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Background
Drug repositioning is intended to discover new uses of drugs that have been approved 
by drug regulatory authorities [1]. This technology has played a major role in drug dis-
covery because the traditional new drug development is a time-consuming, costly, and 
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Background:  Drug repositioning has been an important and efficient method for 
discovering new uses of known drugs. Researchers have been limited to one certain 
type of collaborative filtering (CF) models for drug repositioning, like the neighborhood 
based approaches which are good at mining the local information contained in few 
strong drug–disease associations, or the latent factor based models which are effec-
tively capture the global information shared by a majority of drug–disease associa-
tions. Few researchers have combined these two types of CF models to derive a hybrid 
model which can offer the advantages of both. Besides, the cold start problem has 
always been a major challenge in the field of computational drug repositioning, which 
restricts the inference ability of relevant models.

Results:  Inspired by the memory network, we propose the hybrid attentional memory 
network (HAMN) model, a deep architecture combining two classes of CF models in a 
nonlinear manner. First, the memory unit and the attention mechanism are combined 
to generate a neighborhood contribution representation to capture the local structure 
of few strong drug–disease associations. Then a variant version of the autoencoder is 
used to extract the latent factor of drugs and diseases to capture the overall informa-
tion shared by a majority of drug–disease associations. During this process, ancillary 
information of drugs and diseases can help alleviate the cold start problem. Finally, in 
the prediction stage, the neighborhood contribution representation is coupled with 
the drug latent factor and disease latent factor to produce predicted values. Com-
prehensive experimental results on two data sets demonstrate that our proposed 
HAMN model outperforms other comparison models based on the AUC, AUPR and HR 
indicators.

Conclusions:  Through the performance on two drug repositioning data sets, we 
believe that the HAMN model proposes a new solution to improve the prediction 
accuracy of drug–disease associations and give pharmaceutical personnel a new per-
spective to develop new drugs.
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unstable process that takes 10–15 years and costs 0.8–1 billion dollars [2–4]. Compared 
with the traditional new drug development process, the approved drugs have undergone 
several rigorous clinical trials, and their toxic and side effects have been strictly evalu-
ated [5]. Hence, drug repositioning technology can shorten the drug development cycle 
to 6.5 years, research and development funding could be reduced to 3 million dollars [6, 
7], and the related drugs can pass the regulatory review more easily [8].

The prediction of drug–target interactions is an important process in drug discovery. 
Targets are biological macromolecules that exert pharmacological effects in the human 
body and are directly related to diseases, therefore, the prediction of drug–target asso-
ciations also has important research significance for drug repositioning. In recent years, 
many researchers have developed various computational models to predict large-scale 
potential drug–target associations. The research of Chen et al. [9] not only summarized 
the databases and web servers involved in drug target identification and drug discovery, 
but also introduced some of the latest computational models for drug–target interac-
tion prediction, which focuses on the advantages and disadvantages of network-based 
and machine learning based methods. Ezzat et  al. [10] introduced a chemical genom-
ics method for calculating drug–target interaction predictions. They divided chemical 
genomics methods into neighborhood model based methods, local model based meth-
ods, network diffusion based methods, matrix factorization based methods and feature 
classification based methods. And they focused on the prediction performance of these 
methods in different situations. In general, it is necessary to develop novel and effective 
prediction methods to avoid the determination of drug–target interactions only through 
expensive, laborious and uncertain traditional experimental methods.

Recently, the graph neural network has attracted the attention of many scholars, and 
many researchers have applied it to the research of drug–target–disease associations. 
Han et al. [11] combined graph convolutional network (GCN) and matrix factorization 
to propose a new disease gene association task framework GCN-MF. With the help of 
GCN, the framework can capture the non-linear interaction between disease and gene, 
and use the similarity between the measured gene and disease phenotype for predic-
tion work. Long et al. [12] proposed a graph convolutional network (GCN)-based frame-
work-GCNMDA to predict human microbe-drug associations. The framework is based 
on a heterogeneous network of drugs and microorganisms which constructed with rich 
biological information. In the hidden layer of the GCN, the conditional random field 
(CRF) with the attention mechanism is further used to more accurately aggregate the 
neighborhood representations while ensuring that similar nodes (for example, microor-
ganisms or drugs) have similar vector representations.

Benefited from the success of the CF (Collaborative Filtering) model in the field of rec-
ommendation systems [13–15], more and more researchers have applied the CF model 
to the field of drug repositioning. In general, the computational methods of drug repo-
sitioning can be categorized into two main groups. One is neighborhood based models 
[16–18] and the other is latent factor based models [19–22].

