present the details of similarity measures and Gaussian interaction profile 
kernel and the implement of GRU model. Meanwhile, we will also describe the compari-
son models, experimental methods, and the evaluation criteria in this section.

Benchmark datasets

To evaluate the performance of our model, we selected two widely used benchmark 
datasets including Fdataset and Cdataset. The gold standard dataset Fdataset is obtained 
from Gottlieb et al.’s work [27], which is made up of multiple data sources. More con-
cretely, for this dataset, there are 1933 known associations between drugs and diseases 
and 593 drugs from DrugBank [36] and 313 diseases registered in OMIM [9] (the Online 
Mendelian Inheritance in Man). We also carried out another benchmark dataset Cdata-
set at the same time, this dataset is firstly presented in Luo et al.’s paper [5]. There are 
2532 drug–disease associations in this dataset, including 409 diseases and 663 drugs. 
Each dataset consists of three matrices: drug–drug similarity matrix SD ∈ Rm×m , dis-
ease-disease similarity matrix Sd ∈ Rn×n and drug–disease interactions matrix I ∈ Rm×n . 
SD and Sd are symmetric matrices and each row or column element represents the simi-
larity between a drug and other drugs, a disease and other diseases, respectively. The 
details of similarity calculation is given in next section. The m rows of matrix I indicate 
m drugs, n columns represent n diseases, when drug Di have association with disease dj , 
set the element I

(

i, j
)

 to 1, else set to 0. The interacting drug–disease pairs are used as 
positive samples, and the same number of pairs without known interaction are randomly 
selected as negative samples. The details of these two datasets are shown in Table 1.

Similarity measures

Follow the description above, the drugs similarity is calculated based on the chemical 
structure information, which comes from drug-related properties [5]. More concretely, 
the similarity between two drugs is calculated by the Chemical Development Kit [37] 
of their 2D chemical fingerprints, which use the Simplified Molecular Input Line Entry 

Table 1  The details of the two drug–disease associations benchmark datasets

Dataset Number of drugs Number of diseases Interaction pairs

Fdataset 593 313 1933

Cdataset 663 409 2532
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Specification (SMILES) [38] of all drugs that downloaded from DrugBank. Moreover, 
the correlation between two drugs’ similarity and their common diseases are analyzed 
and set those similarity that is not discriminative close to 0. The similarity are adjusted 
using the logistic regression function which has been used to modify the diseases-genes 
associations similarity by [39]. The function can be defined as follow:

where x represents the similarity value, a and b are adjusting parameters. And then, the 
drugs are clustered based on known drug–disease associations by using a graph cluster-
ing method, ClusterONE [40], which has been employed to detect valuable modules for 
drug repositioning [5, 31, 41]. The cohesiveness of a cluster M could be defined by Clus-
terONE as follows:

where Cin(M) indicates the total weight of edges within a set of vertices M, Cbound(M) 
stands for the total weight of edges connecting this set to the remaining of group, and 
P(M) is the penalty term [5].

Gaussian interaction profile kernel

For diseases, we adopted Gaussian interaction profile kernel [42] to obtain the represen-
tation of disease–disease associations [43]. Based on the assumption that the diseases 
with a similar interaction pattern with drugs are likely to show similar interaction behav-
ior with new drugs [42]. Similar assumptions can also be applied to drugs. Suppose ( Di , 
Dj ) indicates two different drugs, while ( di , dj ) represents two different diseases. Their 
gaussian interaction profile kernel similarity KG can calculation as follows:

Here, for simplicity, the αd ′ is set to 0.5, and the nd stands for the number of the dis-
eases, which is inspired by [42]. Then, the matrix decomposition algorithm TSVD was 
further applied to reduce the dimension of these features.

Implementation of gated recurrent units neural network

In order to overcome several known defects of standard Recurrent Neural network 
(RNN) model, a series of improved models has been proposed in deep learning field. 
Among them, the Long short term memory (LSTM) [44, 45] and other similar variant 
models have the best performance and are widely used in a many fields [46–48]. The 
main reason for their effectiveness is the pull-in of gated mechanisms. The Gated Recur-
rent Units (GRU) was proposed by Cho et  al. [49], which has only resetting gate and 

(1)L(x) =
1

1+ e(ax+b)

(2)f (M) =
Cin(M)

(Cin(M)+ Cbound(M)+ P(M))

(3)KGdisease
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updating gate and all memory contents are fully open to each timestep. We follow the 
similar calculation process in [50].

