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Background
Membrane proteins play essential roles in transport, signaling, adhesion, and metabo-
lism, which positions them as a leading drug target; over half of the current FDA-
approved drugs target membrane proteins [1]. Membrane proteins are among the least 
characterized proteins in terms of their structure and function due to their hydrophobic 
surfaces and poor conformational stability. Distinguishing membrane proteins can help 
direct future experiments and provide clues regarding the functions of these proteins.
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Background:  Membrane proteins are key gates that control various vital cellular func-
tions. Membrane proteins are often detected using transmembrane topology predic-
tion tools. While transmembrane topology prediction tools can detect integral mem-
brane proteins, they do not address surface-bound proteins. In this study, we focused 
on finding the best techniques for distinguishing all types of membrane proteins.

Results:  This research first demonstrates the shortcomings of merely using transmem-
brane topology prediction tools to detect all types of membrane proteins. Then, the 
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that combines the results of transmembrane topology prediction and position-specific 
scoring matrix (Pse-PSSM) optimized evidence-theoretic k nearest neighbor (OET-KNN) 
predictors yields the best performance.

Conclusion:  The integrative approach outperforms the state-of-the-art methods in 
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art methods.
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A major class of membrane proteins are transmembrane proteins. These proteins have 
one or more transmembrane segments (TMSs) embedded in the lipid bilayer in addition 
to extramembranous hydrophilic segments that extend into the water-soluble domains 
on each side of the lipid bilayer. The embedded segments are distinguishable because 
they contain residues with hydrophobic properties that interact with the hydrophobic 
(nonpolar) tails of the membrane phospholipids. Other classes of membrane proteins 
include surface-bound proteins that do not extend into the hydrophobic interior of the 
lipid bilayer; they are typically bound to the lipid head groups at the membrane surface 
or attach to other transmembrane proteins. Unlike transmembrane proteins, surface-
bound proteins such as peripheral and lipid-anchored proteins do not have TMSs; they 
are therefore more difficult to distinguish from other globular proteins.

Two distinct approaches, namely, transmembrane topology prediction and mem-
brane structure type prediction, are primarily used to detect membrane proteins. While 
transmembrane topology tools predict only a subset of membrane proteins (transmem-
brane proteins), they are applied more often than membrane structure type prediction 
tools due to the vast number of tools available and because transmembrane proteins 
constitute a major class of membrane proteins. However, by overlooking other classes 
of membrane proteins, essential information is lost. By contrast, membrane structure 
type predictions can be used to detect all classes of membrane proteins. In this work, we 
focus on detecting membrane proteins of all types and answering this question: given a 
protein sequence Q, is it a membrane protein?

The state-of-the-art tools that have achieved the highest overall performance in pre-
dicting all types of membrane proteins are MemType-2L [2] and iMem-2LSAAC [3]. 
While MemType-2L [2] has been in use for over a decade, it has maintained its popu-
larity due to its simple yet effective methodology. MemType-2L incorporates evolution-
ary information by representing protein samples with pseudo position-specific scoring 
matrix (Pse-PSSM) vectors and combining the results obtained from individual opti-
mized evidence-theoretic k nearest neighbor (OET-KNN classifiers). By contrast, iMem-
2LSAAC uses the split amino acid composition (SAAC) to extract features from protein 
samples and then support vector machine (SVM) to train the predictor.

MemType-2L is the only accessible tool for the prediction of all types of membrane 
proteins. When we tested it on a new set of membrane proteins, the accuracy reached 
only 80%, compared with the estimated accuracy of 92.7% in the original paper. This is 
because it was trained on the available protein sequences from 2006; and this protein 
sequence landscape has drastically changed, where a large surge in protein sequence 
entries has been recorded since then. It is therefore essential to build a new accessible 
tool that accommodates all membrane data.

The main contributions of this work can be summarized as follows:

•	 We establish a new benchmark dataset for membrane proteins (DS-M).
•	 We evaluate the performances of traditional transmembrane topology prediction 

tools on DS-M to predict all types of membrane proteins.
•	 We compare the performances of various machine learning techniques to detect 

membrane proteins; this comparison involved applying different feature extraction 
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techniques to encode protein sequences and choosing the proper machine learning 
algorithm to build a model using the extracted vectors.

•	 We introduce a novel method, TooT-M, which integrates different techniques that 
achieves superior performance compared to all other methods, including the state-
of-the-art methods.

Transmembrane topology prediction

Transmembrane topology prediction methods predict the number of TMSs and their 
respective positions in the primary protein sequence. Transmembrane proteins are inte-
gral membrane proteins (IMPs) that span the lipid bilayer and have exposed portions on 
both sides of the membrane. It is expected that the portions that span the membrane 
contain hydrophobic (nonpolar) amino acids, while the portions that are on either side 
of the membrane consist mostly of hydrophilic (polar) amino acids. The TMSs can have 
either α-helical or β-barrel structures, so prediction methods are classified into α-helix 
prediction methods and β-barrel prediction methods.

Previous prediction methods depended solely on simple measurements such as the 
hydrophobicity of the amino acids [4]. Major improvements were made after the “pos-
itive-inside rule” [5] was introduced by Von Heijne, which came from the observation 
that positively charged amino acids, such as arginine and lysine, tend to appear on the 
cytoplasmic side of the lipid bilayer. Current methods combine hydrophobicity analysis 
and the positive-inside rule together with machine learning techniques and evolutionary 
information.

For example, the membrane protein structure and topology support vector machine 
MEMSAT–SVM method [6], introduced in 2009, uses four support vector machines 
(SVMs) to predict transmembrane helices, inside and outside loops, re-entrant helices 
and signal peptides. In addition, it includes evolutionary information on many homol-
ogous protein sequences in the form of a sequence profile. This method outputs pre-
dicted topologies ranked by the overall likelihood and incorporates signal peptide and 
re-entrant helix prediction. The reported accuracy is 89% for the correct topology and 
location of TM helices and 95% for correct number of TM helices. However, recent stud-
ies using experimental data report that MEMSAT–SVM does not perform as well when 
evaluated on different datasets [7, 8].

