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Abstract 

Background:  As the number of RNA-seq datasets that become available to explore 
transcriptome diversity increases, so does the need for easy-to-use comprehensive 
computational workflows. Many available tools facilitate analyses of one of the two 
major mechanisms of transcriptome diversity, namely, differential expression of iso‑
forms due to alternative splicing, while the second major mechanism—RNA editing 
due to post-transcriptional changes of individual nucleotides—remains under-appre‑
ciated. Both these mechanisms play an essential role in physiological and diseases 
processes, including cancer and neurological disorders. However, elucidation of RNA 
editing events at transcriptome-wide level requires increasingly complex computa‑
tional tools, in turn resulting in a steep entrance barrier for labs who are interested in 
high-throughput variant calling applications on a large scale but lack the manpower 
and/or computational expertise.

Results:  Here we present an easy-to-use, fully automated, computational pipeline 
(Automated Isoform Diversity Detector, AIDD) that contains open source tools for 
various tasks needed to map transcriptome diversity, including RNA editing events. 
To facilitate reproducibility and avoid system dependencies, the pipeline is contained 
within a pre-configured VirtualBox environment. The analytical tasks and format 
conversions are accomplished via a set of automated scripts that enable the user to go 
from a set of raw data, such as fastq files, to publication-ready results and figures in one 
step. A publicly available dataset of Zika virus-infected neural progenitor cells is used to 
illustrate AIDD’s capabilities.

Conclusions:  AIDD pipeline offers a user-friendly interface for comprehensive and 
reproducible RNA-seq analyses. Among unique features of AIDD are its ability to infer 
RNA editing patterns, including ADAR editing, and inclusion of Guttman scale patterns 
for time series analysis of such editing landscapes. AIDD-based results show impor‑
tance of diversity of ADAR isoforms, key RNA editing enzymes linked with the innate 
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immune system and viral infections. These findings offer insights into the potential role 
of ADAR editing dysregulation in the disease mechanisms, including those of con‑
genital Zika syndrome. Because of its automated all-inclusive features, AIDD pipeline 
enables even a novice user to easily explore common mechanisms of transcriptome 
diversity, including RNA editing landscapes.

Keywords:  High-throughput sequencing, Analysis of RNA-seq, Transcriptome, 
Editome, RNA editing, Isoform, Differential expression, Sequencing variants, Adenosine 
deaminases acting on RNA (ADAR)

Background
Transcriptome complexity and diversity, including patterns of differential isoform 
expression, non-canonical transcripts, diversity of non-coding RNAs, and regulation 
of RNA editing, including editing by adenosine deaminases acting on RNA (ADAR) 
enzymes resulting in A to I substitutions, play fundamental roles in both normal 
physiological function and disease mechanisms [1–4]. Due to advances in deep 
sequencing technologies, RNA-seq experiments have become a more affordable and 
therefore popular tool for studying intricacies of molecular processes [5–8]. In fact, 
currently RNA-seq can be considered almost routine if not for the still substantial 
costs of experiments and subsequent in-silico analyses [9], including those associated 
with data storage and handling [10]. This, along with explosive increases in availa-
ble volumes of data generated in large-scale RNA-seq experiments, contributes to an 
ongoing demand for universal, easy-to-use computational tools capable of user-spe-
cific customization.

One of the widely used workflows available for high-throughput RNA-seq analyses 
is Galaxy, which is a reproducible and collaborative analytic platform that offers devel-
opers a framework for integrating and sharing their tools and workflows [11, 12]. Yet, 
although Galaxy is designed to be relatively easy to use, even for a beginner, perform-
ing more in depth analysis with multi-step workflows often requires that a user pos-
sesses and/or has access to a specialized bioinformatics expertise. Other challenges 
are related to sharing potentially large-scale analyses on a public webserver, which 
can become time-consuming, e.g., with time to completion increasing during high 
peak usage hours. Further, while there are hundreds of workflows currently accessible 
on Galaxy, many of these are quite complex and have a substantial learning curve to 
perform analyses and/or often require user knowledge of reference genomes and file 
formats. This limits the types of datasets that can be analysed without deploying a 
custom Galaxy instance, which in turn requires specialized skills. Likewise, for tasks 
beyond the basic transcriptome discovery analysis the user would need to know how 
to install and utilize additional tools in the Galaxy instance, somewhat hampering its 
usability to the potential user with only the basic computing skills. We would like to 
note that Galaxy Training Network (https​://train​ing.galax​yproj​ect.org/, accessed 12 
August 2020) already provides a variety of excellent tutorials to help inexperienced 
Galaxy users to performed complex analyses [13]. These tutorials nonetheless require 
substantial time and effort investments from users, which may exclude small labs 
lacking necessary manpower or somewhat limit Galaxy’s usability in the classrooms. 
In the past few years several toolboxes have been released in an effort to address such 

