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Background
Drug discovery is a complex, lengthy, inefficient, and expensive process. The esti-
mated average time needed to launch a new drug is around 10–15 years at an average 
cost of about $1.8 billion [1]. To expedite the drug development process, it is critical 
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to screen as many potential drug candidates as possible in the prophase. Over 80% of 
FDA-approved drugs are small-molecule chemicals that act on single or multiple gene 
(or protein) targets, ultimately achieving curative effects [2, 3]. Obviously, elucidation 
of interactive relation between chemicals and genes, named chemical-gene interactions 
(CGIs), is of key relevance not only for discovering new drug leads in drug development 
but also for repositioning existing drugs to novel therapeutic targets. With known CGIs, 
numerous researches provided new insights into rapidly screening candidate chemicals 
for treatments of corresponding diseases, such as HIV [4], HCV [5], lung cancer [6], and 
so forth. Unfortunately, proven CGIs are present in limited amounts. For example, the 
PubChem database contains more than 30 million chemicals, but few have confirmed 
gene targets [7]. This predicament drives the imperative need for automatic and efficient 
methods to infer chemical-gene interactions as a preliminary process rather than experi-
mentally determining every possible chemical-gene pair, which is time-consuming and 
costly. According to different kinds of data used, we roughly divide the computational 
methods for CGI prediction into three categories: biomedical literature-based, molecu-
lar structure-based, and biological network-based.

Biomedical literature‑based approaches

A wealth of knowledge about chemical-gene interactions is scattered over the published 
biomedical literature, resulting in the inefficient query of CGI information of interest. 
The challenge is to detect the chemicals and the genes with close association mentioned 
in an unstructured text and further determine which type of interaction they share. 
Biomedical literature-based methods tackle the problems with well-designed or deep-
learning features enhanced by natural language processing (NLP) techniques [8–10]. In 
recent studies, multiple deep neural network (DNN) models, including convolutional 
neural network (CNN), recurrent neural network (RNN), long short-term memory 
network (LSTM), and attention-based DNN, have been applied to learn CGI classifi-
ers [11–13]. These approaches feed the DNN models with low-dimension pre-trained 
word embeddings without complicated feature engineering. Notably, attention-based 
DNN models exhibit competitive performance compared with other models and have 
the inherent ability to extract salient features for CGI identification as needed. Besides, 
some advanced researches extend the language models with syntax and semantic infor-
mation, such as part of speech (POS), syntactic structure, dependency tree, and knowl-
edge graph for a better understanding of the context [8, 14, 15]. However, such methods 
based on biomedical articles limit in predicting unpublished and unknown CGIs.

Molecular structure‑based approaches

Among these methods, molecular docking, which explores the predominant binding 
models of two interacting molecules using known 3D-structures, were initially studied 
[16, 17]. It uses various scoring functions to predict the binding affinity of molecules. 
The limitations lie in that it critically dependents on the available high-quality 3D-struc-
ture data and generally takes excessive computing resources. The follow-up researches 
focus on representing chemicals and genes by fingerprints as inputs of the machine-
learning models [7, 18, 19], such as logistic regression, k-nearest neighbor (KNN), sup-
port vector machine (SVM), etc. Fingerprint is the most commonly used descriptor of 
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the substructure of the molecule. However, the fingerprint is defined as a binary vector 
whose index value represents whether the substructure of a molecule exists or not, mak-
ing it quite sparse and not sufficiently informative for CGI prediction. Recent researches 
have paid more attention to recruiting the end-to-end models on simplified molecular-
input line-entry system (SMLES) string for chemicals and structural property sequence 
(SPS) for genes to learn super representations [2, 20–22]. The results achieved demon-
strate that the models trained with super representations are more robust than those 
trained with traditional descriptors.