State-of-the-art methods use consensus algorithms that combine the outputs from 
different predictors. The consensus prediction of membrane protein topology (TOP-
CONS2) method [8] achieved the highest reported prediction accuracy based on bench-
mark datasets [9]. It successfully distinguishes between globular and transmembrane 
proteins and between transmembrane regions and signal peptides. In addition, it is 
highly efficient, making it ideal for proteome-wide analyses. The TOPCONS2 method 
combines the outputs from different predictors that can also predict signal peptides 
(namely, Philius [10], PolyPhobius [11], OCTOPUS [12], signal peptide OCTOPUS 
(SPOCTOPUS) [13], and SCAMPI [14]) into a topology profile where each residue is 
represented by one of four values: the signal peptide (S), a membrane region (M), the 
inside membrane (I), or outside membrane (O). Then, a hidden Markov model is used to 
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process the resulting profile and predict the final topology with the highest-scoring state 
path.

Regarding β-barrel membrane protein prediction, a variety of methods have been 
introduced, such as methods that combine statistical propensities [15], k-nearest neigh-
bor (KNN) methods [16], neural networks [17, 18], hidden Markov models [19–22], 
SVMs [23], and amino acid compositions (AACs) [24, 25]. Approaches based on hid-
den Markov models have been found to achieve statistically significant performance 
when compared to other types of machine learning techniques [26]. Major methods for 
detecting β-barrel outer membrane proteins are HHomp [27], β-barrel protein OCTO-
PUS (BOCTOPUS) [21], and PRED-TMBB2 [22], with reported MCCs of 0.98, 0.93, 
and 0.92, respectively, when applied to the same dataset. The BOCTOPUS and HHomp 
techniques are much slower than PRED-TMBB2 [22].

Prediction of the membrane protein structural type

Methods for predicting membrane type can predict up to eight different membrane pro-
tein structural subtypes categorized as single-pass types I, II, III, and IV; multipass trans-
membrane; glycophosphatidylinositol (GPI)-anchored; lipid-anchored; and peripheral 
membrane proteins. A comprehensive review by Butts et al. [28] elucidates these meth-
ods in detail. Generally, prediction is performed in two stages: the first stage identifies 
the protein sequence as membrane or nonmembrane, while the second stage differenti-
ates among specific membrane protein subtypes. This research focuses on detecting all 
membrane proteins, regardless of their type (the first stage).

The MemType-2 [2] predictor was introduced in 2007 by Chou and Shen. It is a two-
layer predictor that uses the first layer to identify a query protein as a membrane or non-
membrane protein. Then, if the protein is predicted as a membrane protein, the second 
layer identifies the structural type from among the eight categories. The MemType-2L 
predictor incorporates evolutionary information by representing the protein samples 
with Pse-PSSM vectors and combining the results obtained by OET-KNN classifiers. It 
achieved an overall accuracy of 92.7% in the membrane detection layer. The reported 
performance in the first layer is obtained by applying the jackknife test on the provided 
dataset.

Butts et al. [29] introduced a tool that predicts all types of membrane proteins; it uses 
statistical moments to extract features from the protein samples and then trains a multi-
layer neural network with backpropagation to predict the membrane proteins. This tool 
achieved an overall accuracy of 91.23% when applying the jackknife test on the dataset 
from Chou and Shen [2], which was a slightly lower performance than the MemType-2L 
predictor.

The iMem-2LSAAC was introduced in 2017 by Arif et al. [3]. iMem-2LSAAC is a two-
layer predictor that uses the first layer to predict whether a query protein is a mem-
brane protein. Then, in the case of membrane proteins, it continues to the second layer 
to identify the structural category. It utilizes the split amino acid composition (SAAC) 
to extract the features from the protein samples and then applies an SVM to train the 
predictor. iMem-2LSAAC achieved an overall accuracy of 94.61% in the first layer when 
applying the jackknife estimator on their dataset.
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Methods
Dataset

The latest publicly available benchmark dataset that contains both membrane and 
nonmembrane proteins was constructed by Chou and Shen [2] and was used to con-
struct the MemType-2L predictor. Their dataset was collected from the Swiss-Prot 
database version 51.0, released on October 6, 2006. Furthermore, they eliminated 
proteins with 80% or more similarity in their sequences to reduce homology bias. 
Chou and Shen’s dataset contains a total of 15,547 proteins, of which 7582 are mem-
brane proteins and 7965 are nonmembrane proteins.

Because of the rapidly increasing sizes of biological databases, we built a new 
updated dataset, DS-M. This dataset was collected from the Swiss-Prot database. 
The annotated membrane proteins were retrieved by extracting all of the proteins that 
are located in the membrane, using the following search query: 

The remainder of the Swiss-Prot entries were designated as nonmembrane 
proteins.

The sequences in both classes were filtered by adhering to the following criteria:

•	 Step 1: Protein sequences that have evidence “inferred from homology” for the 
existence of a protein were removed.

•	 Step 2: Protein sequences less than 50 amino acids long were removed, as they 
could be fragments.

•	 Step 3: Protein sequences that have no Gene Ontology MF annotation or annota-
tion based only on computational evidence (inferred from electronic annotation, 
IEA) were excluded.

•	 Step 4: Protein sequences with more than 60% pairwise sequence identity were 
removed via a CD-HIT [30] program to avoid any homology bias.

All sequences from the membrane class and randomly selected sequences from the 
nonmembrane class were used to form the benchmark dataset. The data were ran-
domly divided (stratified by class) into the training (90%) and testing sets (10%). To 
further limit homology bias between the training and testing sets, the sequences in 
the testing set were filtered such that no sequence has more than 30% pairwise iden-
tity to any sequence in the training set. The number of sequences in the training and 
testing datasets are illustrated in Table 1.