https://training.galaxyproject.org/
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challenges with using Galaxy [14–19]. Yet, these toolkits are often designed to analyse 
only one specific dimension of transcriptome diversity, and/or not fully automated 
and require some prior knowledge of R command line script [20].

Implementation:
AIDD features overview

To help overcome some of these limitations, our pipeline—Automated Isoform Diversity 
Detector (AIDD)—has been designed implicitly with a novice user in mind, and thus, 
can be used, for example, as an educational tool for RNA-seq-based laboratory exercises 
in the classroom setting with a minimal prior user training. Because the pipeline is pack-
aged in a VirtualBox environment, it is easy to install on essentially any operating system 
and/or a broad range of hardware (Windows, Linux, MacOS) that is capable of han-
dling a VirtualBox installation without concerns for compatibility. Yet despite the seem-
ing simplicity of installing it, our AIDD pipeline is powerful enough to handle a broad 
range of RNA-seq analyses, spanning from differential gene and isoform expression, to 
variant calling, and RNA editing analysis using dimension reduction and machine learn-
ing approaches, including Guttman scale patterns [21] for time series analysis of ADAR 
editing landscapes. Unlike comparable tools, AIDD offers a fully automated data analysis 
pipeline with a simple setup and one-click execution, while still allowing for easily cus-
tomizable options to account for a wide range of experimental conditions that users may 
wish to include. AIDD incorporates GATK haplotype caller [22], which is currently not 
available from Galaxy, as a variant caller for RNA editing prediction, customizable R and 
bash scripts for detailed statistical analyses of the transcriptome, including RNA edit-
ing patterns as well as transcriptome-level differential expression combined with gene 
enrichment and pathway analysis. SnpEff [23]is used to add depth to the complete tran-
scriptome analysis by predicting the impact of RNA editing on protein structure and 
function. AIDD also performs data visualization as part of the automated pipeline and 
produces publication-ready heatmaps, volcano and violin plots, bar charts and Venn 
diagrams.

AIDD availability and hardware requirements

The AIDD pipeline is built in an Oracle VirtualBox (https​://www.oracl​e.com/virtu​
aliza​tion/virtu​albox​/index​.html, accessed 12 August 2020) virtual machine based on 
Ubuntu 18.04.2 LTS (Bionic Beaver) 64-bit PC (AMD64) desktop image (http://relea​
ses.ubunt​u.com/18.04/, accessed 12 August 2020) and contains all tools necessary for 
transcriptome-level analysis (Fig. 1). The distributed VirtualBox image is ~ 20 Gb in size 
and is publicly available for download via GoogleDrive link (https​://drive​.googl​e.com/
open?id=1XOWh​9H-v1nA6​_Vl53P​I6G2g​KaVoZ​X6ls, accessed 12 August 2020). The 
up-to-date detailed description of included software tools, AIDD manual and step-by-
step tutorial for AIDD are distributed via our GitHub site (https​://githu​b.com/RNAde​
tecti​ve/AIDD, accessed 12 August 2020).

Implicitly tailored toward a novice user with no or minimal experience in computa-
tional analyses, AIDD is designed to run automatically with limited user input through a 
customizable bash script that controls multiple computational tools, including HISAT2 
and GATK, among others, to comprehensively analyse RNA-seq datasets. AIDD can 
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be deployed on almost any modern laboratory, classroom or office computer capable 
of running Ubuntu 18.04 in a VirtualBox environment. To shortcut the early learning 
curve, the pipeline is set up to run with default parameters directly “out of the box”, and 
includes commented out examples in the form of R markdown file that the user can 
choose to deploy as a step-by-step tutorial.