Neighborhood based models recommends potential targets for drugs by identifying 
neighborhoods of similar drugs or diseases based on previous associations. A com-
putational framework has been suggested by Wang et al. [16], HGBI, a heterogeneous 
drug–target graph that includes known drug–target interactions as well as similarities 
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between drug–drug and target–target. A novel graph-based inferencing technique is 
implemented based on this graph to recommend potential targets to drugs. Martinez 
et  al. [17] created a drug–disease priority-setting methodology called DrugNet based 
on ProphNet, a network-based priority-setting technique. DrugNet model establishes a 
network of interconnected medicines, proteins and illnesses and recognizes new asso-
ciations of drug–disease by disseminating data in the heterogeneous network above. 
Based on the theory that comparable drugs are usually associated with comparable ill-
nesses, Luo et al. [18] suggested a novel computational technique called MBiRW, using 
some extensive similarity measures and Bi-Random Walk (BiRW) to detect prospective 
novel signs for the specified drug.

Latent factor based models project each drug and disease into a common low dimen-
sional space to capture latent associations. Gottlieb et al. [19] suggested a model called 
PREDICT, which calculates the connection between future drugs and illnesses, primar-
ily by incorporating the similarities between different drugs and illnesses and using these 
characteristics to acquire fresh prospective characteristics through a logical classifier. 
Luo et  al. [20] built a heterogeneous drug–disease interaction system by incorporat-
ing drug–drug, disease–disease, and drug–disease networks denoted with a vast adja-
cency matrix for drug–disease, then implement a Singular Value Thresholding algorithm 
to finish the adjacency matrix for drug–disease with expected results for unidentified 
drug–disease pairs. In order to balance the calculation error between the drug similarity 
and the disease similarity, Yang et al. [21] proposed BNNR model, which incorporates 
the regularization of nuclear specifications into the matrix decomposition model, and 
can effectively solve the problem of overfitting and improve the prediction accuracy of 
the model. Yang et al. [22] proposed an additional neural matrix factorization (ANMF) 
model, using the auxiliary information of drugs or diseases to overcome the problem of 
data sparsity and introducing the neural network, so that the ANMF model can capture 
the nonlinear relationship between drugs and diseases.

However, the above researches were based on a single type of CF model to solve the 
problem of drug repositioning, which can lead to the following defects. Neighborhood 
based methods capture local structure but usually ignore the majority of scores available 
owing to choosing from the junction of feedback between two drugs or diseases at most 
K observations. In contrast, models of latent factor capture the general global structure 
of the interactions between drugs and diseases, but often overlook the existence of some 
powerful associations. At the same time, a specific drug usually treats a smaller number 
of diseases to make the drug–disease correlation matrix relatively sparse. Hence relying 
solely on sparse data of drug–disease association can easily lead to cold start problems.

In recent years, due to the nonlinear fitting ability and excellent performance in 
mining effective hidden features from raw data, deep learning has achieved remark-
able success in many fields. The memory network has achieved great achievement in 
the field of machine translation for its long-term and short-term memories of histori-
cal information. Hence, inspired by deep learning and the memory network [15, 23, 
24], we propose the Hybrid Attentional Memory Network (HAMN), a hybrid unified 
model that combines the advantages of both types of CF models. At the same time, 
the cold-starting problem is highly challenging in the drug repositioning application 
scenario, which mainly refers to the lack of history data on the effects of new drugs 
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towards other diseases. Without the historical treatment data, it is impossible to pre-
dict the corresponding treatment mechanism. So, we introduce drug–drug similarity 
and disease–disease similarity information to overcome cold start problems to some 
extent in the drug repositioning.

In the HAMN model, we combine the attention mechanism with memory unit [25] 
to generate the neighborhood representation that captures the higher-order complex 
associations between drugs and diseases. Memory unit allows encoding of rich fea-
ture representations, while attention mechanisms can assign influential neighbors 
greater weight. Next, a variant version of the autoencoder is used to extract the valid 
latent factor of drug and disease and reduce the side effects of cold-starting prob-
lem by combining drug similarity, disease similarity with drug–disease associations. 
Finally, a nonlinear interaction between the local neighborhood representation and 
the global latent factors derives the predicted value.

Our main contributions can be summarized as follows: 

(1)	 We propose the HAMN model, a new network framework that combines neigh-
borhood based method with latent factor based model by the memory network, to 
capture both the global structural information of drug–disease associations and the 
local information contained in some strong drug–disease associations.

(2)	 We introduce an attention mechanism to enable influential neighbors to make 
greater contributions. The experimental results show that this strategy can can 
improve the performance of the model.