The dataset contains samples from different species, with the most sequences com-
ing from Homo sapiens (18%), Arabidopsis thaliana (14%), Mus musculus (11%), Sac-
charomyces cerevisiae (8%), and Saccharomyces pombe (6%).

Approximately 84% of the membrane data collected have a structural type anno-
tation. Fig. 1 indicates that of the annotated proteins, approximately 75% are trans-
membrane proteins (single or multipass), while the remainder are peripheral, 
lipid-anchored, or GPI-anchored proteins.
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Topology prediction tools

A protein is regarded as a membrane protein if at least one TMS is detected. With 
respect to α-helical transmembrane proteins, three tools were applied. First, TOP-
CONS2 [8] which is considered to be the state-of-the-art method and known for 
its ability to distinguish signal peptides from transmembrane regions, TOPCONS2 
results were obtained through its available web server. The second tool is HMMTOP 
[31], which is a highly efficient tool commonly used in the literature, HMMTOP 
results were also obtained through its web server. The third tool is TMHMM [32], 
also commonly applied in the literature, and its results were obtained from its web 
server.

Regarding β-barrel transmembrane proteins, we applied PRED-TMBB2 [22], which 
shows comparable performance to the state-of-the-art β-barrel predictors but is 
much more efficient in terms of the runtime [22], The results of PRED-TMBB2 were 
obtained from its available web server.

Protein sequence encoding

After establishing the dataset, it is necessary to find the best representation of the 
protein sequences used to train the prediction engine. Generally, there are two 
options: sequential or discrete representations [2]. In sequential representations, a 
sample protein is represented by its amino acid sequence and then used in a similarity 
search-based tool such as BLAST [33]. A major drawback of relying on the similarity 
is that it fails when proteins with the same function share a low sequence similar-
ity. In discrete representations, a sample protein is represented by a set of discrete 

Fig. 1  Membrane structural types
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numbers that are usually the result of feature engineering. In this study, we encoded 
the protein sequences using the AAC, PAAC, and PseAAC baseline compositions. In 
addition, we applied the Pse-PSSM and SAAC as described below.

Amino acid composition (AAC)

The AAC is the normalized occurrence frequency of each amino acid. The fractions of 
all 20 natural amino acids are calculated by:

where Fi is the frequency of the ith amino acid and L is the length of the sequence. Each 
protein’s AAC is represented as a vector of size 20 as follows:

where ci is the composition of the ith amino acid.

Pair amino acid composition (PAAC)

The PAAC has an advantage over the AAC because it encapsulates information about 
the fraction of the amino acids as well as their order. It is used to quantify the preference 
of amino acid residue pairs in a sequence. The PAAC is calculated by:

where Fi,j is the frequency of the ith and jth amino acids of a pair (dipeptide) and L is the 
length of the sequence. Similar to the AAC, the PAAC is represented as a vector of size 
400 as follows:

where di,j is the dipeptide composition of the ith and jth amino acids.

Pseudo‑amino acid composition (PseAAC)

The PseAAC was proposed in 2001 by Chou [34] and showed a remarkable improve-
ment in the prediction quality when compared to the conventional AAC. PseAAC is 
a combination of the 20 components of the conventional AAC and a set of sequence-
order correlation factors that incorporate some biochemical properties. Given a protein 
sequence of length L,

a set of descriptors called sequence-order-correlated factors are defined as follows:

(1)ci =
Fi

L
i = (1, 2, 3, . . . , 20)

(2)AAC(P) = [c1, c2, c3, . . . , c20]

(3)di,j =
Fi,j

L− 1
i, j = (1, 2, 3, . . . , 20)

(4)PAAC(P) = [d1,1, d1,2, d1,3, . . . , d20,20]

(5)R1R2R3R4 . . .RL
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The parameter � is chosen such that (� < L) . The correlation function is given by:

where H1(Ri) is the hydrophobicity value, H2(Ri) is the hydrophilicity value, and M(Ri) is 
the side-chain mass of the amino acid Ri . These quantities were converted from the orig-
inal hydrophobicity value, the original hydrophilicity value and the original side-chain 
mass by a standard conversion formula as follows:

where H◦
1 (Ri) is the original hydrophobicity value for amino acid Ri and can be taken 

from the work of Tanford [35]; H◦
2 (Ri) and M◦(Ri) are converted to H2(Ri) and M(Ri) , 

respectively, in the same way. The original hydrophilicity value H◦
2 (Ri) for amino acid Ri 

can be obtained from Hopp and Woods [36]. The mass M◦(Ri) of the Ri amino acid side 
chain can be obtained from any biochemistry textbook. PseAAC is represented as a vec-
tor of size (20+ �) as follows:

where si is the pseudo-AAC as follows:

where fi is the normalized occurrence frequency of the ith amino acid in the protein 
sequence, θj is the jth sequence-order-correlated factor calculated from Equation 6, and 
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ω is a weight factor for the sequence-order effect. The weight factor ω puts weight on 
the additional PseAAC components with respect to the conventional AAC components. 
The user can select any value from 0.05 to 0.7 for the weight factor. The default value of 
0.05 given by Chou [34] was applied in this study.