The minimum recommended hardware specifications include 4  GHz dual-core pro-
cessor (or better), 8 to 12 GB system memory available to the virtual environment, and 
50  GB of free hard drive space (https​://www.ubunt​u.com/downl​oad/deskt​op, accessed 
12 August 2020), although at least 16 GB system memory is recommended, and some 
applications may require more. For example, STAR alignment tool needs at least 10 
times more memory bytes than the target genome, which for human genome translates 
into at least 32 GB and upwards if annotations are needed [24].

Included example datasets: transcriptomes of ZIKV‑infected neural progenitor cell lines 

and importance of ADAR gene family

To illustrate the AIDD capabilities, we use a publicly available dataset from a study by 
McGrath et  al. [25] that contains RNA-seq data from three genetically distinct neural 
progenitor cell (NPC) lines infected with Zika virus (ZIKV). The authors found vary-
ing degrees of severity of symptoms associated with congenital Zika syndrome (CZS), 
including decreased differentiation and proliferation, and increased signs of apopto-
sis [25]. McGrath et al. also reported increased expression of genes involved in innate 

Fig. 1  Flow chart of the tools and steps used in the automated workflow carried out by AIDD pipeline. 
The analysis begins from gathering relevant RNA-seq data files from the NCBI SRA database, followed by 
reads alignment using HISAT2 with Ensembl annotations. Transcriptome assembly is then performed by 
Stringtie. Downstream expression analysis can be performed using multiple tools, including DESeq2, edgeR 
and topGO. Variant calling to detect RNA-editing events, including A-to-I editing, is performed using tools 
implemented in GATK; and statistical analysis of the effect of RNA editing is performed using custom R scripts

https://www.ubuntu.com/download/desktop
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immune response, including interferon alpha (IFNA) and adenosine deaminase acting 
on RNA (ADAR) during ZIKV infection (Additional file  2: Table  1 in McGrath et  al. 
2017) [25]. The ADAR gene family consists of three genes, namely, ADAR (also referred 
to as ADAR1), ADARB1 (ADAR2), and ADARB2 (ADAR3). Only ADAR and ADARB1 
have proven deaminase activity [26–28] catalyzing the deamination of adenosine (A) to 
inosine (I) transition seen in RNA editing [29, 30]. ADARB2 is thought to play a regula-
tory role through competition with other ADARs for substrate binding [29, 31]. ADARs 
play a prominent role in the nervous system [30, 32, 33], specifically in the brain [34, 35], 
where the majority of ADAR editing target genes are expressed [20, 26, 34, 36], including 
during development [37].

Running AIDD: uploading RNA‑seq data into AIDD

AIDD is designed to automatically download and convert RNA-seq datasets from the 
SRA accession numbers that user defines in the experimental conditions table. For the 
example analysis discussed here, a subset of Bioproject PRJNA360845 [25] was down-
loaded and converted to fastq format. Once converted to fastq format, fastqc (http://
www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/, accessed 12 August 2020) is used 
for quality control. Upon user assessment of quality of files, fastx-Toolkit (http://hanno​
nlab.cshl.edu/fastx​_toolk​it/, accessed 12 August 2020) is used to trim fastq files to assure 
best quality for alignment. In addition to downloading and preparing sequences, AIDD 
also automatically downloads and formats all necessary default references and indexes 
for human genome to run the tools. There are also options for user-defined reference 
sets, e.g., if RNA-seq data comes from mouse rather than human. AIDD can also run 
from locally stored fastq or standard alignment SAM/BAM files.

In addition to PRJNA360845 RNA-seq data [25], the included tutorial uses a second 
dataset from Bioproject PRJNA313294 [38]. While PRJNA313294-based results are 
not discussed here, they are available through the AIDD manual and in the distributed 
AIDD image (https​://githu​b.com/RNAde​tecti​ve/AIDD, accessed 12 August 2020).

Running AIDD: reads alignment and assembly

Once the RNA-seq data and the reference files have been downloaded, the reads are 
aligned to the chosen reference (GRCh37_snp_tran is used as a default, and in this 
example). The pipeline uses HISAT2 [39] as a default alignment tool. SALMON [40] and 
STAR [24] aligners are also available as options. The HISAT2 (https​://ccb.jhu.edu/softw​
are/hisat​2/index​.shtml​, accessed 12 August 2020) aligner is a low-memory yet sensitive 
alignment program that allows for comparable results to other slow and more memory 
intensive aligners such as STAR [24, 39]. Once the reads have been aligned, the output 
files (SAM format) are converted into BAM format using Picard tools (http://broad​insti​
tute.githu​b.io/picar​d/, accessed 12 August 2020) in preparation for variant calling and 
transcriptome analysis. The pipeline saves these intermediate files should the user ever 
need to use them for additional analyses.