Biological network‑based approaches

Compared with molecular structure-based approaches, biological network-based 
approaches combine the chemical space and the gene space into a consistent space by 
a constructed heterogeneous network/graph. Chemicals and genes are treated as nodes 
of the network. The links between two nodes denote their interactive relations, includ-
ing intra-domain relations between two nodes of the same type, e.g. chemical-chemi-
cal interactions, and cross-domain relations between two nodes belonging to different 
types, e.g. chemical-gene interactions [23]. Multiple large-scale databases have captured 
as much as possible of knowledge about chemical-gene interactions from the publicly 
accessible data, such as STITCH (Search Tool for InTeractions of Chemicals) [24], CTD 
(Comparative Toxicogenomics Database) [25]. The emergence of these aggregated data-
bases provides new opportunities for CGI prediction. Numerous studies develop a slew 
of network-based inference models that integrate diverse CGI-related information from 
the heterogeneous network and automatically learn the features of individual nodes for 
predicting missing relations [26–28]. The biological network-based approach has excel-
lent advantages in potential CGI extraction as it does not rely on specific biological 
properties description or 3D-structure data of molecules.

Research on identifying chemical-gene interaction is still in its infancy, and there is 
much room for improvement in its performance. In this manuscript, we present the 
CGINet model, using a framework of encoder-decoder, to formulate the CGI identifica-
tion problem as a task of multi-relational link prediction between chemicals and genes in 
a heterogeneous network/graph containing three types of nodes: chemicals, genes, and 
pathways. CGINet employs the graph convolutional network (GCN) as an auto-encoder 
on aggregating, transforming, and propagating neighborhood information over the 
graph. We investigate two different perspectives on learning node embeddings. One is 
to view the graph as a whole, and the other is to adopt a subgraph view that initial node 
embeddings are learned with the binary association subgraphs and then transferred to 
the multi-interaction subgraph for final node embeddings learning. Lastly, the node 
embeddings are sent to the decoder, which uses a tensor decomposition model to for-
mulate chemical-gene interactions. CGINet adopts an end-to-end way that the encoder 
and the decoder are trained jointly with known CGIs in a multi-relational graph.

We study three implementations of the CGINet models with various components 
and compare them with baseline approaches. As the experimental results suggest, our 
models exhibit competitive performances in predicting chemical-gene interactions. 
The main contributions of our work are: (1) We present a graph convolutional net-
work-based model to predict the missing links between the chemicals and the genes 
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in a heterogeneous graph. Our model takes advantage of the information from latent 
links based on biological insights, outperforming the baseline models. (2) The model 
which adopts a subgraph perspective can dramatically reduce the training time and 
also improves performance. (3) Our model is capable of predicting novel chemical-gene 
interactions, which are not appeared in the original graph.

Results
Experimental settings

We construct a multi-relational graph containing 65 types of chemical-gene interaction. 
Every given chemical-gene pair is identified into none, one or more interaction types. As 
most graph-based approaches have done [26–28], we randomly split the CGI instances 
into training, validation, and test sets for each interaction type, having 8:1:1 ratio. The 
CGINet model is optimized with an Adam optimizer [29], and the parameters used in 
our models are summarized in Table  1. We individually measure the performance of 
each interaction type using area under the receiver-operating characteristic (AUROC), 
area under the precision-recall curve (AUPRC), and average precision for the top-k 
identifications (AP@k). To avoid the overfitting issue, we perform cross-validation and 
initialize the trainable parameters with multiple random seeds. The experimental results 
are given as average performance. We implement the CGINet model with Python lan-
guage using the Tensorflow package [30].

We study three model implementations CGINet-1/2/3 with various components and 
compare them with baseline approaches (DeepWalk [31], Node2Vec [32], SVD [33], 
Laplacian [34], GCN [35]). Brief descriptions about these approaches are given as follow:

Baseline approaches

(1) Random walk-based embeddings. The DeepWalk model learns node embeddings by 
randomly capturing neighborhood information on the basis of the depth-first search 
method, while the Node2Vec model combines the depth-first search and the breadth-
first search methods to aggregate proximal nodes. (2) Matrix factorization-based 
embeddings. The SVD and the Laplacian models both factorizes the adjacency matrix 
of the graph to obtain the node embeddings. We use these learned node embeddings as 
input to train a logistic regression classifier for each interaction type. (3) Graph convolu-
tional network-based methods. We employ a 2-layer GCN on learning node embedding 
with the CG-graph or the total graph, respectively named as GCN-CG and GCN-Total.

