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Abstract 

Background:  A number of predictive models for aquatic toxicity are available, how-
ever, the accuracy and extent of easy to use of these in silico tools in risk assessment 
still need further studied. This study evaluated the performance of seven in silico tools 
to daphnia and fish: ECOSAR, T.E.S.T., Danish QSAR Database, VEGA, KATE, Read Across 
and Trent Analysis. 37 Priority Controlled Chemicals in China (PCCs) and 92 New Chemi-
cals (NCs) were used as validation dataset.

Results:  In the quantitative evaluation to PCCs with the criteria of 10-fold difference 
between experimental value and estimated value, the accuracies of VEGA is the high-
est among all of the models, both in prediction of daphnia and fish acute toxicity, with 
accuracies of 100% and 90% after considering AD, respectively. The performance of 
KATE, ECOSAR and T.E.S.T. is similar, with accuracies are slightly lower than VEGA. The 
accuracy of Danish Q.D. is the lowest among the above tools with which QSAR is the 
main mechanism. The performance of Read Across and Trent Analysis is lowest among 
all of the tested in silico tools. The predictive ability of models to NCs was lower than 
that of PCCs possibly because never appeared in training set of the models, and ECO-
SAR perform best than other in silico tools.

Conclusion:  QSAR based in silico tools had the greater prediction accuracy than 
category approach (Read Across and Trent Analysis) in predicting the acute toxicity of 
daphnia and fish. Category approach (Read Across and Trent Analysis) requires expert 
knowledge to be utilized effectively. ECOSAR performs well in both PCCs and NCs, and 
the application shoud be promoted in both risk assessment and priority activities. We 
suggest that distribution of multiple data and water solubility should be considered 
when developing in silico models. Both more intelligent in silico tools and testing are 
necessary to identify hazards of Chemicals.
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Background
Global regulations have called for systematic testing of potential environmental contam-
inants to protect human health and the environment from exposure to anthropogenic 
chemicals, such as industrial chemicals and pharmaceuticals. Considering the ever-
increasing number of chemicals, more than 350,000 chemicals and mixtures of chemi-
cals been registered for production and use currently [1], are presenting challenges to 
traditional ecotoxicity testing strategies for in  vivo experiments, which are expensive, 
time-consuming, and reliant on large number of animal subjects. Therefore, it is virtually 
impossible to test acute toxicity for all the chemicals used globally.

To mitigate the challenges associated with in vitro and in vivo toxicity testing, global 
regulations, including European Chemical Agency (ECHA) REACH initiative, U.S. 
Toxic Substances Control Act and Canadian Environmental Protection Act, encourage 
increased reliance on in silico approaches [2–5]. China is also attempting to explore the 
possibility using in silico approaches when chemicals risk assessment.

The cost-benefit advantages and regulatory support of in silico methods have led to 
the development of a number of tools for ecotoxicity assessments [6]. The major in silico 
methods including (Quantitative) Structure–Activity Relationships (QSAR), and chemi-
cal category methods.

QSAR method uses a mathematical model that was derived from a training set of 
example chemicals. The training set includes the chemicals that were found to be 
positive and negative in a given toxicological study (e.g., the bacterial reverse muta-
tion assay) or to induce a continuous response (e.g., Lowest Observed Adverse Effect 
Level in teratogenicity) that the model will predict. As part of the process to generate 
the model, physicochemical property based descriptors (e.g., molecular weight, octanol 
water partition coefficient (Kow)), electronic and topological descriptors (e.g., quan-
tum mechanics calculations), or chemical structure-based descriptors (e.g., the pres-
ence or absence of different functional groups) are generated and used to describe the 
training set compounds. The model encodes the relationship between these descriptors 
and the (toxicological) response. After the model is built and validated, it can be used 
to make a prediction. The (physical) chemical descriptors incorporated into the model 
are then generated for the test compound and are used by the model to generate a pre-
diction. This prediction is only accepted when the test compound is sufficiently simi-
lar to the training set compounds (i.e., it is considered within the applicability domain 
of the QSAR model, often considering the significance of descriptors). This applicabil-
ity domain analysis may be performed automatically by some software to determine 
whether the training set compounds share similar chemical and/or biological properties 
with the test chemical [7].