Next, the transcriptome is reconstructed using Stringtie [41], with cufflinks available 
as an option (https​://softw​are.broad​insti​tute.org/cance​r/softw​are/genep​atter​n/modul​
es/docs/Cuffd​iff/7, accessed 12 August 2020), with output generated as raw counts 
(Fragments Per Kilobase Million (FKPM), Transcripts Per Kilobase Million (TPM), and 
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coverage) in the “counts” folder, and gene transfer format (GTF) files. The latter are then 
automatically modified into the count matrix for subsequent input into DESeq2 [42, 43], 
using the coverage correction for raw counts unique to Stringtie. The conversion step is 
performed by a Python script available from the Stringtie website (https​://ccb.jhu.edu/
softw​are/strin​gtie/, accessed 12 August 2020).

Running AIDD: differential expression analysis

Once reads have been mapped, DESeq2 [42] and other dependent packages are used 
to generate gene-level and transcript-level differential expression outputs, including 
results of the principal component analysis. The latter can be used as a quality control 
or as an exploratory analysis step, to verify the similarity among samples or treatments, 
and to identify outliers. DESeq2 uses empirical Bayes shrinkage approach to take into 
account within-group variation as well as fold change estimation to control for variance 
observed in the low read count genes [44]. This approach allows for increased sensitiv-
ity and decreased false positive rate [44].A user supplied gene list, for example, a Gene 
Ontology (GO)-based list, can be used to create pathway expression heatmaps and 
volcano plots to visualize significantly differentially expressed genes involved in those 
user-defined pathways, along with the default pathways for GO terms involved in neu-
ral development, proliferation, differentiation and signalling as well as the gene list of 
the innate interferon pathway that we used to explore the role of ADAR editing in CZS 
(Additional file 2: Table 1, Additional file 3: Table 2, Additional file 4: Table 3, Additional 
file  5: Table  4, Additional file  6: Table  5). Additional pathway enrichment analysis is 
automatically performed using included R package topGO [45]. Alternatively, generated 
gene and transcript lists can be used with outside gene enrichment analysis tools such as 
PANTHER [46] or DAVID [47].

Running AIDD: variant calling

While the state of the art identification of genomic variants that can be linked to pheno-
typic variation is based upon whole-genome (WGS) or whole-exome sequencing (WES) 
[48], much broader availability (and affordability) of transcriptome sequencing data 
makes it another appealing source of variants discovery [49]. Furthermore, some mecha-
nisms of variants generation—such as RNA editing and splice-site variation—can only 
be studied at the transcriptome level. Thus, our pipeline includes tools enabling variant 
discovery from transcriptome data, with the focus on ADAR-mediated RNA editing.

GATK haplotype caller [50] is the tool used in AIDD to infer potential RNA edit-
ing events, based upon the best practice settings as defined by the GATK develop-
ers as of March 2019 (https​://softw​are.broad​insti​tute.org/gatk/docum​entat​ion/artic​
le.php?id=3891, accessed 12 August 2020). Picard tools are used for quality control and 
proper formatting of input files. Haplotype caller is used twice in the pipeline, along with 
filtering steps to control for both false positives and false negatives. Specifically, to filter 
for false positives Qualality by Depth is set to 2.0, Fisher Strand is set to 60.0, and RMS 
Mapping Quality is set to 40.0, and to control for strand bias Strand Odds Ratio is set 
at 4.0, respectively, as default filtering parameters in GATK. SnpEff is then used to pre-
dict consequences on protein structure and function for the inferred variants [23]. Once 
a final list of potential variants is generated, these are then processed using R scripts 
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to demonstrate both global and local view of RNA editing. Additional set of R scripts 
will then compare differential ADAR editing landscapes between conditions. It should 
be noted that here we focus on potential editing events within coding regions, and thus, 
we are not considering hyperediting events [51]. Likewise, genomic polymorphisms can 
appear as potential editing events in RNA-seq, and thus we include an annotation of 
detected edited site candidates with available polymorphism data (where applicable). 
Figure 2 and Additional file 7: Table 6 outline various tools, used, as well as folders and 
files generated by the pipeline.