Pseudo position‑specific scoring matrix (Pse‑PSSM)

We adopted the Chou and Shen [2] protein-encoding strategy, Pse-PSSM. The Pse-
PSSM is built by first performing a Position-Specific Iterative BLAST (PSI-BLAST) [33] 
search on a protein sequence P using the Swiss-Prot database (3 iterations, e-value 
cutoff of 0.001) and retrieving the PSSM profile:

PPSSM has L rows (a row for each position in protein sequence P) and 20 columns (one 
for each amino acid). Each element Ei→j represents the score for the substitution of the 
amino acid in the ith position of the protein sequence to the amino acid of type j in the 
evolution process. Since the number of columns in the PSSM depends on the length of 
the protein sequence P, the Pse-PSSM first standardizes the PSSM scores so that they 
have a mean value of zero over the 20 amino acids and then uses the following uniform 
size vector to represent protein sequence P:

where Ej and G�
j  are defined as follows:

� is chosen such that (� < L) . Since the shortest protein in our dataset is 50 amino acids 
long, we considered all � ∈ (0, . . . , 49) , and the performance of each encoding was evalu-
ated separately.

Split amino acid composition (SAAC)

The concept of SAAC was first reported by Hayat et al. [37]. The motivation behind this 
concept is that sometimes the most important information is concealed in fragments, 
and when calculating the AAC for the whole sequence, such information may be masked 
by noisy, irrelevant information. The SAAC is the sequence encoding used by iMem-
2LSAAC, a state-of-the-art predictor of membrane proteins [3].
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∑
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In SAAC, a protein sequence is divided into segments, and the AAC is computed for 
each segment separately. Here, we followed the same partitioning described for iMem-
2LSAAC [3]: the sequence is divided into three sections, namely, the first 25 amino acids 
of the N terminus, the last 25 amino acids of the C terminus, and the region between 
these sections. Each protein is then represented by a vector of size 60, as follows:

where cNi  , ci , and cCi  are the normalized occurrence frequencies of the ith amino acid in 
the N terminus, between the two termini, and C terminus segments, respectively.

Machine learning algorithms

K‑nearest neighbor (KNN)

KNN is a simple and effective classification algorithm. It is a type of instance-based 
learning, where all computations are deferred until prediction time. The KNN algorithm 
assigns a class to an unclassified object X based on the class represented by the majority 
of its KNNs in the training set vectors. If K = 1, the class of object X will be the class of 
its nearest neighbor. The choice of K is key to the quality of the KNN prediction engine; 
we found that the performance started to deteriorate when K > 10 . We also found that 
fusing the results of 10 individual classifiers, where K ∈ (1, . . . , 10) through majority 
voting, achieved the highest accuracy and was adopted for the KNN models. We applied 
the KNN algorithm as implemented by the class library in R (version 7.3-15).

Optimized evidence‑theoretic k‑nearest neighbor (OET‑KNN)

OET-KNN algorithm is a modification of the traditional KNN algorithm and has been 
shown to be highly powerful in statistical prediction [38]. It has been used by one of the 
most powerful membrane predictors, MemType-2L. The OET-KNN algorithm is based 
on the Dempster-Shafer theory of belief functions [38], wherein each neighbor in a pat-
tern to be classified is regarded as evidence supporting certain hypotheses concerning 
the class membership of that object. As with the KNN algorithm, any constructed OET-
KNN model is an ensemble of multiple OET-KNN classifiers, each with different values 
of K ∈ (1, . . . , 10) . The final class was determined through majority voting. We used the 
OET-KNN algorithm as implemented in R by the evclass library (version 1.1.1).

Support vector machine (SVM)

SVMs are a powerful machine learning tool used in many biological prediction tools. 
SVMs aim at solving classification problems by finding appropriate decision bounda-
ries between different classes. In relation to nonlinearly separable data, the kernel trick 
can be used to transform nonlinear data into a higher-dimensional space where optimal 
boundaries can be found in an efficient, less computationally expensive process com-
pared to the explicit computations of the coordinates. We used an SVM with a radial 
basis function (RBF) kernel as implemented by the R e1071 library (version 1.6-8). The 
best combination of the C and γ parameters was determined by utilizing a grid search 
approach.

(15)SAAC(P) =
[

cN1 , c
N
2 , . . . c

N
20, c1, c2, . . . c20, c

C
1 , c

C
2 , . . . c

C
20

]
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Gradient‑boosting machine (GBM)

GBMs are a machine learning technique that produces a strong model by assembling 
weak prediction models, usually decision trees. They use gradient boosting by itera-
tively training new models based on the weak points of the previous models. While 
not commonly applied in biological predictions, GBMs have been demonstrated to 
be one of the most powerful techniques on the popular machine learning competi-
tion website Kaggle (kaggle.com). Here, we used the xgboost library (version 0.81.0.1), 
which is a fast and efficient implementation of the gradient-boosting framework in R.

Random forest (RF)

RF is an ensemble method for supervised learning that operates by composing multi-
ple uncorrelated decision trees. The goal is to improve accuracy and avoid over-fitting 
by relying on a collection of decision models instead of a single one.

We applied the RF algorithm as implemented by caret [39] package (version 6.0-86) 
in R. The number of variables randomly sampled as candidates at each split (mtry) 
was determined through a grid search approach.

Ensemble classifier

All voting

Let CML
i  be a classifier built using the machine learning algorithm ML ∈ {KNN, OET-

KNN, SVM, GBM, RF}, in which the protein samples are represented by Pse-PSSM, 
with � = i and i ∈ (0, . . . , 49) ; each classifier is constructed as described in Machine 
learning algorithms section.

In addition, let CML
i,k  be a classifier built using the machine learning algorithm ML 

∈ {KNN, OET-KNN} in which the protein samples are represented by Pse-PSSM, 
with � = i and i ∈ (0, . . . , 49) ; and the parameter K that refers to number of neighbors 
equals k and k ∈ (1, . . . , 10).