Chemicals whose physical-chemical, toxicological and ecotoxicological properties are 
likely to be similar or follow a regular pattern as a result of structural similarity may be 
considered as a group, or ‘category’ of chemicals. The assessment of chemicals by using 
this category approach differs from the approach of assessing them on an individual 
basis, since the properties of the individual chemicals within a category are assessed on 
the basis of the evaluation of the category as a whole, rather than based on measured 
data for any one particular chemical alone. For (a) category member(s) that lacks data 
for one or more endpoints, the data gap can be filled in a number of ways, including 
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by read-across from one or more other category members. Within a chemical category, 
the members are often related by a trend in an effect for a given endpoint, and a trend 
analysis can be carried out through deriving a model based on the data for the members 
of the category [8].

In 2007, the Organization for Economic Co-operation and Development (OECD) 
guidelines on the development and validation of QSAR models were issued [9]. They 
proposed that a QSAR model for practical application should be associated with an 
unambiguous algorithm [10], a defined endpoint, an AD, appropriate goodness-of-fit 
measures, robustness as well as predictive ability, and a mechanistic interpretation, if 
possible [9, 11]. Despite these guidelines, lack of external validations and model perfor-
mances of the test sets, model overfitting, and poor AD definitions remain major con-
cerns [12–15]. A clear AD definition would ensure that the model assumptions are met 
[16, 17].

A number of studies developed in silico models for the endpoint of acute toxicity to 
daphnia and fish [18–22]. Specifically, some in silico tools were developed for ecological 
risk assessment and are widely used for support chemicals regulation purpose. These 
include: Ecological Structure Activity Relationships (ECOSAR) [23], Toxicity Estimation 
Software Tool (T.E.S.T.) [24], Kashinhou Tool for Ecotoxicity (KATE) [25], Virtual mod-
els for property Evaluation of chemicals within a Global Architecture (VEGA) [26], Dan-
ish QSAR Database (Danish Q.D.) [27], and QSAR Toolbox developed by OECD [28].

In view of the possible uses of in silico tools, regulators often use predictions from 
multiple in silico tools to arrive at a decision, such as persistence, bioaccumulation,and 
toxicity/very persistent and very bioaccumulative (PBT/vPvB) assessment and prior-
itization [29]. In framework of regulation purpose, the performance of in silico tools 
requires not only accuracy, but also ease of use, and can fulfil the different purpose, such 
as qualitative risk assessment, quantitative risk assessment, and even high throughput 
screening [30].

Based on models for specific chemical classes and different classes of substances, some 
studies have compared the performance of some QSAR models for acute toxicity. Moore 
et  al. [31] evaluated model performance of six QSAR modeling packages that predict 
acute toxicity to fish: ECOSAR, TOPKAT, a Probabilistic Neural Network, a Computa-
tional Neural Network, the QSAR components of the Assessment Tools for the Evalua-
tion of Risk (ASTER) system, and the Optimized Approach Based on Structural Indices 
Set (OASIS) system. Golbamaki et al. [32] evaluated and compared eight in silico model-
ling packages that predict daphnia acute toxicity: TOPKAT, ACD/Tox Suite, ADMET 
Predictor™, ECOSAR, TerraQSAR™, T.E.S.T. and two models implemented in VEGA. 
Cassotti et.al [33]. evaluated the accuracy, stability and reliability of two acute toxicity 
models (MICHEM and ChemProp) to daphnia.

However, some of those evaluated tools were not easy to use and were not developed 
for regulatory purposes. These evaluation study did not include recently developed mod-
els, such as QSAR Toolbox, Danish Q. D., KATE, or the latest version of prediction tools, 
such as VEGA. Finally, the performance of chemical category approach for predicting 
acute toxicity to fish and daphnia has not been evaluated.