Running AIDD: reproducibility and customization

Although designed with the simplicity of user experience in mind, through inclusion of 
developer defined or best-practice default parameters, AIDD pipeline can be customized 
to address user’s specific needs, including changes in various mapping and variant call-
ing parameter, and reference genomes. The user manual offers detailed instructions on 
how to change parameters for every tool used in the pipeline, including GATK haplotype 
caller, with specific directions on which line(s) of code to change. Furthermore, upon 
completion of a job, the AIDD Results directory contains not only the desired outputs, 
such as mapped reads and gene counts, but also a folder with copies of all the scripts 
used for that particular job as well as log files generated during execution of that job in 
an effort to enable reproducibility and to facilitate troubleshooting.

Results and discussion
To illustrate AIDD’s capabilities, we describe results from the included tutorial that 
uses Bioproject PRJNA313294 data from [25]. Using PRJNA313294 data, AIDD 
mapped reads and then computed normalized and transformed gene and transcript 
count matrices for differential expression (DE) analysis using DESeq2 with a multi-
variate model for infection status taking into account cell-line identity. Principle 

Fig. 2  Flow chart showing directory structure created by AIDD. The main folder is AIDD_data and contains 
4 folders including (i) AIDD, containing all scripts used in analysis for reproducibility, (ii) quality control files, 
(iii) intermediate files, including BAM, GTF and VCF files, (iv) results of statistical analysis and data visualization 
including differential isoform expression and ADAR editing landscapes
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component analysis (PCA) of the top 500 expressed genes showed that ~ 47% of the 
variance is explained by the first principle component, which separated cell lines by 
fetal age, with K048 cell line derived from the 9 week old fetal tissue being separated 
from the 13  weeks old fetal tissue of G010 and K054 cell lines. The second princi-
ple component explained ~ 27% of the variation, and clustered ZIKV-infected cells 
from the mock infected cells, except in the case of the G010 cell line (Fig.  3a). The 
pipeline also generated a heatmap of the top 60 differentially expressed genes with 
hierarchal clustering that showed clustering of samples by infection status, except for 
the G010 cell line (Fig. 3b). This latter phenomenon is consistent with reported find-
ings of McGrath et  al. [25] that showed that G010 cells exhibited the least amount 
of cytopathic effects, if any, due to ZIKV infection, potentially reflecting genetic 

Fig. 3  Visualization of differential expression analysis using AIDD. a Principle component analysis of the top 
500 expressed genes counts show 47% of the variance in the system is attributed to differences in cell lines 
and 27% of the variance is attributed to ZIKV infection status. b The top 500 hierarchal clustering also shows 
clustering of CSZ phenotype cell line (K048 & K054) ZIKV infected cells and normal phenotype cells (G010) 
regardless of ZIKV infection status clustered with the CSZ phenotype cell line mock infections. c The top 20 
differentially expressed genes during ZIKV infection taking into account genetic cell line differences highlight 
the innate immune activation. When looking at each cell line independently, K048 (d) and K054 cells (e) have 
clear pattern of differentially expressed genes during ZIKV infection, whereas G010 cells f shows less of a 
pattern of differentially expressed genes. Panels g–i show that when the top 20 differentially expressed genes 
are considered, each genetically distinct cell line shows a differentially gene expression response to ZIKV 
infection
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heterogeneity across studied cells. Figure 3c shows generated volcano plots that vis-
ualize the top 20 differentially expressed genes between ZIKV and mock infections 
taking into account differences in cell-lines. AIDD generates clustering heatmaps 
for each cell line, which showed that while both K048 and K054 exhibit clear differ-
ences between mock and ZIKV infections consistent with the phenotypic differences 
between the two conditions (Fig.  3d,e), G010 cells showed no significant difference 
between ZIKV and mock infected cells, consistent with McGrath et al. (2017) results 
(Fig. 3f ). By looking at each cell line individually, AIDD is able to highlight differential 
effects of ZIKV infection in combination with host genetics that are consistent with 
results originally reported by McGrath et al. [25] (Fig. 3g–i).