Table 1  The parameter used in our model

Parameter Description Value

epoch The number of training epochs 10

batch_size The number of samples per training step 128

d1, d2 The embedding sizes in the total graph perspective 32, 16

d1, d2, d̃1, d̃2 The embedding sizes in the subgraph perspective 128, 64, 32, 16

dropout The dropout rate 0.1

lr The learning rate of the Adam optimizer 0.001

m The margin value of the hinge loss function 0.1
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CGINet‑1/2/3/ approaches

CGINet-1, CGINet-2, and CGINet-3 all adopt a subgraph view of learning final node 
embeddings by two steps. Besides, CGINet-2 and CGINet-3 take account of encoding 
information across latent links. The latent rate µ in the CGINet-2 model is a trainable 
parameter ( µ ∈ [0, 1] ), while it is fixed to the value of 1 in CGINet-3 ( µ = 1).

Performance comparison of different thresholds

A threshold coefficient � is designed in our model as a gatekeeper to control the require-
ment of a definite latent link. We investigate the change of performance of our model 
with different thresholds. As shown in Fig. 1, Larger threshold leads to less latent links. 
The overall performance of CGINet-2 and CGINet-3 increases with the growth thresh-
old. To be specific, CGINet-2 with � = 0.4 and CGINet-3 with � = 0.5 , show respectively 
better performance. These suggest that stricter threshold value makes the latent links 
more credible for updating the topological structure of the graph. We proceed by mak-
ing a performance comparison between the CGINet models with various components 
and baseline models.

Comparison with baseline models

Table 2 gives the performance comparison of our models with baseline methods. Matrix 
factorization-based approaches and random walk-based approaches both learn node 
embeddings and train relation classifiers in two individual stages. The latter methods 
(SVD, Laplacian) show better performance than the former methods (DeepWalk, Node-
2vec) on processing such a heterogeneous multi-relational graph. Random walk-based 
approaches excessively dependent on the specific structure of the graph. In contrast, 
the CGINet models train the encoder and the decoder jointly. Most of our models out-
perform the baseline models, especially the CGINet-2 model achieves 5.7% of relative 
improvements in AUPRC compared with the best results of baselines (Laplacian).

Fig. 1  Performance comparison of different thresholds. The value of the threshold � ranges from 0.1 to 0.5 
with step 0.1, as the threshold larger than 0.5 results in getting none of latent links for some interaction types, 
which we suggest that it is unfair
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Compared to GCN-CG, GCN-Total shows manifest performance degradation. 
Especially it drops to 57.1% in AP@20. We hypothesize that the reason behind this is 
due to the limitation of the GCN-Total model in focusing on capturing interactions 
of interest in an integrated multi-relational graph that contains non-target associa-
tions (e.g. chemical-pathway associations, gene-pathway associations). Based on this 
assumption, we investigate a subgraph view of learning target node representations 
by two steps in the CGINet-1 model. It is inspiring to see that CGINet-1 outper-
forms GCN-Total by 7.8% (AUROC), 10.4% (AUPRC), and 19.9% (AP@20), indicat-
ing that more focused learning of node embedding facilitates better use of the graph 
data. Furthermore, compared with GCN-CG, CGINet-1 leads to about 4% of relative 
improvements in AUPRC. It verifies that initial node embeddings pre-trained with 
the binary association subgraph provide practical knowledge for final node embed-
ding learning.

A further comparison among our models (CGINet-1, CGINet-2, and CGINet-3) 
reveals that the models which aggregate information from the new neighbor nodes 
across latent links perform better than the models only capture labeled neighborhood 
information. To be specific, CGINet-2 and CGINet-3 lead to about 2% increase in 
AUPRC compared with CGINet-1. It is consistent with our findings in “Data observa-
tion” section that updating the topological properties of nodes with latent links can 
significantly provide informative features for learning more effective node embed-
dings. Besides, CGINet-2 exhibits optimal performance in AUROC (92.7%) but is 
inferior to CGINet-3 by down to 76.5% in AP@20. In view of the overall situation, 
the latent rate setting enhances the classification power of the model but along with 
the poor ranking ability. Consequently, the CGINet-3 model, which considers the 
equal contribution of latent links for each interaction type, has better higher overall 
performance.