To implement the regulatory requirements of the “Action  Plan  for  Preven-
tion  and  Control  of  Water  Pollution,” the Ministry of Ecological Environment of 
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China issued the List of Priority Controlled Chemicals (PCCs) (the first batch) at the 
end of 2017 [34]. List of PCCs (the second batch) has been compiled and is under com-
ment [35]. Most of these PCCs had been assessed shown the characteristic of PBT/vPvB, 
especially hazard to aquatic ecosystem. If a model can identify such eventually hazard-
determining chemicals, it has great regulation application prospects. In addition, in sil-
ico tools should also be able to predict the hazard of emerging chemical substances in 
order to respond to the premanufacture notification for new chemical substances.

In this study, we selected seven in silico tools, namely ECOSAR, T.E.S.T., Danish Q. 
D., VEGA, KATE, Read Across and Trent Analysis, to predict acute aquatic toxicity to 
daphnia and fish, in order to provide insight into the applicability, accuracy and ease of 
use (convenience and the level of expert knowledge required) of these in silico tools. The 
testsets used in this evaluation were PCCs which are representative the final chemicals 
in the regulatory management process and NCs which are representative of emerging 
substances.

Methods
Validation datasets

Systematic and rigorous model evaluation requires reliable experimental data. As such, 
acute aquatic toxicity experimental data (48-h LC50 for daphnia and 96-h LC50 for fish) 
of PCCs with a great reliability were obtained from resources such as ECHA’s risk assess-
ment report, Good Laboratory Practice (GLP) reports, or study with standard test meth-
ods were prioritize used. Other sources, such as ECHA, OECD eChemPortal database 
and QSAR Toolbox were also considered. If more than one data existed, a lowest reason-
able value was used. Daphnia species were consist of Daphnia magna, Daphnia pulex. 
Fish species were consist of Lepomis macrochirus, Cyprinus carpio, Pimephales prome-
las, Poecilia reticulate, Oncorhynchus mykiss, Oryzias latipes, and Brachydanio rerio 
et.al. within Actinopterygii.

A total of 92 NCs tested were used after removing the mixture and UVCBs (Chemical 
Substances of Unknown or Variable Composition, Complex Reaction Products and Bio-
logical Materials), within which, there are 42 daphnia 48-h LC50 value and 82 fish 96-h 
LC50 value. These NCs were tested at the year from 2014 to 2017 using OECD testing 
guideline 202 [36] and 203 [36] under the GLP conditions in Lab of Chemical Testing 
and Assessment, Nanjing Institute of Environment Sciences, Ministry of Environment 
Protection (MEP), China. Daphnia species were Daphnia magna, and fish species were 
zebra fish. As these NCs came from chemical companies, the testing data is used for 
registration as the requirement of Measures for Environmental Management of New 
Chemical Substances in China. For confidentiality requirements, identification informa-
tion of these NCs such as structural can not be provided. The functional groups con-
tained were used to analysis and were obtained by module of organic functional groups 
(nested) in QSAR Toolbox.

Predictive tools

The following seven in silico methods were evaluated for predicting acute aquatic toxic-
ity to daphnia and fish: ECOSAR, T.E.S.T., Danish Q. D., VEGA, KATE, Read Across in 
QSAR Toolbox, and Trent Analysis in QSAR Toolbox. All of seven in silico tools were 
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evaluated with PCCs dataset. Five tools including ECOSAR, T.E.S.T., Danish Q. D., 
VEGA and KATE were evaluated with NCs dataset.

Simplified Molecular Input Line Entry System (SIMLES) of each chemicals was used 
as input to models. A brief description of each program is provided below, and the perti-
nent details are summarized in Table 1.