Pathways analysis

The gene pathways exploration tool included in AIDD was used to examine differen-
tial expression in neurodevelopmental pathways during ZIKV infection. Using gene list 
supplied by the user, AIDD will generate customized heatmap, volcano plot, and data 
table with differential expression results for genes of interest. Gene ontology (GO) terms 
“innate immunity”,” brain development”, “central nervous system development”, “neuro-
logical development”, and “peripheral nervous system” are already included as default 
pathways. We also included a custom gene list for genes in the interferon alpha path-
way (Additional file 2: Table 1). AIDD results showed that ZIKV-infected cells showed 
increased expression of innate immune genes (Fig. 4a), as well as those in the interferon 
alpha pathway, including ADAR (Fig.  4b), except for the G010 cells. Consistent with 
McGrath et al. findings [25], cell lines that have CZS-like phenotypic appearance if ZIKV 
infected (namely, K048 and K054) have significant differential expression in the majority 
of the genes involved in the interferon alpha pathway (Fig. 4c,d), whereas G010 cells that 
appear to be essentially normal phenotypically showed only a few significantly differ-
entially expressed genes in the interferon alpha pathway (Fig. 4e), pointing to potential 
involvement of interferon alpha response in ZIKV infection and CZS-like symptoms. On 
the other hand, only cell line-associated differences but not the ZIKV infection-medi-
ated differences were observed for genes associated with GO terms of brain develop-
ment (Fig. 4f ), central nervous system development (Fig. 4g), neurological development 
(Fig. 4h), and peripheral nervous system development (Fig. 4i).

Mapping ADAR expression and editing landscapes

To explore the potential role of ADAR enzymes and ADAR editing, AIDD allows us 
to focus on expression of ADAR genes and editing patterns (Additional file 8: Table 7, 
Additional file  9: Table  8), including applying Guttman scale patterns to identify 
temporal changes in ADAR editing landscapes (Additional file 1: Fig. 1). The results 
showed that ADAR1p150 isoform-specific expression was significantly higher in 
ZIKV infected cells with the CZS phenotype (K048 and K054), while not being sig-
nificantly different in G010 cells (Fig. 5a). Interestingly, ADARB1 showed the opposite 
pattern, being significantly upregulated in G010 cells, but not in cells with CZS-like 
phenotype (Fig. 5b). Because ADARB1 and ADAR both share some overlapping edit-
ing targets as well as have gene-specific ones [52, 53], this expression pattern suggests 
that both ADAR genes may play complementary roles in the differential response to 
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ZIKV infection [54]. This would be consistent with prior suggestions that ADARB1 
contributes to dysregulation of RNA editing in many diseases [55–58].

AIDD also allows the user to map ADAR editing landscapes by performing variant 
calling to identify potential A to G substitutions. Globally, we found that the total 
numbers of A to G substitutions are higher in ZIKV-infected in both the G010 and 
K048 cell lines but not in the K054 line (Fig. 5c). However, when the potential impact 
of these substitutions on protein structure and function is examined, cell lines with 
the CZS-like phenotype (K048 and K054) had more of high and moderate impact 
variants detected in ZIKV infection, while seemingly normal G010 cells had smaller 
number of potentially impactful changes in ZIKV infection (Fig. 5d–f ).

Fig. 4  Results of AIDD pathway expression analysis. a Gene Ontology term “innate immune system” shows 
clustering of ZIKV infected cells with the CSZ phenotype (K048 & K054) and clustering of normal phenotype 
(G010) with the mock infected cells of all 3 cell lines. b Customized “interferon alpha pathway” list shows 
similar clustering pattern as (a). The CZS phenotype cell lines (K048 & K054) show the top 10 differentially 
expressed genes with gene products induced by interferon alpha pathway, including OAS1 and 2, and 
intermediary genes in the interferon alpha pathway, including STAT1 (c, d, respectively). On the other 
hand, phenotypically normal cell line (G010) has only 2 differentially expressed genes, which are not part 
of the interferon alpha pathway (e). Gene ontology terms “brain development” (f), “CNS development” (g), 
“neurological development” (h), and “PNS development” (i) exhibit differential expression patterns that can be 
attributed to genetic differences among cell lines, but not associated with ZIKV infection
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It should be noted that one major challenge of using variant calling methods for 
detecting RNA editing events is the need to have a sufficient coverage depth (of at least 
50 million reads or higher per sample) to accurately detect editing events when edit-
ing frequencies are low. AIDD attempts to correct for this by normalizing substitution 
counts by the read depth as determined from alignment algorithms. Therefore, these 
observed editing differences among cell lines could be attributed to interactions between 
ADAR family members as well as ADAR preferences at the editing sites, and spatio-tem-
poral regulation of editing.