The above analysis has illustrated that our models which adopt the subgraph view 
can significantly improve performance. We also calculate the average training time 
of each epoch for the GCN-based models, as shown in the last column of Table  2. 
Compared with GCN-Total, our models can reduce at least 65% of training time while 
achieving much better performance.

Table 2  Performance comparison of our models with baseline approaches

The values of each metric are average performance in terms of different random seeds. The results are average performance 
values for all interaction types. TIME denotes the average training time of each epoch and it is measured in hours. The best 
result of each performance index is boldfaced

Model Component AUROC AUPRC AP@20 TIME

DeepWalk CG-graph 0.830 0.811 0.733 –

Node2Vec CG-graph 0.819 0.800 0.735 –

SVD CG-graph 0.833 0.823 0.772 –

Laplacian CG-graph 0.839 0.841 0.765 –

GCN-CG CG-graph 0.855 0.830 0.742 2.2
GCN-total Total graph 0.823 0.768 0.571 8.5

CGINet-1 Two subgraphs 0.901 0.872 0.770 2.4

CGINet-2 Two subgraphs, � = 0.4 , µ ∈ [0, 1] 0.927 0.898 0.765 2.9

CGINet-3 Two subgraphs, � = 0.5 , µ = 1 0.914 0.893 0.804 2.8
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Comparison on interaction type‑wise performance

As shown in Fig. 2, compared to CGINet-1, CGINet-3 achieves improved performances 
on over half interaction types (34 of 65 types; right side of Fig. 2) but gets degraded per-
formances on the other types (left side of Fig. 2). Through detailed investigation on the 
performance per interaction type, we find that encoding updated neighborhood infor-
mation across latent links prefers to play a positive role in predicting some specific 
interaction types without considering the degree of action (e.g. cleavage, sumoylation, 
metabolic processing, and glucuronidation), but participates negatively in identifying 
some other types (e.g. secretion, transport, and reaction). More interestingly, metabolic 
processing is the parent interaction type of cleavage, sumoylation, and glucuronidation. 
It inspires us to optimize our models by paying more attention to the deep-seated mech-
anism of the biological reaction in later research.

We visualize the top 15 best performance interaction types in the CGINet-3 model, 
as shown in Table  3. It is also worth noting that even though some interaction types 
have extremely few known edges for training, the model can still be adept at predicting 
them, e.g. decreases^acetylation (147 edges), affects^chemical synthesis (181 edges) and 
decreases^cleavage (188 edges). We believe that developing a global decoder associated 
with all interaction types enables our model to share information across different types 
of interactions.

Discussion
For the random walk-based approaches, the chemical space and the gene space are 
combined into a consistent space. The node embeddings are learned in a homoge-
neous graph. In contrast, the essence of our model is to analyze the dependency 
between different semantic spaces in a heterogeneous graph. It allows us to integrate 
more diverse biomedical data into our model, such as the disease and the phenotype 

Fig. 2  Comparison of CGINet-1 and CGINet-3 on interaction type-wise performance in AUPRC. The 
interaction type identifiers are sorted by the difference between the performances of CGINet-3 and CGINet-1 
in AUPRC
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information. We can not only explore the relation between chemicals and genes but 
also discover more internal connections in the molecular and patient population data.

It also worth noting that our model is capable of predicting novel chemical-gene 
interactions which are not appeared in the original graph. With Eqs.  (4) and (5), we 
can calculate the probability P ij

r  of unknown chemical-gene pairs (ci, gj) under each 
interaction type r . Higher probability indicates that chemical ci inclines to interact 
with the gene gj . We can turn to the online public databases to see whether or not the 
corresponding literature evidence can be retrieved. Table 4 provides some novel pre-
dictions with literature evidence.

Conclusions
In this paper, we present CGINet, a graph convolutional network-based method for 
predicting compound-gene interactions in an integrated multi-relational graph. CGI-
Net adopts a subgraph view that the initial node embeddings are learned with the 
binary association subgraphs and then transferred to the multi-interaction subgraph 
for more focused learning of higher-level target node representations. The experi-
mental results have shown that the CGINet models exhibit competitive performance 
compared with the baseline models. Moreover, learning node embeddings with latent 
links can lead to improved performance.