ECOSAR

ECOSAR estimates acute aquatic toxicity via the Mayer–Overton relationship for chem-
icals within structurally similar classes. ECOSAR is trained on a large data set of ecotox-
icity studies from the ECOTOX database that follow the U.S. EPA Office of Chemical 
Safety and Pollution Prevention guidelines, which comprise 130 structural classes. The 
log10 KOW values for each training set chemical is predicted using the KOWWIN pro-
gram from U.S. EPA’s Estimation Programs Interface Suite (EPISuit) model. The linear 
regression models between the LC50 toxicity estimates and log10 KOW were developed 
for substances in each class. The predicted results of acute toxicity of fresh water other 
than saltwater were select to validation. Chemicals that do not meet the log10 KOW 
range are considered to lie outside the AD.

KATE

KATE estimates acute aquatic toxicity via the Mayer–Overton relationship for chemi-
cals within a total of 40 structural chemical classes [37, 38]. KATE is trained on the US 
EPA fathead minnow (Pimephales promelas) and the Japanese Ministry of Environment 
Oryzias latipes datasets [25]. The log KOW value of the test chemical, which is obtained 
from an internal experimental database or is estimated with the alternative forced choice 
method. The relationship between LC50 value and log10 Kow is obtained by linear regres-
sion. log10 Kow of predicted substance is compared to the range of log Kow values in each 
structural class of the training set, and it internally defines the ADs. The lowest predicted 
values were used to validation.

T.E.S.T

T.E.S.T. estimates acute aquatic toxicity using several QSAR methodologies: hierarchical 
clustering, single model, the Food and Drug Administration method, multilinear regres-
sion method, group contribution method, mode of action method, nearest neighbour 
method and consensus methods. In the default consensus methods (used to validation), 
the predicted toxicity is simply the average of the predicted toxicities from the above 
QSAR methodologies (taking into account the applicability domain of each method). 
T.E.S.T. is trained on the endpoint from the EPA ECOTOX database [39]. T.E.S.T has 
AD for each method and a final AD where predicitons must be made by at least 2 meth-
ods for a consensus value to be used. If only a single QSAR methodology can make a 
prediction, the predicted value is deemed unreliable and not used. So if there is a pre-
dicted value given by consensus methods, we defined this situation as in the AD.

VEGA

VEGA provides seven models to predict the fish acute toxicity: (1) SarPy/IRFMN 
(V1.0.2), QSAR classification model based on fragments built by SarPy software. (2) 
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KNN/Read-Across (V 1.0.0), Read-Across model. (3)NIC (V1.0.0), QSAR quantita-
tive modely based on a Neural Network. (4) IRFMN (V1.0.0), Quantitative model. (5) 
IRFMN/Combase (V1.0.0), Quantitative model, specific for biocides, developed by 
IRFMN for the Combase EU project. (6) EPA (V 1.0.7), QSAR model for Fathead Min-
now LC50 (96 h), based on multiple linear regression. The model extends the original 
model implemented in the T.E.S.T. software. (7) KNN/IRFMN(V1.1.0). KNN model on 
fathead minnow.

VEGA provides two models to predict the daphnia acute toxicity: (1) EPA (1.0.7), 
QSAR model, based on multiple linear regression. The model extends the original model 
implemented in the T.E.S.T. software. (2) DEMETRA (1.0.4), Hybrid Model upon two 
ANNs and a single PLS for pesticides.

Two sets of fragments have been considered and implemented in VEGA and freely 
available: Functional Groups that account for 154 chemical groups, and Atom-Cantered 
Fragments (ACF), for 115 fragments, each one corresponding to a type of atom with 
different connectivity. The software to analyse the chemical space checks for the pres-
ence of the above mentioned Functional Groups and ACF, then reports, for each of these 
chemical features, the total number of matches, the number of matches in each class, 
and its percentage. The overall reliability of the prediction is measured by combining 
statistical values, elements of case based reasoning, and possibly presence of active sub-
structures. The possible reasons of concern are underlined. All those considerations are 
weighted and summed up in an index (in 0–1) that is called Applicability Domain Index 
(ADI) [26].