In all voting, we evaluated the following seven different ensembles:

SVM-based ensemble: obtains the results from 50 SVM-based classifiers 
( CSVM

0 ,CSVM
1 . . .CSVM

49  ) and combines them through a voting mechanism, where 
the class that receives the most votes is chosen by the ensemble classifier.
GBM-based ensemble: obtains the results from 50 GBM-based classifiers 
( CGBM

0 ,CGBM
1 . . .CGBM

49  ) and combines them through the same voting mechanism 
as above.
RF-based ensemble: obtains the results from 50 RF-based classifiers 
( CRF

0 ,CRF
1 . . .CRF

49  ) and combines them through the same voting mechanism as 
above.
KNN V50-based ensemble: obtains the results from 50 KNN-based ensemble 
classifiers ( CKNN

0 ,CKNN
1 . . .CKNN

49  ) and combines them through the same voting 
mechanism.
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KNN V500-based ensemble: obtains the results from 500 KNN-based clas-
sifiers (50 for different values of � multiplied by 10 for different values of K; 
CKNN
0,1 ,CKNN

0,2 . . .CKNN
49,10  ) and combines them through the same voting mechanism.

OET-KNN V50-based ensemble: obtains the results from 50 OET-KNN-based 
ensemble classifiers ( COET−KNN

0 ,COET−KNN
1 . . .COET−KNN

49  ) and combines them 
through the same voting mechanism.
OET-KNN V500-based ensemble: obtains the results from 500 OET-KNN-based 
classifiers (50 for different values of � multiplied by 10 for different values of K; 
COET−KNN
0,1 ,COET−KNN

0,2 . . . COET−KNN
49,10  ) and combines them through the same voting 

mechanism; this is the MemType-2L approach [2].

Selective voting

For each ensemble in all voting, rather than fusing the predictions from all of the indi-
vidual predictors, here, the optimal subset of predictions (i.e., the output of the constitu-
ent classifiers) is selected so that they have minimal redundancy and maximal relevance 
with the target class. To accomplish this task, we first ranked the features using the mini-
mum redundancy maximum relevance (mRMR) algorithm [40], as implemented by the 
R mRMRe library (version 2.1.0), and then utilized incremental feature selection [41] to 
choose the optimal subset.

To quantify both the relevance and redundancy, mRMRe uses a linear approximation 
based on correlation such that mutual information (MI) between two variables ci , cj is 
estimated as:

ρ is the correlation coefficient between ci and cj.
Let y be the target class and X = (c1, c2, . . . , cn) be the set of n input features, i.e., the 

set of constituent classifiers output in all voting. The mRMR method ranks the features 
in X by maximizing the MI with y (maximum relevance) and minimizing the average 
MI with all the previously selected variables (minimum redundancy). A list of selected 
features, denoted by S, is initialized with ci , the feature with highest MI with the target 
variable such that:

Next, another feature, cj , is added to S by choosing the feature that has the highest rel-
evance with the output variable and the lowest redundancy with the previously selected 
features, utilizing the mutual information difference (MID) scheme:

�S denotes the set of features that are not yet added to S. This is continued until all of 
the features in X are added to S:

(16)MI(ci, cj) = −
1

2
ln(1− ρ(ci, cj)

2)

(17)ci = arg max
ci∈X

MI(ci, y)

(18)cj = max
cj∈�S



MI(cj , y)−
1

|S|
�

ci∈S
MI(cj , ci)




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c′i denotes the feature with the ith rank. Next, we utilized incremental feature selection 
[41] to choose the optimal subset. Incremental feature selection constructs n sets by 
adding one component at a time in an ascending order, with the ith given as:

The set with the highest accuracy is then selected for selective voting.

Performance measurement

The performances of the different prediction models were evaluated using jackknife test, 
also known as leave-one-out cross-validation (LOOCV), in which each sample in the 
training dataset is predicted based on the rules derived from all of the other samples 
except the one being predicted; this procedure is repeated so that each sample is used 
once for validation.

The LOOCV approach was applied to evaluate the state-of-the-art methods of the all-
type membrane predictors iMem-2LSAAC [3] and MemType-2L [2], and since the per-
formance of the LOOCV approach does not vary with different runs, it was chosen here.

Furthermore, we evaluated the performance of the model that achieved the highest 
performance during LOOCV using an independent testing set and compared it to those 
achieved by the models built with the state-of-the-art methods. Four main evaluation 
metrics were considered: the sensitivity, specificity, accuracy, and MCC. The sensitivity 
indicates the proportion of positive samples that are correctly identified.

The specificity measures the proportion of negative samples that are correctly identified.

The accuracy is the number of correct predictions divided by the total number of 
predictions.

The MCC measures the quality of a binary classifier and returns a value in the range from 
1 to − 1, where 1 indicates a perfect prediction, 0 represents prediction no better than 
random, and − 1 implies total disagreement between the prediction and observation.

In addition, the receiver operating characteristic (ROC) curve was used to evaluate the 
generalization performance of different models. The area-under-curve (AUC) value was 
used as a quantitative measure of the robustness of the model. AUC ranges in value 
from 0 to 1, where 0 indicates a complete disagreement between the prediction and 

(19)S = (c′1, c
′
2, . . . , c

′
n)

(20)si = {c′1, c
′
2 . . . c

′
i} (1 ≤ i ≤ n)

(21)Sensitivity =
TP

TP + FN

(22)Specificity =
TN

TN + FP

(23)Accuracy =
TP + TN

TP + FN + TN + FP

(24)MCC =
(TP × TN − FP × FN )

√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )
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observation, 0.5 represents no better than random prediction, and 1 indicates a perfect 
prediction.

Experimental design
The first experiment encodes protein sequences using different methods and uses the 
generated vectors as input to train different models based on the KNN, OET-KNN, 
SVM, GBM and RF algorithms; the performances of different models are evaluated 
on the training set using LOOCV. The second experiment evaluates the two ensem-
ble approaches, all voting and selective voting, and compares their performances. The 
third experiment evaluates the performances of the HMMTOP [31], TMHMM [32], 
TOPCONS2 [8] and PRED-TMBB2 [22] topology prediction tools for detecting all 
membrane types. Finally, the last experiment integrates the prediction achieved by the 
best-performing topology prediction tool with the best-performing ensemble in the sec-
ond experiment; we refer to this integrative approach as TooT-M.