Table 3  Top 15 best performance interaction types

Parent type Interaction type AUPRC Edges

Metabolic processing decreases^sumoylation 0.997 392

Metabolic processing decreases^cleavage 0.993 188

– increases^localization 0.991 918

Transport decreases^uptake 0.989 266

Metabolic processing increases^sumoylation 0.989 933

Metabolic processing increases^cleavage 0.988 3872

Metabolic processing affects^chemical synthesis 0.981 181

– decreases^localization 0.980 224

Metabolic processing decreases^acetylation 0.969 147

Metabolic processing increases^degradation 0.966 1511

– decreases^response to substance 0.960 5891

Metabolic processing increases^phosphorylation 0.956 12,644

Metabolic processing increases^chemical synthesis 0.955 6269

Metabolic processing affects^phosphorylation 0.954 644

Metabolic processing increases^ubiquitination 0.948 241

Table 4  Novel chemical-gene interactions predicted by CGINet

Chemical Gene Prediction References

Trantinterol CYP2C9 Decrease activity Jiang et al. [36]

Mepazine KCNH2 Decrease activity Slavov et al. [37]

Cuprizone ADA Increase expression Abe et al. [38]

Tetrachlorodian TFAP2A Increase expression Liang et al. [39]
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CGINet is a transductive learning method that is applied to a static graph. To be spe-
cific, we train the graph neural network with all known nodes and part of edges (training 
edges) in the graph, producing node embedding for each node. The graph neural net-
work learns the node embedding from neighborhood information through the adjacency 
matrix (or Laplacian matrix). That is to say, adding new nodes to the graph will change 
the adjacency matrix (or Laplacian matrix). The model should be retrained. This inher-
ent property makes the graph neural network poor in dealing with the dynamic graph. 
In future work, we are interested in enhancing the capacity of our model for dealing with 
the dynamic graph. Moreover, we will gather more diverse biomedical information (e.g. 
compound-disease associations, gene-disease associations, and pathway-disease associ-
ations) and pay more attention to constructing a larger-scale bio-network for thoroughly 
analyzing the mechanism of action about the biological reactions. We aim to build a 
robust model for figuring out the long dependency between different molecules with 
better interpretability.

Methods
Integrated multi‑relational graph

We construct a heterogeneous graph containing three types of nodes: chemicals, genes, 
and pathways, where pathway can shed light on the mechanism of action underlying 
CGI. A total of five individual chemicals/genes/pathways related graphs, including four 
binary association subgraphs [chemical-chemical graph (CC-graph), gene–gene graph 
(GG-graph), chemical-pathway graph (CP-graph), and gene-pathway graph (GP-graph)] 
and one multi-interaction subgraph [chemical-gene graph (CG-graph)], are collected 
from multiple curated databases and used to construct an integrated multi-relational 
graph.

Binary association subgraphs

We extract the CC-graph from the STITCH database, which contains 17,705,818 chem-
ical-chemical associations across 389,393 chemicals. For the GG-graph, we grab 715,612 
gene–gene associations between 19,081 genes complied by Decagon [40]. We obtain the 
CP-graph and GP-graph from the Comparative Toxicogenomics Database. There are 
1,285,158 chemical-pathway associations and 135,809 gene-pathway associations con-
sisted of 10,034 chemicals, 11,588 genes, and 2,352 pathways.

Multi‑interaction subgraph

A link in the multi-interaction graph represents the association between two nodes as 
well as their interaction type. We construct the CG-graph by 13,488 chemicals, 50,876 
genes, and 1,935,152 chemical-gene interactions pulled from the Comparative Toxicog-
enomics Database. Each CGI has a degree (increases, decreases, or affects) and type (e.g. 
activity, expression, and reaction), e.g. “Chemical X decreases the activity of Gene Y”, 
denoted as a triple (chemical X, decreases^activity, gene Y).