Fig. 1  Recommended integrated assessment strategy with different models in VEGA when predicting the 
fish acute toxicity
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All of the seven models predicting the fish acute toxicity and two models predicting 
daphnia acute toxicity were used with an integrated method (Fig. 1), except that experi-
mental values were not used. The predicted results with good reliability were deem as 
inside the AD, else deem as outside the AD.

Danish Q. D

Danish Q. D. includes nearly all organic single constituent substances that were pre-
registered or registered under REACH (around 80,000). The database was developed by 
Technical University of Denmark. The endpoints are modelled in two software systems 
(Leadscope, and SciQSAR), and an overall battery prediction is made to reduce “noise” 
from the individual model estimates and thereby improve accuracy and broaden the AD 
[27, 40].

Leadscope is a software program for systematic sub-structural analysis of a chemical 
using predefined structural features stored in a template library, training set-dependent 
generated structural features (scaffolds) and calculated molecular descriptors. Lead-
scope has a default automatic descriptor selection procedure. This procedure selects 
the top 30% of the descriptors (structural features and molecular descriptors) accord-
ing to X2-test for a binary variable or the top and bottom 15% descriptors according to 
t-test for a continuous variable. After selection of descriptors the program performs par-
tial least squares (PLS) regression for a continuous response variable, or partial logistic 
regression for a binary response variable, to build a predictive model.

The SciQSAR software provides over 400 built-in molecular descriptors such as con-
nectivity indices, electrotopological (atom E and HE-state) indices, and other descrip-
tors. For continuous data, regression analysis is used to build the predictive model, and 
a number of different regression methods are available such as regression on principal 
components and PLS.

The Battery results were used firstly. If not given for Battery results, the lowest toxicity 
value of Leadscope and SciQSAR was selected to verification.

Trent Analysis and Read Across

OECD QSAR Toolbox finds structurally and mechanistically defined analogues and 
chemical categories, which serve as sources for Read Across, Trent Analysis and QSAR 
for filling in data gaps. QSAR Toolbox has multiple functions, such as identifying ana-
logues of a chemical, retrieving the existing experimental results of those analogues, and 
filling in data gaps through Read Across, Trent Analysis or QSAR.

The predictions of Read Across and Trent Analysis were accomplished by collecting a 
set of test data for PCCs considered to be in the same category as the target molecule. 
The category was firstly defined using categorization method of “Organic functional 
groups (nested)”. The analogues of each PCCs were identified. Then all available exper-
imental data on 48 h-LC50 value for daphnia and 96 h-LC50 value for Actinopterygii of 
identified analogues were retrieved from the selected databases (Aquatic ECETOC, 
Aquatic Janpan MoE, Aquatic OASIS, ECHA REACH, ECOTOX and Food TOX Haz-
ard EFSA). Finally the Read Across and Trend Analysis were implemented with internal 
standardized workflow. By default of Read Across, the QSAR Toolbox averages the result 
of the 5 “nearest” analogues (log10 Kow in this case) to estimate the result for the target 
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chemical. AD of each prediction was recorded as it automatic assessed by combing the 
log10 Kow range and organic functional groups similarity. log10 Kow must be in the range 
of all collected analogues, and organic functional groups must be included by that of all 
collected analogues.

Statistical analysis

Two types of method were used to quantify the performance of all the models to PCCs: 
qualitative assessment and quantitative assessment methods. Only qualitative assess-
ment was used to quantify the performance of the five models to NCs, as most of NCs 
were not harmful and only a limit test result of 96-h LC50 > 100 mg/L were given.