In all the abovementioned experiments, only the training set is used to choose the 
best model/tool. The best-performing method in all of the experiments is chosen as our 
membrane predictor, and ultimately, its performance is tested on the independent test-
ing set and compared to that achieved by the state-of-the-art methods.

Results and discussion
Evaluation of different protein encodings

The LOOCV performances of the baseline encodings AAC, PAAC, and PseAAC, in 
addition to SAAC, which is utilized by iMem-2LSAAC [3], and the Pse-PSSM utilized 
by MemType-2L [2] on different machine learning algorithms are illustrated in Table 2. 
Only the Pse-PSSMs where � ∈ (0, 1, 2) are presented here; the rest have comparable per-
formances and are found in Additional file 1. The fivefold and tenfold cross-validation 
showed consistent results with that of LOOCV, and are presented in Additional file 1.

Since the data are balanced, we focused on the accuracy when comparing the perfor-
mance of the different models. The encoding extraction techniques can be divided into 
two primary groups: techniques that extract features solely from a protein sequence, 
such as AAC, PAAC, PseAAC, and SAAC, and the Pse-PSSM technique that incorpo-
rates evolutionary information. Among those techniques that extract features from the 
protein sequence alone, PseAAC in combination with GBM achieved the highest perfor-
mance, with an overall validation accuracy of 80.60%, followed by PAAC and SVM, for 
which the overall accuracy reached 80.28%. The SAAC encoding method used by iMem-
2LSAAC [3] was not superior to the other feature extractors, and it reached its highest 
overall accuracy (80.00%) with the GBM model.

The encoding technique that integrates evolutionary information in the form of Pse-
PSSMs for all � ∈ (0, . . . , 49) consistently achieved higher accuracy by an average of 11% 
relative to the methods that rely solely on the protein sequences of individual samples. 
The highest accuracy reached 89.70%, and was achieved by OET-KNN where the pro-
tein samples were encoded using Pse-PSSM � = 0 . On the other hand, when the protein 
samples were encoded using Pse-PSSM � ∈ (1, . . . , 49) , the SVM-based models outper-
formed the models based on the OET-KNN, KNN, GBM and RF algorithms.
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To further assess the performance of different encodings, Fig. 2 shows the ROC curve 
and the value of AUC of each model, and indicates that models with Pse-PSSM features 
outperform others.

Evaluation of the ensemble techniques

The performance of the first ensemble approach, all voting, on the training dataset is 
presented in Table 3. Since the data are balanced, we focused on the accuracy when com-
paring the performance of the different models. Among the seven ensembles in all vot-
ing, the SVM-based ensemble achieved the highest accuracy of 90.15%. The OET-KNN 

Fig. 2  Receiver operating characteristic analysis. Receiver operating characteristic (ROC) curves and the 
area-under-curve (AUC) scores for each model built using a OET-KNN; b KNN; c SVM; d GBM; e RF logarithms
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V500 ensemble, which reflects the performance of MemType-2L [2] on DS-M, achieved 
the second highest accuracy of 89.86%.

To choose the optimal feature set for selective voting, we tested the mRMR top-
ranked c ( 1 ≤ c ≤ 50 ) features incrementally by adding one feature at a time to 
the OET-KNN V50, KNN V50, SVM, GBM, and RF models, and the top-ranked c 
( 1 ≤ c ≤ 500 ) features on the OET-KNN V500 and KNN V500 models. The optimal 

Fig. 3  Choice of the optimal constituent classifiers among 50 classifiers. In the pair (x, y), x refers to the 
number of top-ranked components in the optimal feature set, and y refers to the achieved accuracy using 
those x components. The accuracy peaked when the number of top-ranked components were 3, 5, 15, 11, 1 
for the OET-KNN V50-, KNN V50-, SVM-, GBM-, and RF-based ensembles, respectively

Fig. 4  Choice of the optimal constituent classifiers among 500 classifiers. In the pair (x, y), x refers to the 
number of top-ranked components in the optimal feature set, and y refers to the achieved accuracy using 
those x components. The optimal numbers of features for the OET-KNN V500 and KNN V500 ensembles were 
20 and 21, respectively. The performance started to deteriorate as more votes were accounted for. Overall, the 
results suggest that the selective voting approach outperforms the all voting approach
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feature set is the one with the highest accuracy. As observed from Fig. 3, the accu-
racy peaked when the number of top-ranked components were 3, 5, 15, 11, 1 for the 
OET-KNN V50-, KNN V50-, SVM-, GBM-, and RF-based ensembles, respectively. 
In addition, the optimal number of features for the OET-KNN V500 and KNN V500 
ensembles were 20 and 21, respectively, as shown in Fig. 4; the performance started 
to deteriorate as more votes were counted. The detailed performances of the optimal 
feature set are presented in Table 4.

The results show that the ensemble models outperform their constituent classifi-
ers, and the selective voting ensemble approach outperforms the all voting approach. 
Generally, the ensemble works the best when the individual classifiers making up 
the ensemble are both accurate and have low correlation [42, 43]. The superiority of 
selective voting over all voting is due to mRMR method ability to choose the mod-
els that have low correlation among each other and high correlation with the target 
class (i.e., most accurate), and the incremental feature selection ability to select the 
optimal set that reduces the noise and increases the ensemble classifier distinctive 
power. An interesting observation to note here is that RF classifiers did not show 
improvement with ensemble approaches—since the optimal number of features was 
only one. This indicates that since the RF model is an ensemble, it is more robust 
and consistent than the other models, although not necessarily the most accurate. 
Further, while the individual SVM and GBM classifiers generally provided higher 
performances than those of the OET-KNN and KNN classifiers, the latter leveraged 
more from the selective voting ensemble. This suggests that the predictions from the 
OET-KNN and KNN classifiers are less consistent (i.e., they make errors in different 
parts of the input space) and are therefore better candidates for the ensemble than 
the SVM and GBM classifiers.