The update gate ut is calculated by:

here, the it indicates the input vector of GRU, ht−1 stands for the previous output of 
model, Wz , Uz and bz are forward, recurrent matrices and biases for update gate, respec-
tively. Similar to the process of update gate, the computed process of reset gate can be 
defined as follows:

where the parameters are same as above. Moreover, the candidate memory state ct can 
be computed by:

where σh is the tanh function and ∗ means an element-wise multiplication. Finally, the 
memory state ht of the GRU model is defined as:

In practice, the GRU model is implemented based on Keras framework [51]. Consider-
ing the limited scale of the problem, we set the number of hidden neurons in the GRU 
input layer to 128 and add a Dense layer (fully connected layer) behind the output layer 
as the classifier to reduce the final prediction probability results. The sigmoid function is 
employed as activation function, its mathematical behaviors can be expressed as follows:

before activation layer, we applied Dropout to reduce overfitting and enhance the mod-
el’s robustness [52]. The parameter of dropout was set to 0.25. And the binary cross-
entropy was used as loss function, which corresponding to sigmoid activation function. 
Furthermore, loss function has significant influence to the performance of machine 
learning model. The binary cross-entropy can be defined as:

where p and t denote the prediction output and true label value. Moreover, we used the 
Adam optimizer the update the weights of model. The Adam integrated the advantages 
of both RMSProp and AdaGrad, which is popluar in this field [53].

Performance evaluation metrics

In order to comprehensively evaluate the performance of our model, we follow the 
widely used evaluation indicators and strategies [54, 55]. The tenfold cross-validation 
was applied to evaluate the performance of DDIPred. In each validation, all data ran-
domly divides into ten equal parts. Nine-fold data are taken as train data, the rest one-
fold is taken as test data. To guarantee the unbiased comparison, it confirmed that there 

(5)zt = sigmoid(Wzit +Utht−1 − bz)

(6)rt = sigmoid(Writ + Urht−1 − br)

(7)ct = σ(Whit +Uh(rt ∗ ht−1)− bh)

(8)ht = (1− zt)ht−1 + ztct

(9)σ = sigmoid(x) =
1

(

1+ e−x
)

(10)L(t, p) = −
(

(1− p)× log (1− p)+ t× log(p)
)
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is no overlap between train data and test data. The final validation result is the mean 
value of tenfold with standard deviations. We follow the extensive used evaluation crite-
ria, including accuracy (Acc), true positive rate (TPR), true negative rate (TNR), positive 
predictive value (PPV) and Matthews Correlation Coefficient (MCC) defined as:

where TN stands for the true negative number, TP represents the true positive num-
ber, FN denotes the false negative number and FP indicates the false positive number. 
Certainly, the Receiver Operating Characteristic (ROC) curve and the area under the 
ROC curve (AUC) are also adopted to evaluate the performance. And considering the 
specificity of the research task, the predicted top-N ranked results are more valuable for 
related drug development or disease treatment research. We also test the performance 
of model based on the count of accurately retrieved true drug–disease interactions.

Results and discussion
In this study, we propose a deep learning model to predict potential drug–disease inter-
actions, which can advance the discovery of new use of existing drugs or new treatment 
of diseases. In this section, we will systematically evaluate the performance of the model. 
Firstly, we evaluated the prediction capability of DDIPred on two benchmark datasets. 
And then, we compared it with other state-of-the-art models under the same experi-
mental conditions. Furthermore, we made case studies to verify the practicability of the 
proposed method.

Drug–disease interactions prediction capability evaluation

First, the drug–disease interactions prediction capability of DDIPred is evaluated on two 
benchmark datasets Fdataset and Cdataset. The details of tenfold cross validation are 
listed at Tables 2 and 3 for Cdataset and Fdataset. The average values of tenfold cross-
validation are taken as final report results as shown in Fig. 2.

As the Table 2 shown, the mean accuracy of tenfold cross-validation on Cdataset is 
81.48% with standard deviation 1.48%, the mean TPR is 80.59% with standard devia-
tion 2.86%, the mean TNR is 83.01% with standard deviation 2.71%, the average PPV 
is 80.03% with standard deviation 2.88% and the mean MCC of DDIPred on Cdataset 

(11)Acc =
TN + TP

TN + TP + FN + FP

(12)TPR =
TP

TP + FN

(13)TNR =
TN

TN + FP

(14)PPV =
TP

TP + FP

(15)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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is 63.06% with standard deviation 2.99%. The rigorous cross validation results provided 
that our model have obvious predictive ability for predicting the associations between 
drugs and diseases.