We were also interested in editing events at known editing sites in ion channels and 
transporters that are known to be associated with fine-tuning of neural signalling, 
including excitotoxicity, brain development and neural plasticity [33, 59, 60]. To define 
the excitome, computationally-predicted ADAR editing sites found in psychiatric disor-
ders confirmed with PCR [61] were combined with editing sites from RADAR database 
that were previously examined in Alzheimer’s disease [62] to create a list of 151 editing 
sites located in 91 genes (Additional file  7: Table  8). In part because of relatively low 
coverage in all three cell lines as well as rather drastic differences in fetal age, the editing 
patterns at specific sites varied both between different cell lines and between infected 

Fig. 5  Visualization of ADAR expression and ADAR editing landscapes. a ADAR expression is significantly 
increased in CZS phenotype cell lines K048 (ANOVA F-statistic (F) = 58.396, significance p-value 
(p) = 0.001575) and K054 (F = 18.516, p = 0.01261), but not in phenotypically normal G010 (F = 0.1219, 
p = 0.7446) cells. b ADAR1p150 expression is significantly higher in K048 (F = 29.497, p = 0.005576), but not in 
K054 (F = 2e−04, p = 0.9902) or G010 (F = 3.4772, p = 0.1357) cells. c ADARB1 expression is not significantly 
different in K048 (F = 0.2579, p = 0.6383) or K054 (F = 1.0492, p = 0.3636) cells, but is significantly higher in 
G010 (F = 14.684, p = 0.01859). d The numbers of A to G substitutions were somewhat elevated in K048 
(F = 6.0422, p = 0.06984), but not in G010 (F = 6e−04, p = 0.9813) or K054 cells (F = 0.0648, p = 0.8116). 
e The numbers of A to G substitutions with predicted high impact on protein structure and function 
were significantly lower in G010 (F = 17.498, p = 0.01388), but somewhat higher in K048 cells (F = 6.3489, 
p = 0.06538); there were no changes in K054 cells (F = 1.7384, p = 0.2578). Likewise, moderate impact 
substitutions were also significantly lower in G010 (F = 15.737, p = 0.01658) and significantly higher in K048 
(F = 157.23, p = 0.0002328) cells, while were not changed in K054 cells (F = 1.9198, p = 0.2381) (f)
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and uninfected cells. ZIKV infected K048 cells showed likely editing events at multi-
ple sites, including at two ion channel receptors (namely, GRIA3 and GRIN3B). Other 
ZIKV-induced editing events were detected at IGFBP7, KIF20B and SRP9 genes, respon-
sible for controlling cellular metabolism, vesicular transport, and proper protein stor-
age and transport respectively [63–66]. There was also an increased editing detected at 
the ATXN7 gene that is implicated in degenerative ataxia [67]. ZIKV infected K054 cells 
showed likely editing events in PTPRN2, GRIA2 Q/R site, GRIA3 and IGFBP7, whereas 
uninfected cells showed editing events in ATXN7, BEST1, BLCAP, and KIF20B. ZIKV 
infected G010 cells exhibited increased editing in ATXN7, KIF20B, and PTPRN2, and 
decreased editing at the NEIL1 genes. Changes in editing landscapes can also be visual-
ized with Guttman scale patterns, where differences between distinct cell lines as well 
as mock and infected cells are shown for individual editing events/residues (Additional 
file 1: Fig. 1). However, further transcriptomics studies – including at much higher read 
depth—are needed to fully elucidate the changes in editing patterns that can be induced 
by viral infections.

Conclusions
A fully automated pipeline, Automated Isoform Diversity Detector (AIDD), has been 
developed to facilitate RNA-seq analyses focused on changes in transcriptome diversity, 
including isoform expression ratios and ADAR-editing events. A publicly available data-
set of human neural progenitor cells [25] is used to demonstrate how AIDD pipeline 
can be used to robustly and reproducibly analyse transcriptome diversity and to infer 
RNA editing patterns from RNA-seq data. Presented results illustrate the importance 
of examining both the gene-level and the isoform-level expression differences, as well as 
exploring RNA editing aspects of transcriptome diversity and their potential association 
with pathogenicity mechanisms.