(3)	 The HAMN model has been systematically tested in two real data sets, Gottlieb 
dataset and Cdataset [20]. The experimental results show that the performance of 
our proposed HAMN model exceeds the state-of-the-art according to the AUC, 
AUPR or HR indicators.

The rest of this paper is as constructed as follows: we will introduce the implementa-
tion details and principles of the HAMN model in “Methods” section. In “Results” 
section, the experiments and results of the HAMN model on the Gottlieb dataset and 
the Cdataset will be presented, and the discussion of the experiments will be given 
in “Discussion” section. The final section will serve as a summary of our work and a 
guideline for future ventures.

Methods
The overall architecture of our proposed Hybrid Attentional Memory Network 
(HAMN) model is shown in Fig. 1. At a high level, the HAMN model consists of three 
modules: (1) the neighborhood contribution representation module, (2) the mining 
latent factor module, and (3) the predictive value generation module.

First, the neighborhood contribution representation module captures the local 
information contained in few strong drug–disease associations. The module derives 
the neighborhood contribution representation by combining the memory unit and 
the attention weight mechanism, which will be described in detail in “Neighborhood 
contribution representation” section.
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Next, the mining latent factor module captures the global information of drug–disease 
associations. The module uses a variant version of autoencoder to combine drug–disease 
relationships, drug similarity with disease similarity for the extraction of drug latent factor 
or disease latent factors, which will be discussed in detail in “Mining the latent factor of 
drugs and diseases” section.

Finally, the predictive value generation module uses nonlinear function to calculate 
the predicted value by combining the latent factor of drug, the latent factor of disease 
and the neighborhood representation.This will be described in detail in “Predictive value 
generation” section. At the end of this section, we will derive the general loss function of 
the HAMN model and the learning of the corresponding parameters.

Neighborhood contribution representation

In order to capture the local information contained in some strong drug–disease asso-
ciations, inspired by [24], we first define the latent factor of drug called drugi , where 
drugi ∈ R

1×d is generated by a set of parameter vectors, d is the dimension of latent fac-
tor, which stores the characteristic information of the drug. And defined the latent factor 
of disease called diseasej , where diseasej ∈ R

1×d is generated by another set of param-
eter vectors, which stores the specific preferences of the disease. Next we define the 
drug preference vector pij as shown in Eq. (1), where each dimension pijn represents the 
degree of similarity between the target drug i and its neighbor drug n.

(1)pijn = drugTi drugn ∀n ∈ N
(

j
)

Fig. 1  The architecture of the HAMN model
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where N
(

j
)

 represents the collection of drugs that are associated with disease j. The 
intuition of our design formula (1) is as follows, the degree of compatibility between 
the target drug i and the neighbor drug n is calculated by performing the inner product 
operation of both the latent factor of drug i and the latent factor of the neighbor drug n. 
The inner product operation enables the neighborhood drug similar to the target drug i 
to achieve a larger compatible value, and vice versa.

According to the hypothesis that similar drugs can treat similar diseases, when drug 
i infers whether it can treat the disease j, more similar neighbor drugs contribute 
more to the decisions. Hence, by formula (2) normalizing the drug preference vector 
pij , the attention weight of the target drug qij can be obtained. This attention weight is 
used to infer the contribution weight of the neighboring drugs. It works because the 
attention weight vector qij can impose higher weights on similar drugs in neighbors, 
while reducing the importance of less similar drugs, hence the target drug i focuses 
on the influential subset of drugs in the neighborhood when making decisions.

In order to learn the local information contained in a few strong drug–disease 
associations, inspired by the memory network and the hypothesis which the local 
structural information contained in the strong association is usually provided by the 
neighbor of the target drug, hence the HAMN model uses an external memory unit to 
store the characteristic information of the drug in the role of neighbor to serve as the 
local structural information contained in the strong drug–disease associations. Then 
we use the attention weight vector qij to accumulate the neighborhood information 
contained in all the neighbor drugs of the target drug to obtain the final neighbor-
hood contribution representation. The generation method is shown in formula (3).

where cn is another embedding vector of drug n, which is called external memory 
in the original memory network framework. The external memory allows the storage 
of long-term information pertaining specifically to each drug’s role in the neighbor-
hood. Its essence is a set of parameter vectors, which can be represented by vectors 
cn = [m1,m2, ...ml] , where ml represents the parameters that can be learned during 
model training. In other words, the attention mechanism selectively weights the neigh-
bors according to the specific drug and disease. The external memory unit cn stores the 
local structural information contained in the strong drug–disease associations. Then the 
neighborhood contribution representation generated by accumulating the sum of the 
attention vector and the memory unit cn , which can make the contribution value of the 
influential neighbor greater and can capture local structural information contained in 
the strong drug–disease association.