Table 2  The tenfold cross-validation details on Cdataset

Fold set Acc (%) TPR (%) TNR (%) PPV (%) MCC (%)

1 80.08 76.76 86.17 74.02 60.62

2 83.23 80.66 87.35 79.13 66.70

3 80.67 81.99 80.75 80.58 61.30

4 79.29 77.55 79.17 79.40 58.52

5 81.03 78.35 82.92 79.32 62.16

6 82.81 82.49 83.46 82.14 65.62

7 83.00 84.31 82.38 83.67 66.02

8 83.00 79.77 85.77 80.52 66.21

9 79.84 78.79 81.89 77.78 59.72

10 81.81 85.21 80.22 83.69 63.72

Average 81.48 ± 1.48 80.59 ± 2.86 83.01 ± 2.71 80.03 ± 2.88 63.06 ± 2.99

Table 3  The tenfold cross-validation details on Fdataset

Fold set Acc (%) TPR (%) TNR (%) PPV (%) MCC (%)

1 78.04 75.94 78.02 78.05 56.00

2 79.84 84.86 75.85 84.44 60.20

3 79.59 82.56 78.16 81.22 59.25

4 78.04 75.46 83.59 72.40 56.37

5 77.26 78.37 79.13 75.14 54.30

6 82.17 80.39 84.97 79.38 64.45

7 77.20 73.17 81.97 72.91 54.91

8 76.17 76.00 77.55 74.74 52.32

9 76.94 73.33 79.44 74.76 54.08

10 73.06 71.20 73.51 72.64 46.11

Average 77.83 ± 2.43 77.13 ± 4.37 79.22 ± 3.48 76.57 ± 4.06 55.80 ± 4.93

Fig. 2  The performance of DDIPred on two benchmark datasets
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The tenfold cross-validation performance of DDIPred on Fdataset is shown in Table 3. 
The average accuracy on Fdataset is 77.83% with standard deviation 2.43%, and the aver-
age TPR is 77.13% with standard deviation 4.37%, the average TNR is 79.22% with stand-
ard deviation 3.48%, the average PPV is 76.57% with standard deviation 4.06% and the 
mean MCC of DDIPred on Fdataset is 55.80% with standard deviation 4.93%. The per-
formance of DDIPred on this dataset is slightly weaker than on the Cdataset, but it still 
has acceptable results, which means it is competent for the drug–disease associations 
prediction task.

Comparison with other state‑of‑the‑art methods

We further compared the proposed model with other state-of-the-art methods on same 
datasets under same experimental conditions, including previous studies and widely 
used machine learning model Support Vector Machine (SVM), the comparison results 
are reported at Tables 4 and 5 and Fig. 3.

We compared the AUC of our model and previous studies including DrugNet [33] and 
HGBI [32]. Considering the difference of experimental evaluation indicators in differ-
ent research, we only compared the AUC value reported in every study, which can best 
reflect the performance of model. As shown in Table 4 and Fig. 3, the DrugNet obtained 
a AUC of 0.804 on Cdataset and a AUC of 0.778 on Fdataset. The HGBI performed 
better than DrugNet with AUC of 0.858, 0.829 on Cdataset and Fdataset respectively. 
However, the AUC of DDIPred are 0.871, 0.838 on Cdataset and Fdataset, our model 
performs best on both datasets.

Furthermore, we did a comparison between our model and widely used machine 
learning model SVM, which is often used as a baseline model and usually has great per-
formance in various fields. The feature input, tenfold cross validation set, evaluation 
metrics and other experimental conditions are exactly same between DDIPred and SVM 

Table 4  Comparison of the AUC of previous studies and DDIPred on datasets

Boldface indicates this measure of performance is the best among the compared methods

Predictors Cdataset Fdataset

DrugNet 0.804 0.778

HGBI 0.858 0.829

DDIPred 0.871 0.838

Table 5  Comparing the tenfold cross-validation performance of DDIPred and SVM on two gold 
standard datasets

Boldface indicates this measure of performance is the best among the compared methods

Datasets Methods Acc (%) TPR (%) TNR (%) PPV (%) MCC (%)

Cdataset SVM 72.57 70.99 76.41 68.70 45.25

DDIPred 81.48 80.59 83.01 80.03 63.06
Fdataset SVM 70.15 69.06 73.00 67.34 40.36

DDIPred 77.83 77.13 79.22 76.57 55.80
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model. The parameters of SVM are determined by grid search. The results are shown in 
Table 5. Our model has significantly improved all indicators.