Qualitative effect assessment only needs classified chemicals according to toxic-
ity values (Table 2). This is related to the toxicity classes described in the The Globally 
Harmonized System of Classification and Labelling of Chemicals (GHS) [41]. These clas-
sification criteria are accepted by most of countries as regulatory classes. In qualitative 
assessment, the experimental data and predicted data were classified into four classes 
based GHS criteria of United Nations (Table 2). If the predicted value and the experi-
mental value are in the same regulation category, the prediction can be considered accu-
rate without specific values.

Quantitative assessment needs exact toxicity value to obtain the risk quotient [42]. In 
quantitative assessment, the difference between predicted and measured LC50 value was 
analysed, with difference factors of 10, 100 and 100.

A number of summary statistics were calculated to compare model performance. 
The correlation coefficient (R2), correlation coefficient of the AD (R2

AD), root mean 
square error (RMSE), and percent of accuracy between predicted and measured tox-
icity were statistic with Microsoft excel. Software of IBM SPSS Statistics (V19) was 
used to obtain distribution of difference frequency between log10 experimental LC50 
and log10 estimated LC50.

Total accuracy was calculated as:

Similar to total accuracy, predictive power measures the total number of cor-
rect category assignments. However, lack of prediction was treated as an incorrect 
assignment:

Total accuracy =

No.of correct

No.of all −No.of missing predictions
× 100%

Predictive power =
No.of correct

No.of all
× 100%

Table 2  Classification criteria of acute toxicity according to GHS

Toxicity range (mg/L) Class

LC50 ≤ 1 1 (very toxic)

1 < LC50 ≤ 10 2 (toxic)

10 < LC50 ≤ 100 3 (harmful)

LC50 > 100 4 (not harmful)
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Results
Statistical distribution of experimental values

The 37 PCCs assessed in this study represent a diverse array of commercial sub-
stances. They include olefins, nitrobenzene, perfluorinated and polyfluoro com-
pounds, halogenated hydrocarbon, halogenated benzene, organophosphate, phenols, 
aldehydes, organophosphate, phthalates, polycyclic aromatic hydrocarbons. The 
experimental LC50 values of 37 chemicals cover all regulatory categories (Fig.  2 (A) 
and (B)). 43% of chemicals are very toxic chemicals. The number of very toxic, toxic 
and hazardous chemicals are account for 92 and 86% of all the chemicals for daphnia 
and fish acute toxicity, respectively.

The NCs assessed in this study include almost all of the organic functional groups. 
They are much more complex as many of which have two or more functional groups, 
and the most complex NC have 12 functional groups. The overall toxicity of NCs are 
lower than PCCs shown in Fig. 2 (c) and (d). The number of non-toxicity NCs account 
for 57 and 65% of total NCs to Daphnia and fish, respectively.

Acute toxicity of daphnia

Experimental and predicted toxicity values to daphnia for the 37 PCCs are shown in 
Table  3, for the results of NCs can be found in section of “Availability of data and 
materials”.

Models performance across the entire data set

Model performance was evaluated on the entire 37 PCCs and 42 NCCs. The perfor-
mance metrics for all models tested in this evaluation to acute toxicity of daphnia are 
summarized in Table 4.

Prediction to 37 PCCs  In qualitative assessment based on classification into the four 
toxicity classes of the entire 37 PCCs data set, KATE has total accuracies of 84%, which is 
highest among all of the test models. However, the predictive power of KATE is decrease 
to 57% as it did not predict 12 of PCCs, which is most among all of the test models. 
ECOSAR predict all of the PCCs, both of total accuracy and the predictive power is 65%. 
Based on total accuracies, the tested tools can be ranked in the following order from 
highest- to lowest-performers: KATE > ECOSAR >T.E.S.T. > Danish Q.D. > VEGA>Read 
Across>Trend Analysis. KATE shows the excellent performance as only five PCCs were 
predicted incorrectly.