It is worth noting that the dimension of the external memory unit does not need 
to be consistent with the dimension of the hidden feature vector of the drug. By 
adjusting the dimension of the external memory unit, it can meet different scales of 

(2)qijn =
exp(pijn)

∑

k∈N (i) exp(pijn)

(3)oij =
∑

n∈N (j)

qijncn
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computing drug repositioning data sets, which enhances the scalability of the model 
to a certain extent. In the experimental “The dimension of external memory unit” 
section, the effect of external memory unit dimension on model performance will be 
discussed.

Mining the latent factor of drugs and diseases

Both drugi and diseasej in “Neighborhood contribution representation” section are 
represented by parameter vectors, which required a large amount of historical drug–
disease correlation data to ensure the convergence and validity of that model param-
eters. However, the data of computational drug repositioning is generally sparse and 
cannot meet the training requirements of the above parameter vectors. At the same 
time, the cold start problem is a major challenge in the field of computational drug 
repositioning. In order to extract effective latent factor and alleviate cold start prob-
lems, this section use a variant version of autoencoder to extract the latent factor 
of drugs and diseases instead of the above, and combine drug similarity and disease 
similarity.

The bottom of Fig.  1 shows the process of mining the latent factor of drug i and 
disease j. We focus on the process of mining the latent factor of drug i, because the 
process of mining the latent factor of disease j is theoretically the same.
R stands for the drug–disease associations matrix, where sdrugi = {Ri1,Ri2, ...Rin} 

represents the associations among drug i and all diseases in the data 
set. DrugSim stands for the drugs–drugs similarity matrix, where 
DrugSimi∗ = [DrugSimi1,DrugSimi2, ...,DrugSimim] represents the similarity between 
drug i and m drugs in the data set. To enhance the robustness of the input data, ran-
dom noise is added to sdrugi  and DrugSimi∗ to generate s̃drugi  and D̃rugSimi∗ . Then we 
perform the following encoding and decoding operations on the above two inputs to 
extract the latent factor of the drug i, drugi.

Equation (4) is the encoding operation, and Eqs. (5) and (6) are the decoding opera-
tions, where drugi represents the latent factor of the drug i. g and f represent any activa-
tion functions, W and V represent weight parameters, and b represents bias parameters.

The loss caused by the above encoding and decoding operations includes the error 
between all inputs and their reconstructed values, and the loss function is as shown 
in Eq. (7), where � s

drug
i − ŝ

drug
i �2 and � DrugSimi∗ − D̂rugSimi∗ �2 represent the error 

caused by the input value and the reconstructed value, and � Wl �
2 + � Vl �

2 controls 
the complexity of the model, which improves the model’s generalization ability. α rep-
resents the equalization parameter and � represents the regularization parameter.

(4)drugi =g
(

W1s̃
drug
i + V1D̃rugSimi∗ + bd

)

(5)ŝ
drug
i =f

(

W2drugi + bs
)

(6)D̂rugSimi∗ =f
(

V2drugi + bD
)
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The latent factor of the drug i can be obtained by minimizing formula (7). Similarly, 
the process of obtaining the latent factor of the disease j is theoretically the same as the 
process of extracting the latent factor of the drug. The difference is that sdiseasej  and the 
diseases-diseases similarity matrix are used as inputs, where sdiseasej = {R1j ,R2j , · · ·Rmj} 
represents the vector of relationships among the disease j and all drugs in the data set.

Predictive value generation

As mentioned above, the neighborhood based model captures the information con-
tained in few strong drug–disease associations and the latent factor model captures the 
global structural information of drug–disease associations. Therefore, we used oij to 
capture the local information of the drugs–diseases relationships, and used drugi and 
diseasej to capture the global information of the drugs–diseases relationships, which are 
finally nonlinearly integrated by using the following formula (8).

drugi and diseasej represent the latent factors of drugs and diseases calculated by the 
HAMN model, ⊙ represents elementwise product, and oij represents neighbor contribu-
tion representation. h and W represent the weight parameters, η is the balance param-
eter, which controls the weight of the latent factor model and the neighbor model in the 
final output. b represents the offset parameter, Fout represents any activation function, 
and r̂ij represents the predicted value.

Where hT
(

drugi ⊙ diseasej
)

 represents the output value of the latent factor model, 
WToij represents the output value of the neighbor model, and Eq. (8) smooths the non-
linear integration of the two to obtain the predicted value. The above operation enables 
the HAMN model to capture both global and local information.