AIDD pipeline has additional benefits of being novice-user friendly and completely 
automated for highly reproducible results. Briefly, AIDD incorporates multiple steps 
needed for using RNA-seq data to study transcriptome diversity, and offers an easy-
to-use pipeline for mapping and contrasting genome-wide RNA editing patterns, with 
focus on protein-coding transcripts (Additional file 9: Table 8). Once reads have been 
mapped to the reference genome, AIDD uses DESeq2 to infer patterns of differential 
expression at both gene and transcript levels. For users—such as ourselves—interested 
in patterns of editing of excitome-related genes, AIDD will summarize the expression 
of the excitome gene members, including ADARs and other genes with known editing 
sites. AIDD will further summarize global RNA editing patterns and infer correlations 
between edited sites and ADAR expression patterns. Lastly, lists of genes involved in 
ADAR editing landscape changes are produced and can be used as potential biomarkers 
for diagnostic and prognostic purposes.

The distributed pipeline image includes a user-friendly tutorial written in R mark-
down that can be used to illustrate AIDD features in a classroom setting as teach-
ing tool and/or to generate hypotheses for future experimental validation, or both. 
The ZIKV infection-associated example described in this paper further highlights 
the ability of AIDD to conduct complicated analyses within the constraints of a small 
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research laboratory. Future work includes testing AIDD’s accuracy against simulated 
reads with known editing sites and across various read depths per sample, as well as 
expanding AIDD’s ability for variant calling by incorporating other methods (such as 
Freebayes) [68]. AIDD can also be used in meta-analysis of publically available RNA-
seq datasets to comprehensively map ADAR editing landscapes across different cells 
and organisms, and to facilitate discovery of novel diagnostic and prognostic bio-
markers and potential targets for drug therapies.
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Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03888​-6.

Additional file 1.  Figure 1: Guttman scale patterns (Proctor 1970) were used to order and group ADAR editing 
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respectively. The mock-infected cells are shown with solid lines and ZIKV-infected cells are shown with dashed lines. 
(B) The mean editing frequencies differ between mock- and ZIKV-infected cells at several sites including; (i) AZIN1 at 
amino acid position 367 (F=7.1095, p=0.00263), (ii) CRB2 at amino acid position 969 (F=3.2, p=0.04584), (iii) IGFBP7 
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Additional file 2.  Table 1: IFNA pathway. Custom list of genes in the interferon alpha pathway genes containing 
intermediate pathway genes along with interferon stimulated genes (ISG)s including ADAR1p150.

Additional file 3.  Table 2: GO terms "brain development". Gene ontology term containing 706 genes involved in 
brain morphogenesis, brain segmentation, central complex development, forebrain, hindbrain, midbrain develop‑
ment and mushroom body development, subarachnoid space development, trigeminal sensory nucleus develop‑
ment, and ventricular system development.

Additional file 4.  Table 3: GOterms "central nervous system development". Gene ontology term containing 900 
genes involved in astrocyte differentiation, brain development, central nervous system maturation, morphogenesis, 
differentiation, and segmentation, larval central nervous system remodeling, microglia differentiation, preganglionic 
parasympathetic fiber, spinal cord, ventral cord ventral cord and ventral midline development, vertebrate eye-
specific patterning..

Additional file 5. Table 4: GO terms "neurological development". Gene ontology term containing 526 genes 
involved in neurological development.

Additional file 6.  Table 5: GOterms "peripheral nervous system development". Gene ontology term containing 
82 genes involved in establishment of blood-nerve barrier, lateral line ganglion development, peripheral nervous 
system neuron differentiation, postganglionic parasympathetic fiber development and Schwann cell differentiation.

Additional file 7.  Table 6: Quality control and other features implemented in the AIDD pipeline (https://github.
com/RNAdetective/AIDD).

Additional file 8. Table 7: All_count_matrix.csv. Coverage counts from Stringtie for important IFNA genes and ADAR 
and APOBEC gene family. This is combined with variant calling substitution matrix for nucleotide and amino acid 
substitutions and the number of genes with editing sites that have a high or moderate impact on protein structure 
and function..

Additional file 9.  Table 8: Excitome_freq_matrix .csv. Computationally predicted ADAR editing sites found in 
Psychiatric Disorders study and confirmed with PCR (Zhu et al. 2012) were combined with editing sites from RADAR 
database that were previously compared in Alzheimer’s disease (Khermesh et al., 2016) to create a list containing 151 
editing sites located in 91 genes. If a specific editing site is found in the dbSNP database, a reference number (rs) is 
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