The best performance in all methods was achieved by selective voting with the 
OET-KNN V500 ensemble, where the overall accuracy reached 91.31%, which is 
1.67% higher than what the MemType-2L method (OET-KNN V500 with all voting) 
achieved. Because it achieved the best performance, the selective voting approach 
with the OET-KNN V500 method is utilized in the integrative approach TooT-M.

Evaluation of transmembrane topology prediction tools

The performances of HMMTOP [31], TMHMM [32], TOPCONS2 [8] and PRED-
TMBB2 [22] on the DS-M dataset are shown in Table 5. Based on statistics in the dataset 
section, we expected the topology prediction tools to fail to predict at least 20% of the 
membrane proteins because they are not transmembrane proteins; the results reported 
here confirm this hypothesis. The transmembrane topology reached a maximum sen-
sitivity of 72%. This finding further highlights the importance of building a model to 
predict all membrane types and that transmembrane topology tools disregard surface-
bound proteins and thus fail to recognize more than 20% of membrane proteins. Nev-
ertheless, a very attractive aspect here is the exceptionally high specificity (true negative 
rate) in TOPCONS2 predictions, which is due its ability to distinguish signal peptides 
from transmembrane regions [9]. This property means that the confidence in the posi-
tive prediction is high; thus, this aspect is exploited in TooT-M.
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Performance of integrative approach TooT‑M

The integrative approach TooT-M combines the best models from both the transmem-
brane topology tools (TOPCONS2) and the all-type membrane predictors (selective 
voting OET-KNN V500) through weighted voting. In weighted voting, a positive vote 
from TOPCONS2 is trusted and multiplied by the number of constituent classifiers in 
the selective voting OET-KNN V500 ensemble minus one; that is, the OET-KNN V500 
selective voting prediction is transformed to positive if and only if there is at least one 
constituent classifier that agrees with the positive prediction of TOPCONS2. Among 
all the tested weights, this approach helped enhance the sensitivity without negatively 
impacting the specificity.

Table 6 shows the LOOCV performance of TooT-M. Compared to the selective voting 
OET-KNN V500 ensemble, the sensitivity (true-positive rate) was enhanced by 2.76% 
and the specificity was enhanced by 1.35%. Overall, the accuracy increased by 2%, and 
the MCC was boosted by 4%.

Comparison with the state‑of‑the‑art methods

Here we compare the performance of TooT-M to the state-of-the-art methods in three 
settings: 

1	 The TooT-M, Mem-2LSAAC [3], and MemType-2L [2] methods are trained on the 
DS-M training set, and their performances are evaluated on the DS-M testing set.

2	 The TooT-M method is trained on the dataset obtained by the iMem-2LSAAC 
authors (DS1), and its performance is compared with the reported performance of 
iMem-2LSAAC [3] on the same dataset.

3	 The TooT-M method is trained on the dataset provided by Chou and Shen [2] (DS2), 
and its performance is compared to the reported performance of MemType-2L [2] 
on the same dataset.

Fig. 5  Comparison with other state-of-the-art methods on the DS-M dataset
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As illustrated in Fig. 5 and indicated in Table 7, the integrative approach outperformed 
all of the other methods in terms of sensitivity, specificity, accuracy, and MCC. In addi-
tion, the integrative approach achieved receiver operating characteristic area under the 
curve of 0.97 compared to 0.95 and 0.82 by the state-of-the art, as shown in Fig. 6.

Similarly, as shown in Table 8, it outperformed Mem-2LSAAC [3] in terms of specific-
ity, accuracy, and MCC, while still keeping the sensitivity credible. It also outperformed 
MemType-2L [2] in terms of sensitivity, accuracy, and MCC, while achieving a similar 
specificity, as shown in Table 9.

Fig. 6  Receiver operating characteristic analysis. ROC curves and the area-under-curve (AUC) scores for 
TooT-M and the state-of-the-art methods on DS-M dataset

Table 1  Membrane dataset DS-M 

Class Training Testing Total

Membrane 7945 495 8440

Nonmembrane 8157 613 8770

Total 16,102 1108 17,210
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Table 2  LOOCV performance of the individual models

This table shows microaverage LOOCV performance of the different protein encodings on different machine learning 
algorithms. The SAAC with SVM, highlighted in italics, reflects the LOOCV performance of the iMem-2LSAAC method 
[3] on DS-M. Only the Pse-PSSMs where � ∈ (0, 1, 2) are shown here; the complete performance of all the Pse-PSSMs 
( � ∈ (0, . . . , 49)) can be found in Additional file 1