Parameter learning

In this part, we will derive the final loss function of the HAMN model and the learning 
process of the corresponding parameters. In general, the loss function of the HAMN 
model includes the loss of the extracted drug and the disease latent factor and the loss 
between the predicted value and the target value.

The loss function of the extracted drug and disease latent factor are shown in Eqs. (9) 
and (10), which has been derived in 2.2.

(7)

arg min
{Wl},{Vl},{bl}

α � s
drug
i − ŝ

drug
i �2 +(1− α) � DrugSimi∗ − D̂rugSimi∗ �2

+ �

(

∑

l

�Wl �
2 + � Vl �

2

)

(8)r̂ij = Fout

(

ηhT
(

drugi ⊙ diseasej
)

+ (1− η)WToij + b
)

(9)

Ld =
∑

i

α � s
drug
i − ŝ

drug
i �2

+ (1− α) � DrugSimi∗ − D̂rugSimi∗ �2

+ �

(

∑

l

�Wl �
2 + � Vl �

2

)
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The loss between the predicted value and the target value is as shown in Eq.  (11), 
where rij represents the target value, r̂ij is the predicted value derived from the HAMN 
model. In addition, R+ represents the positive sample set in which from known drug–
disease associations. R− represents the negative sample set, which can be obtained using 
negative sampling techniques [26].

Hence, the final loss function of the HAMN model is shown in Eq. (12), where

As we can see from the above analysis, the model we propose has the following advan-
tages. First, at the “Neighborhood contribution representation” section, the introduction 
of attention weight mechanism enables the model to impose higher weight on similar 
drugs in neighbors, ensuring it makes a greater contribution in the decision-making 
stage. Finally, the linear function is used to integrate the latent factor and the neighbor-
hood representation, so that the model has a holistic view of the drugs–diseases interac-
tions to infer the predicted value.

Results
This section systematically evaluates the performance of the HAMN model on two real 
data sets and the experimental comparisons with the most advanced algorithms cur-
rently relevant. First, the two real data sets used in the experiment will be introduced in 
detail in “Data set” section. Next, the evaluation criteria and calculation methods used 
in the experiment will be introduced in “Evaluation metrics” section. Then in “Param-
eter settings” section, we discuss the details and specific setting values of all hyperpa-
rameters in the HAMN model, as well as the experimental analysis and the discussion 
of two important parameters. At the same time, in order to verify the effectiveness and 
superiority of the HAMN model, the HAMN model is experimentally compared with 
several currently relevant most advanced algorithms in “Method comparison” section, 
and a detailed ablation study is also given in “Method comparison” section. To further 
verify the practicability of the HAMN model, its performance in new drug scenarios will 
be evaluated in “The new drug scenario” section.

Data set

This experiment uses two mainstream data sets, Gottlieb dateset and Cdataset [20]. 
Gottlieb dateset contains 593 drugs, 313 diseases and 1933 proven drug–disease rela-
tionships. Cdataset contains 663 drugs, 409 diseases and 2,532 proven drug–disease 

(10)

Lp =
∑

j

β � sdiseasej − ŝdiseasej �2

+ (1− β) � DiseaseSimj∗ − D̂iseaseSimj∗ �2

+ δ

(

∑

d

�Wd �2 + � Vd �2

)

(11)
Lr =

∑

(i,j)∈R+∪R−

rij log r̂ij +
(

1− rij
)

log
(

1− r̂ij
)

(12)L = Lr + ϕLd + ψLp
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relationships. See Tables  1 and 2 for details. The drugs and diseases contained in the 
above data sets were registered in DrugBank [27] and Online Mendelian Inheritance in 
Man [28] respectively.

Drug similarities are calculated on the basis of SMILES [29] using the Chemical Devel-
opment Kit [30]. Pairwise drug resemblance and chemical structures are referred to as 
their 2D chemical patterns Tanimoto score. MimMiner [31], which estimates the degree 
of pairwise disease resemblance through text mining their medical description data in 
the OMIM database, obtains the similarities among illnesses. In addition, both drug–
drug similarity and disease–disease similarity take into account the prior relationship 
between drugs and disease.

Evaluation metrics

This experiment uses a ten-fold cross-validation technique. And the unverified drug–
disease relationships in the data set were taken as negative samples and placed in the 
test set, and then the training set is used to learn the relevant parameters of the model. 
The performance of the trained model on the test set is evaluated, thereby achieving a 
10-fold cross-validation and final performance evaluation.