Herein, we consider only 65 types of interactions between chemicals and genes that 
each appears in at least 180 CGIs. Besides, the CC-graph and the GG-graph are both 
trimmed by deleting nodes not involved in the CP-graph, GP-graph, and CG-graph. The 
final integrated graph has 14,269 chemicals, 51,069 genes, and 2,363 pathways. These 
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nodes are connected by a total of 4,653,387 associations/interactions. An example of the 
integrated multi-relational graph and the detailed statistical data of the final graph are 
shown in Fig. 3 and Table 5, respectively.

Data observation

The clustering result achieved in Parsons et al. [41] suggests that the chemicals incline 
to cluster with the genes related to each other. More specifically, if chemical c1 inter-
acts with gene g1 , and gene g1 genetically associates with gene g2 , then we can reason-
ably assume that chemical c1 and gene g2 chemically genetically interact. In other words, 
there is a latent link connecting chemical c1 and gene g2 . Based on this assumption, we 
carry on an observation about two types of topological substructures, S-G and S-G-P. 
Figure 4 gives examples of these two substructures.

Firstly, the substructures matched with the S-G and the S-G-P are extracted separately 
from the entire multi-relational graph. Secondly, we respectively count the number of 
CGIs that existed in the S-G or the S-G-P with de-duplication. After that, we investigate 
the frequency distribution of interaction types and the proportion of CGIs involved in 
the S-G or the S-G-P for each interaction type. We find that: (1) averagely, > 62% of indi-
vidual CGIs are involved in the S-G, and about 50% of individual CGIs are involved in the 

Fig. 3  An example of the integrated multi-relational graph. The links shown in red indicate that 
Dichlorodiphenyl Dichloroethylene (node c1 ) results in decreased activity of CYP19A1 (node g1 ), SRD5A2 
(node g2 ), and increased secretion of ADIPOQ (node g3 ). Chemical–chemical associations, gene–gene 
associations, chemical-pathway associations, and gene-pathway associations involved in this case are marked 
as highlighted blue links

Table 5  The detailed statistical data of the final integrated multi-relational graph

Subgraph Association/interaction Edges

CC-graph Chemicals associate with target chemicals 720,155

GG-graph Genes associate with target genes 713,469

CP-graph Chemicals associate with target pathways 1,285,158

GP-graph Genes associate with target pathways 135,809

CG-graph Chemicals interact with target genes 1,798,796
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S-G-P, suggesting that it is significant to capture unknown but potential links to update 
the topological properties of chemicals and genes for learning much more informative 
node embeddings. (2) The frequency of CGIs involved in the S-G or the S-G-P both 
decrease with the reduction of the total number of CGIs for each interaction type group 
(Fig. 5). The reason probably lies in the extreme imbalance of data, where 20% of interac-
tion types capture about 93% of CGIs (e.g. increases^expression, decreases^expression, 
and affects^cotreatment). Therefore, we make a specific investigation on whether or not 
different contributions of latent links for each interaction type should be considered in 
“Results” section. These findings have remarkable inspirations for the development of 
the model in the following section.

Problem formulation

The CGI identification problem is formulated as a task of link prediction in the inte-
grated multi-relational graph including four binary association subgraphs and one 
multi-interaction subgraph. We denote the associated relation set as 
−

R= {r
cc

, rgg , rcp, rgp} , and the interactive relation set as 
∼

R= {r
cg
i }i∈[Ncg

]
 , where Ncg is 

Fig. 4  The examples of the S-G and the S-G-P. a S-G. Node c1 , g1 , and g2 are linked in pairs. b S-G-P. Based 
on the structure of the S-G, chemical and gene nodes also share node p1 in the S-G-P. The S-G indicates the 
potential interaction between chemical c1 and gene g2 if chemical c1 interacts with gene g1 which associates 
with gene g2 . Besides that, the S-G-P also considers the mechanism of action (pathway p1 ) underlying the 
chemical-gene interaction and gene–gene association
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Fig. 5  The frequency distribution of interaction types and the proportion of CGIs involved in the S-G or S-GP 
for each interaction type group. The interaction type identifiers are sorted by the number of CGIs for each 
interaction type. 65 interaction types are stratified into five groups: the interaction type identifier from 01 to 
13, 14 to 26, 27 to 39, 40 to 52, and 53 to 65