Case studies

In order to further examined the capability of the proposed model in predicting new 
associations between drugs and diseases. A drug and a disease are selected as case to be 
measured. The feature of the tested drug or disease and the feature of each disease or 
drug were combined as test data. Then, these data are fed into trained model to obtained 
prediction scores. Finally, all candidates are ranked based on prediction scores. The 
Zoledronic acid (DrugBank Accession Number: DB00399) and Dexamethasone (Drug-
Bank Accession Number: DB01234) were selected for our case. Zoledronic acid is usu-
ally used to treat bone metastases pain, hypercalcemia of malignancy. And it can also 
helpful to prevent skeletal fractures in multiple myeloma and prostate cancer patients. 
Dexamethasone has anti-inflammatory, anti-immune, anti-toxin, antipyretic and other 
effects, and has a greater impact on metabolism. The prediction results are demonstrated 
in Tables 6 and 7, our model found the diseases most relevant to the target drugs, both 
confirmed indications and new potential candidate diseases are successfully predicted.

Fig. 3  The performance of DDIPred and comparison method on two benchmark datasets: a the ROC and 
AUC of DDIPred on Cdataset; b the ROC and AUC of SVM on Cdataset; c the ROC and AUC of DDIPred on 
Fdataset; d the ROC and AUC of SVM on Fdataset
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Conclusion
In this work, we proposed a novel deep learning model DDIPred using comprehen-
sive similarity measure and Gaussian interaction profile kernel and gated recurrent 
neural networks to predict potential drug–disease associations, which may find new 
indications of existing drugs and can accelerate the process of drug research and 
development. The similarity measure matrix is used to exploit discriminative feature 
for drugs based on their chemical fingerprints. Meanwhile, the Gaussian interactions 
profile kernel is employed to obtain efficient feature for diseases based on known dis-
ease–disease associations. Then, we implemented a competitive deep learning GRU 
model to deal with the prediction task. Our model achieved remarkable performance 
on both two benchmark datasets with excellent AUC of 0.871 and 0.838 on Cdata-
set and Fdataset, and outperforms all comparison state-of-the-art models in many 

Table 6  Predicted diseases most relevant to Zoledronic acid

Boldface indicates confirmed diseases, and normal font indicates the predicted candidate diseases

Rank Indications Disease ID

1 MYELOMA, MULTIPLE D254500
2 HAJDU-CHENEY SYNDROME D102500
3 IBMPFD 1 D167320
4 HYPERCALCEMIA, INFANTILE D143880
5 PAGET DISEASE OF BONE 2, EARLY-ONSET D602080
6 MISMATCH REPAIR CANCER SYNDROME D276300
7 HEREDITARY LEIOMYOMATOSIS AND RENAL CELL CANCER D605839
8 RENAL CELL CARCINOMA, NONPAPILLARY​ D144700

9 OSTEOPOROSIS D166710

10 ACROOSTEOLYSIS D102400

Table 7  Predicted diseases most relevant to Dexamethasone

Boldface indicates confirmed diseases, and normal font indicates the predicted candidate diseases

Rank Indications Disease ID

1 DERMATOSIS PAPULOSA NIGRA​ D125600
2 MISMATCH REPAIR CANCER SYNDROME D276300
3 ENTEROPATHY, FAMILIAL, WITH VILLOUS EDEMA AND IMMUNOGLOBULIN G2 

DEFICIENCY
D600351

4 OTITIS MEDIA, SUSCEPTIBILITY TO D166760
5 THROMBOCYTOPENIC PURPURA, AUTOIMMUNE D188030
6 ASTHMA, NASAL POLYPS, AND ASPIRIN INTOLERANCE D208550
7 MYCOSIS FUNGOIDES D254400
8 DOHLE BODIES AND LEUKEMIA D223350
9 HYPERTHERMIA, CUTANEOUS, WITH HEADACHES AND NAUSEA D145590
10 GROWTH RETARDATION, SMALL AND PUFFY HANDS AND FEET, ANDECZEMA D233810
11 GREENBERG DYSPLASIA D215140
12 ADIE PUPIL D103100

13 ANEMIA, AUTOIMMUNE HEMOLYTIC D205700

14 ATAXIA, EARLY-ONSET, WITH OCULOMOTOR APRAXIA AND HYPOALBUMINEMIA D208920

15 ENDOMETRIOSIS, SUSCEPTIBILITY TO, 1 D131200
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indicators. And we further made case studies to verify the predictive ability of our 
model. The rigorous experimental results proved the proposed method is powerful 
tool for predicting new indications for drugs or new treatments for diseases, and can 
be regarded as a useful guide for drug repositioning and drug discovery.
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