In order to comprehensively evaluate the performance of the HAMN model, we use 
AUC (Area Under Curve Area), AUPR (Area Under Precision-Recall Curve) and HR 
(Hit Ratio) as the evaluation indicators. AUC is currently a mainstream evaluation indi-
cator, but for the category imbalance problem, the AUC indicator cannot capture all the 
information of the model, and the true performance of the model can be reflected in a 
more comprehensive way by adding the AUPR indicator. At the same time, HR is the 
most popular evaluation indicator in the field of recommendation systems, which can 
well reflect the performance of the model in real demand scenarios. Combined with the 
above three evaluation indicators, the performance of the HAMN model can be more 
fairly and comprehensively displayed.

Parameter settings

The two important parameters of the HAMN model are the dimension of the memory 
unit cn and the balance parameter η . Since the memory cell cn vector stores the char-
acteristic information of the drug in the neighbor role, its size controls the complex-
ity and fitting ability of the neighborhood module of the HAMN model. At the same 
time, the hyperparameters η balance the weight ratio of the latent factor model and the 

Table 1  Statistics of the Gottlieb dataset

Dataset Drugs Diseases Interactions Sparsity

Gottlieb 593 313 1933 1.041× 10
−2

Table 2  Statistics of the Cdataset

Dataset Drugs Diseases Interactions Sparsity

Cdataset 663 409 2532 9.337× 10
−3
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neighborhood model in the final output. Appropriate values can improve the perfor-
mance of the model. Therefore, this section sets up two related experiments to evaluate 
the performance of the HAMN model under different dimensions of the memory cell 
vector cn and hyperparameters η .

All hyperparameters of the HAMN model are set based on their performance on the 
validation set. The validation set is created based on [22]. For the dimension of memory 
unit, the dimension of latent factor and the value of η , we use the grid search to find 
the optimal combination in the interval {16, 32, 64, 128, 256} , {16, 32, 64, 128, 256} and 
the interval {0.1, 0.3, 0.5, 0.7, 0.9} . Similarly, α and β are all grid searched in the interval 
{0.1, 0.3, 0.5, 0.7, 0.9} . Besides, � and δ are all grid searched in the interval {0.1, 0.01, 0.001} . 
Finally, the learning rate of the model varies in the interval {0.0001, 0.001, 0.05, 0.01} , and 
the appropriate learning rate enables the model to learn better parameters.

The dimension of external memory unit

The dimension of the memory unit cn is one of the important parameters of the HAMN 
model, which controls the complexity of the neighborhood module of the HAMN 
model and its learning ability. If the dimension setting is too large, the model training 
time will increase exponentially and over-fitting will easily occur. Conversely, setting 
the dimension too small will prevent the model from learning the structural informa-
tion contained in some strong drug–disease associations, which will affect the perfor-
mance of the neighborhood module. Therefore, this experiment is set up to observe the 
effect of different memory cell vector dimensions on the performance of the HAMN 
model. In addition, the search interval of the dimension of the memory unit is set to 
{16, 32, 64, 128, 256} , and the remaining hyperparameters are set to the default values. 
The experimental data set uses the Gottlieb data set, the evaluation index uses the AUC 
value.

Figure 2a shows the impact of different memory unit dimensions on the performance 
of the HAMN model. The abscissa of the graph represents the dimensions of the mem-
ory unit and the ordinate is the AUC value. The experimental results show that the 
performance of the model improves steadily with the increase of the dimension of the 
memory unit. When the dimension is 64, the performance of the model reaches its peak. 
However, followed by a degradation potentially due to overfitting and the model’s AUC 
value begins to decrease.

By analyzing the above experimental results, it can be concluded that the appropriate 
memory unit dimension can enhance the fitting ability of the HAMN model neighbor-
hood module, and learn the structural information of strong drug–disease correlation, 
thereby further improving the overall performance of the HAMN model.

The weight value of η

The hyperparameter η controls the weight ratio of the latent factor module and the 
neighborhood module in the final output. Appropriate values are crucial to the per-
formance of the HAMN model. Therefore, the following experiments are set up to 
observe the effect of different values on the performance of the HAMN model. In addi-
tion, the search interval of η values is set to {0.1, 0.3, 0.5, 0.7, 0.9} , and the remaining 
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hyperparameters are set to the default values. The experimental data set and evaluation 
indicators are consistent with “The dimension of external memory unit” section.

The experimental results in Fig. 2b show that as the value of the hyperparameter η 
increases continuously, the performance of the HAMN model behaves a stable linear 
improvement. The above experimental results show that the importance of the hid-
den feature module is higher than that of the neighborhood module, and it should be 
given higher weight. However, the neighborhood model can accurately judge part of 
the test set samples and the hidden feature module cannot accurately predict the part 
of the samples. Hence, the neighborhood model should be given partial weights so 
that the final predicted value takes into account the contribution of the neighborhood 
module. Therefore, when the value is set to 0.7, the prediction effect and generaliza-
tion performance of the HAMN model are improved to a certain extent.