Page 12 of 17Wang et al. BMC Bioinformatics          (2020) 21:544 

the number of interaction types. Given a set of chemicals Vc = {vi}i∈[Nc] , a set of genes 
Vg = {vi}i∈[Ng ] , and a set of pathways Vp = {vi}i∈[Np] , where Nc/g/p is the number of 
chemicals/genes/pathways, the entire graph can be denoted as G = (V ,E) , where 

V = {vi|vi ∈ Vc ∪ Vg ∪ Vp} and E =

{

(

vi, r, vj
)

|r ∈ {
−

R ∪
∼

R}

}

 . Using the graph G , our 

goal is to calculate the probability of an edge eij =
(

vi, r, vj
)

i∈[Nc],j∈[Ng ]
 of interaction 

type r be assigned to 
∼

R , which implies that how likely chemical vi results in an interac-
tion type r of gene vj . To achieve that, we develop an end-to-end trainable model 

Fig. 6  The flowchart of the CGINet pipeline. a The framework of CGINet. The graph convolutional 
encoder takes the integrated multi-relational graph as input (the one-hot vectors for each node and the 
adjacency matrices) and returns a chemical embedding matrix and a gene embedding matrix. The tensor 
decomposition decoder uses these node embeddings to compute the probabilities of interactions between 
the chemicals and the candidate genes. b Graph convolutional encoder. We take the subgraph perspective 
as an example. Initial embeddings of chemicals c1 and genes g1 are learned with the binary association 
subgraph. For example, c1 receives information from neighbor nodes, including chemical nodes ( c2 , c3 , c4 ) and 
pathways ( p1 p2 ). The initial embeddings are then transferred to the multi-interaction subgraph for learning 
final embeddings. In the multi-interaction subgraph, the encoder aggregates information not only from the 
neighbor nodes across known edges but also from the new neighbors connected by latent links (shown in 
dotted line). For example, c1 encodes neighborhood information from g1 , g2 , g3 and g4

Fig. 7  Tensor decomposition decoder. The chemical embedding matrix and the gene embedding matrix are 
learned from the graph convolutional encoder. Tensor D is a set of the matrix Dr
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CGINet (Fig.  6a) that has two main components, a graph convolutional encoder 
(Fig. 6b) and a tensor decomposition decoder (Fig. 7).

Graph convolutional encoder

Much research has proved graph convolutional networks to be effective in node/graph 
representation learning [42, 43]. The graph convolutional network usually extracts local 
substructure features for individual nodes by iteratively aggregating, transforming, and 
propagating information from neighbor nodes. A deeper graph convolutional network 
can integrate the normalized message from all neighbors up to k-hops away. Notably, 
2-layer graph convolutional network models yield the best performance based upon 
empirical observation [44].

Herein, we propose an encoder equipped with 2-layer graph convolutional networks 
taking the graph G as input and producing topological-preserving embedding zi for each 
node. We investigate two perspectives on encoding neighborhood information with the 
graph G : total graph perspective and subgraph perspective. The former is to view the 
graph as a whole, while the latter is to adopt a subgraph view that initial node embed-
dings are learned with the binary association subgraphs and then transferred to the 
multi-interaction subgraph for final node embeddings learning.

Total graph perspective

A 2-layer graph convolutional network operates directly on the entire multi-relational 
graph G . In each layer, GCN updates the embedding for each node by simply summing 
different nearby information propagated across different types of edges. Given the k th 
hidden state hki  of node vi , where vi ∈ {Vc ∪ Vg ∪ Vp} , the ( k + 1) th hidden state hk+1

i  of 
node vi is specifically updated as follow:

where hki ∈ R
dk with dk denotes the embedding size of the k th hidden layer. r ∈

{

R ∪ R̃
}

 

denotes one of the interaction types. Wk
r  is the trainable parameter matrix of interaction 

type r . N r
i  is the neighbor set of node vi under interaction type r . 1/

√∣

∣N r
i
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∣N r
j
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∣ and 

1/
√∣

∣N r
i

∣

∣ are normalization constants. σ is a non-linear activation function like ReLU . 
The node features are initialized as one-hot vectors and input to the first layer, denoted 
as h0i = xi . We stack two graph convolutional layers such that the final node embedding 
is computed as: zi = hKi  with K = 2.