Encoding ML algorithm Sensitivity Specificity Accuracy MCC

AAC​ OET-KNN 71.34 81.08 76.28 0.5271

KNN 75.72 74.87 75.29 0.5058

SVM 70.96 83.47 77.30 0.5492

GBM 71.86 83.75 77.89 0.5606

RF 68.11 85.13 76.73 0.5409

PseAAC​ OET-KNN 73.05 81.38 77.27 0.5465

KNN 74.24 79.38 76.84 0.5370

SVM 70.59 83.98 77.37 0.5511

GBM 74.99 86.07 80.60 0.6149

RF 68.84 84.86 76.95 0.5446

PAAC​ OET-KNN 68.94 72.09 70.53 0.4105

KNN 72.96 66.26 69.57 0.3930

SVM 76.15 84.22 80.24 0.6060

GBM 71.33 85.01 77.84 0.5661

RF 71.00 81.67 76.41 0.5301

SAAC​ OET-KNN 66.63 72.88 69.80 0.3960

KNN 69.75 68.81 69.28 0.3856

SVM 72.51 85.85 79.27 0.5895

GBM 73.90 85.95 80.00 0.6034

RF 67.82 87.02 77.54 0.5595

Pse-PSSM, � = 0 OET-KNN 86.57 92.75 89.70 0.7953

KNN 85.22 90.44 87.86 0.7580

SVM 83.23 90.05 86.68 0.7350

GBM 83.41 90.45 86.98 0.7409

RF 79.45 92.53 86.08 0.7269

Pse-PSSM, � = 1 OET-KNN 85.92 91.79 88.89 0.7788

KNN 85.89 89.06 87.50 0.7501

SVM 86.75 92.22 89.52 0.7912

GBM 85.00 92.19 88.64 0.7744

RF 79.86 93.66 86.85 0.7433

Pse-PSSM, � = 2 OET-KNN 85.51 91.90 88.75 0.7762

KNN 85.65 88.28 86.98 0.7397

SVM 86.83 92.06 89.48 0.7904

GBM 84.86 91.72 88.34 0.7682

RF 79.80 93.70 86.84 0.7432
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Table 3  Performances of the all voting ensemble classifiers on the main dataset

all voting with OET-KNN V500, highlighted in italics, reflects the LOOCV performance of the MemType-2L method on DS-M

Algorithm Sensitivity Specificity Accuracy MCC

OET-KNN V500 85.10 94.51 89.86 0.8004

OET-KNN V50 85.61 93.57 89.64 0.7950

KNN V500 85.50 91.77 88.68 0.7747

KNN V50 86.19 90.40 88.32 0.7669

SVM 86.48 93.72 90.15 0.8047

GBM 84.52 93.32 88.98 0.7820

RF 79.38 93.95 86.76 0.7423

Table 4  Performances of the selective voting ensemble classifiers on the main dataset

Selective voting with OET-KNN V500, highlighted in italics, refers to the method that achieved the highest MCC and is the 
method utilized in TooT-M

Algorithm Sensitivity Specificity Accuracy MCC

OET-KNN V500 88.99 94.00 91.53 0.8314

OET-KNN V50 86.58 94.43 90.56 0.8133

KNN V500 89.01 93.63 91.35 0.8280

KNN V50 86.55 91.92 89.27 0.7863

SVM 87.12 93.72 90.46 0.8107

GBM 85.30 93.45 89.44 0.7909

RF 80.19 93.71 87.04 0.7468

Table 5  Transmembrane topology prediction performance on the training dataset

TOPCONS2, highlighted in italics, is the tool that achieved the highest MCC and is the method utilized in TooT-M

Tool Sensitivity Specificity Accuracy MCC

HMMTOP 72.71 84.60 78.73 0.5777

TOPCONS2 69.86 99.77 85.01 0.7318

TMHMM 68.61 97.14 83.06 0.6878

PRED-TMBB2 41.73 55.48 48.70 − 0.0281

Table 6  TooT-M LOOCV performance

This table shows the LOOCV performance of TooT-M, which integrates the predictions from the constituent classifiers of the 
selective voting OET-KNN V500 ensemble and TOPCONS2 through weighted voting

Method Sensitivity Specificity Accuracy MCC

Selective voting OET-KNN 
V500

89.01 93.63 91.35 0.8280

TOPCONS2 69.86 99.77 85.01 0.7318

TooT-M 91.47 94.90 93.21 0.8645
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Conclusion
We curated a new membrane protein benchmark dataset that contains all types of mem-
brane proteins, including surface-bound proteins. We demonstrated the limitation of 
using only transmembrane topology prediction tools to predict all types of membrane 
proteins, as they detect only transmembrane proteins and miss surface-bound pro-
teins, which account for approximately 20% of membrane protein data. Furthermore, we 
evaluated the performances of different protein-encoding techniques, including those 
employed by the state-of-the-art membrane predictors with different machine learn-
ing algorithms. The experimental results obtained by cross-validation and independent 
testing suggest that applying an integrative approach that combines the results of trans-
membrane topology prediction and Pse-PSSM OET-KNN predictors yields the best per-
formance. TooT-M achieved a 92.51% accuracy in independent testing, compared to the 
89.53% and 79.42% accuracies achieved by the state-of-the-art methods MemType-2L 
[2] and iMem-2LSAAC [3], respectively.

Table 7  Comparison with other state-of-the-art methods on the DS-M dataset

This table compares the performance of TooT-M integrative approach with other state-of-the-art methods on the DS-M 
dataset. The highest performance in each metric is highlighted in italics. TooT-M outperformed the state-of-the-art methods 
across all metrics

Method Sensitivity Specificity Accuracy MCC

TooT-M 92.73 92.33 92.51 0.85

MemType-2L [2] 89.29 89.72 89.53 0.79

iMem-2LSAAC [3] 75.35 82.71 79.42 0.58

Table 8  Comparison with the iMem-2LSAAC predictor on the DS1 dataset

This table compares the performance of TooT-M with the state-of-the-art iMem-2LSAAC predictor [3] on the same dataset, 
DS1. The best performance for each metric is highlighted in italics. TooT-M achieved a higher specificity, accuracy and MCC 
than iMem-2LSAAC​

Method Sensitivity Specificity Accuracy MCC

TooT-M 98.09 96.80 97.43 0.94

iMem-2LSAAC​ 98.23 91.17 94.61 0.89

Table 9  Comparison with the MemType-2L predictor on the DS2 dataset

This table compares the performance of TooT-M with the state-of-the-art MemType-2L predictor [2] on the same dataset, 
DS2. The best performance for each metric is highlighted in italics. TooT-M achieved a higher sensitivity, accuracy and MCC 
than MemType-2L and the same specificity

Method Sensitivity Specificity Accuracy MCC

TooT-M 92.71 94.4 93.57 0.87

MemType-2L 91.00 94.4 92.7 0.85
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