Method comparison

We compare the HAMN model with several current mainstream algorithms, includ-
ing the latent factor based methods and the neighborhood based methods.

* ANMF [22]: The ANMF model is a neural matrix decomposition model, which is a 
HAMN model without neighborhood information essentially.

Fig. 2  a The effect of the dimensions of the external memory unit vector on the HAMN model. b The effect 
of hyperparameters η on HAMN model
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* BNNR [21]: The BNNR model is one of the latest research achievements in the field 
of computational drug relocation, and its essence is a model based on hidden features. 
In order to balance the calculation error between the similarity between drugs and the 
similarity between diseases, it incorporates the regularization of nuclear specifications 
into the matrix decomposition model, which can effectively solve the problem of overfit-
ting and improve the prediction accuracy of the model.

* DRRS [20]: The DRRS model is a mainstream latent factor model, which uses drug–
disease relationships matrix, drug similarity matrix and disease similarity matrix to gen-
erate a hybrid matrix, and then uses the SVT algorithm to matrix decompose to generate 
predicted values.

* HGBI [16]: HGBI is a classic neighborhood based method. HGBI is introduced based 
on the guilt-by-association principle, as an intuitive interpretation of information flow 
on the heterogeneous graph.

The parameters of the above comparison methods are provided by their correspond-
ing documents.

Tables 3 and 4 is the experimental results of the above model on the two published 
data sets. No matter indicators we use, AUC, AUPR or HR metric, the HAMN model we 
propose outperforms other comparison methods. In terms of AUC value, the HAMN 
model achieved the highest value of 0.946 on the Gottlieb dataset, which was higher 
than the 0.938 in ANMF model, 0.932 in BNNR, 0.93 in the DRRS model and 0.829 in 
the HGBI model. The HAMN model also gets the highest value of 0.958 on the Cdataset.

In terms of AUPR value, the HAMN model achieved the highest value of 0.385 on the 
Gottlieb dataset, which was higher than 0.347 in the ANMF model, 0.315 in the BNNR 
model, 0.292 in the DRRS model and 0.16 in the HGBI model. The HAMN model also 
gets the highest value of 0.426 on the Cdataset.

In terms of HR value, the HAMN model achieved the highest value on both Gottlieb 
dataset and Cdataset. In the HR@10 scenario, the HAMN model achieved the highest 

Table 3  Prediction results of different methods on Gottlieb dataset

Method name AUC​ AUPR HR@1 (%) HR@5 (%) HR@10 (%)

HAMN 0.946 0.385 51.5 66 76.3

ANMF 0.938 0.347 47.9 61.3 74.2

BNNR 0.932 0.315 50.2 64.7 75.9

DRRS 0.93 0.292 45.9 53.1 72.7

HGBI 0.829 0.16 33 45.4 59.3

Table 4  Prediction results of different methods on Cdataset

Method name AUC​ AUPR HR@1 (%) HR@5 (%) HR@10 (%)

HAMN 0.958 0.426 43.8 67.2 79.1

ANMF 0.952 0.394 42.1 65.1 76.3

BNNR 0.948 0.388 42.9 66.1 78.2

DRRS 0.947 0.351 32.3 59 70.1

HGBI 0.858 0.204 26.7 37.1 55.1
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value of 76.2% in the Gottlieb dataset, which was higher than 74.2% of the ANMF model, 
75.9% of the BNNR model, 72.7% of the DRRS model and 59.3% of the HGBI model. The 
HAMN model also gets the highest value of 79.1% on the Cdataset.

According to the above experimental results, the HAMN model performs better than 
the neighborhood based model HGBI and the latent factor based model BNNR, DRRS 
and ANMF, which reveals the effectiveness of combining the two CF models into a sin-
gle hybrid model. It is worth noting that the HAMN model is superior to the ANMF 
model, the latter is essentially a HAMN model without the memory unit. It reveals that 
the integration of neighborhood information improves the performance of the HAMN 
model to a certain extent.

The new drug scenario

The new drug scenario describes the situation of predicting potential target for drug 
without previously known disease associations, this is more in line with the real world 
needs. There are 171 drugs in the Gottlieb dataset associated with only one known 
disease, and 177 drugs in the Cdataset associated with only one known disease. We 
removed drugs with one known association from the data set and placed it in the test 
set. The remaining drug–disease associations were used as training sets, and the model 
was trained and tested according to the above. The experimental parameters are set 
according to the rules in “Parameter settings” section.