Subgraph perspective

Instead of taking the graph as a whole, we split the graph G into two subgraphs, the 
binary association subgraph G (including the CC-graph, GG-graph, CP-graph, GP-
graph) and multi-interaction subgraph G̃ (the CG-graph). We respectively use two 
2-layer graph convolutional networks for learning node embedding in these two sepa-
rate subgraphs.
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In the binary association subgraph G , chemical nodes only encode information from the 
neighbor nodes of chemicals and pathways, while gene nodes receive message from the 
neighbor nodes of genes and pathways. The hidden state hki ∈ R

dk  of each hidden layer in 
the first 2-layer graph convolutional network is updated similarly as Eq. (1). The only differ-
ence is r ∈ R . We assign the output node embedding as zi = h

K

i  with K = 2 . These embed-
dings are then transferred to the subgraph G̃ to initialize corresponding chemical and gene 
features, denoted as x̃i = zi , where vi ∈ {Vc ∪ Vg }.

As the observations in “Data observation” section suggest, we take account of extracting 
latent links to reconstruct the topological structures of nodes in the multi-interaction sub-
graph G̃ . By searching over the entire graph G with the substructure S-G-P, we screen out 
candidate latent links under each interaction type, denoted as Lr =

{

lri
}

i∈[Nr ]
 , where Nr is 

the number of candidate latent links under interaction type r . Let N̂ r
i  denotes the number 

of substructures containing latent link lri  . A candidate latent link lri  is decided to be the defi-
nite latent link if:

where � is the threshold coefficient.
We use the confirmed latent links to update the topological properties of each node vi . 

The set of new neighbors of node vi under interaction type r can be denoted as Lr
i  . With 

taking account of the information propagated across latent edges, the hidden layer of the 
second 2-layer graph convolutional network is defined as follow:

where h̃k̃i ∈ R
d̃
k̃ with d̃

k̃
 denotes the dimensionality of the k̃-th hidden layer. r ∈ R̃ 

denotes one of the interaction types. Importantly note that µr
∈ [0, 1] is a trainable 

parameter, defined as latent rate, used to measure the contribution of latent links for 
interaction type r . The final node embedding is assigned as: zi = h̃K̃i  , where K̃ = 2 and 
vi ∈ {Vc ∪ Vg }.

Tensor decomposition decoder

Given a chemical vi and a gene vj , the decoder returns the probability P ij
r  of an edge 

eij =
(

vi, r, vj
)

 , which represents how likely chemical vi results in an interaction type r of 
gene vj . The decoder takes advantage of a tensor decomposition model, called DEDICOM 
[45], to formulate chemical-gene interactions, as shown in Fig. 7.

Based on the node embeddings zi and zj learned by the encoder, the decoder computes a 
score G

(

zi, r, zj
)

 for the edge eij , and then act a sigmoid function σ on it as follow:
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where Dr is a local diagonal matrix giving weights to each dimension of the node embed-
ding under interaction type r . R is a global parameter matrix associated with all inter-
action types, which enables the model to share information across different interaction 
types. Note that the matrix Dr and R are both trainable parameters of shape dk × dk . 
These two matrices are initialized using the same method introduced in Glorot et  al. 
[46].

Model training

We perform negative sampling during the training procedure, which can reduce the 
training time greatly. We generate a negative sample (vi, r, vn) by replacing the node vj 
of the known edge 

(

vi, r, vj
)

 with node vn , which is chosen randomly according to a sam-
pling distribution in Mikolov et al. [47]. Specifically, the distribution probability of node 
vn is calculated based on its degree d(vn) as follow:

Given a set of chemical-gene pairs and the labels, we encourage the model to enlarge 
the margin m by minimizing the hinge loss function [48]:

where � is a set of neural network parameters. P in
r  denotes the probability of the nega-

tive sample (vi, r, vn) associated with the known edge 
(

vi, r, vj
)

 . With the hinge loss, any 
case where the difference is larger than the margin m will not be penalty.
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