Tables 5 and 6 list the experimental results of the above models for new drugs on the 
Gottlieb dataset and Cdataset. No matter indicators we use, AUC, AUPR or HR met-
ric, the HAMN model we propose performs better than other comparison methods. In 
terms of AUC value, the HAMN model achieved the highest value of 0.881 on the Gott-
lieb dataset, which was higher than the 0.859 in ANMF model, 0.83 in the BNNR model, 
0.824 in the DRRS model and 0.746 in the HGBI model. The HAMN model also gets the 
highest value of 0.869 on the Cdataset.

Table 5  Prediction results of different methods for new drug on Gottlieb dataset

Method name AUC​ AUPR HR@1 (%) HR@5 (%) HR@10 (%)

HAMN 0.881 0.193 30.4 36.8 49.7

ANMF 0.859 0.161 28.1 34.5 46.2

BNNR 0.83 0.142 28.7 35.1 47.4

DRRS 0.824 0.107 28.1 30.4 39.2

HGBI 0.746 0.065 9 14 24.6

Table 6  Prediction results of different methods for new drug on Cdataset

Method name AUC​ AUPR HR@1 (%) HR@5 (%) HR@10 (%)

HAMN 0.869 0.113 26 35 39.5

ANMF 0.857 0.097 19.2 33.3 37.3

BNNR 0.837 0.091 25.4 33.9 38.4

DRRS 0.824 0.084 25.4 30.5 35

HGBI 0.732 0.022 11.3 21.5 26
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In terms of AUPR values, the HAMN model achieved the highest value of 0.193 on the 
Gottlieb dataset, which was higher than 0.161 for the ANMF model, 0.142 for the BNNR, 
0.107 for the DRRS model and 0.065 for the HGBI model. In addition, the HAMN model 
gets the highest value of 0.113 on the Cdataset.

In terms of HR value, the HAMN’s value of HR@1 is smaller than the DRRS model on 
Cdataset. The possible reason is the sparseness of the data set. However, in the case of 
HR@5, HR@10, the HAMN model has achieved the highest value. In the HR@10 sce-
nario, the HAMN model achieved the highest value of 49.1% on the Gottlieb dataset, 
which was higher than the 46.2% in ANMF model, 47.4% in the BNNR model, 39.2% in 
the DRRS model and 24.6% of the HGBI model. Moreover, HAMN model achieves the 
maximum value of 39.5% on Cdataset.

Given the inherent nature of sparse data and cold start problems, new drug scenario 
has always been a major difficulty in computing drug relocation. Moreover, the new drug 
scene is more in line with the needs of the real world, researchers are more and more 
incentivized to solve this problem. Different from the previous models that only use 
sparse historical drug–disease association, the HAMN model also introduces similar-
ity between drugs, similarity between diseases and structural information contained in 
some strong correlations, which can alleviate the cold start problem. The above experi-
mental results demonstrated that the proposed HAMN model can alleviate the cold 
start problem to some extent due to the inclusion of auxiliary information and neighbor 
information. Therefore, the HAMN model can be applied to new drug scenarios.

Discussion
As seen in the experimental results on two mainstream data sets in the real world, the 
HAMN model has outperformed the most advanced algorithms in terms of the indica-
tors AUC, AUPR and HR. For the Gottlieb data set, the AUC, AUPR, and HR values 
were 0.946, 0.385, and 76.2% respectively. The prediction performance of the model for 
Cdataset is 0.958, the AUPR value is 0.426, and the HR value is 79.1%. The validity and 
superiority of the HAMN model are verified to some extent by the fact that the above 
results are better than the comparison mainstream algorithms.

Finally comparing with the ANMF model, essentially a HAMN model without neigh-
borhood information, HAMN Model can improve the performance of the algorithm to a 
certain extent and outperformed the ANMF model in all evaluation index.

Conclusion
Computational drug repositioning, which aims to find new applications for existing 
drugs, is gaining more attention from the pharmaceutical companies due to its low attri-
tion rate, reduced cost, and shorter timelines for novel drug discovery. In this work, we 
developed a novel network architecture HAMN for drug repositioning. HAMN model 
uses a memory network to combine the neighborhood based approaches with latent 
factor based models in a nonlinear manner, and incorporates drug–disease auxiliary 
information to alleviate the cold start problem. Experimental results on two data sets 
demonstrated that the HAMN model we proposed outperformed the other state of art 
methods. In future works, we will delve into the use of multi-source data to calculate the 
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similarity between drugs and diseases and more types of latent factor models or neigh-
borhood based approaches to further improve the performance of the model.
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