In quantitative assessment based on comparison of the LC50 value of PCCs provided by 
models, the KATE and ECOSAR shows better performance with accuracies of 80 and 
76%, respectively, when predictions fall within a factor 10 of the measured LC50. All of 
the models can achieve the accuracy of 80% when differences between measured and 
predicted toxicity within a factor 100, except for Trent Analysis was only 55%. From 
Coefficient of variance (R2) in both qualitative assessment and quantitative assessment, 
it can be further prove that KATE has the best performance.
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Prediction to 42 NCs  In qualitative assessment based on classification into the four 
toxicity classes of the entire 42 NCs dataset, total accuracy and predictive power are 
decrease dramatically compare with to PCCs. Danish Q.D and KATE have 18 and 22 
chemicals that could not be predicted, which are relative higher than other model. These 
indicate that the performance of models are poor to NCs, and predictive power to NCs 
is limited.
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Fig. 2  Distribution of acute toxicity of experimental values (mg/L). a 48-LC50 of daphnia for PCCs. b 96-h LC50 
of fish for PCCs. c 48-LC50 of daphnia for NCs. b 96-h LC50 of fish for NCs.
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Model performance within AD

Robust and relevant AD definition is essential for model performance. Model perfor-
mance within ADs is shown in Table 5.

Prediction to 37 PCCs  ECOSAR has the most chemicals inside the AD, with 27 of the 
37 PCCs. VEGA has the least chemicals inside the AD, with 10 of the 37 tested chemi-
cals, showing a rigorous AD assessment mechanism.

Table 4  Tool performance and comparison summary statistics to 48 h-LC50 of daphnia based on 
entire dataset

a   Total accuracy is the fraction of chemicals assessed by each tool for which the predicted LC50 falls within the same 
regulatorycategory as the measured LC50. b Similar to total accuracy, predictive power measures the total number of correct 
category assignments. However, lack of prediction is treated as an incorrect assignment. c Not analyzed

Chemicals Methods Measures of 
predictive 
performance

ECOSAR T.E.S.T. Danish 
Q.D.

VEGA Read 
Across

Trend 
Analysis

KATE

37 PCCs Number of missing predic-
tions

0 4 3 2 2 6 12

Qualita-
tive

Number of 
correct

24 21 20 18 16 14 21

Number of 
incorrect

13 12 14 17 19 17 4

Total accuracy 
(%)a

65 64 59 51 46 45 84

Predictive 
power (%)b

65 57 54 49 43 38 57

R2 (toxicity 
class)

0.46 0.46 0.37 0.29 0.51 0.33 0.65

Quantita-
tive

Accuracy 
within a 
factor of 10 
(%)

76 67 68 63 49 45 80

Accuracy 
within a 
factor of 100 
(%)

86 91 91 80 83 55 96

Accuracy 
within a fac-
tor of 1000 
(%)

97 97 94 94 94 81 100

R2(log10 LC50) 0.40 0.42 0.38 0.13 0.42 0.40 0.68

42 NCs Qualita-
tive

Number of 
correct

22 9 13 9 /c / 9

Number of 
incorrect

16 22 11 32 / / 11

Number of 
missing 
predictions

4 11 18 1 / / 22

Total accuracy 
(%)a

58 29 54 22 / / 45

Predictive 
power (%)b

52 21 31 21 / / 21

R2 (toxicity 
class)

0.35 0.04 0.50 0.04 / / 0.36
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In qualitative assessment, the accuracies of VEGA increased slightly from 51 to 60% after 
considering AD. T.E.S.T. kept at 64%. The accuracies of other five tools did not increase 
when inside the AD.

Table 5  Model performance to 48 h-LC50 of daphnia for chemicals within each applicability 
domains

a   Not analyzed

Chemicals Method Measures of 
predictive 
accuracy

ECOSAR T.E.S.T. Danish 
Q. D.

VEGA Read 
Across

Trend 
Analysis

KATE

37 PCCS General Number of 
inside AD

27 22 22 10 21 22 19

Number of 
outside AD 
and missing 
prediction

10 4 15 27 16 15 18

Qualita-
tive

Number of 
correct

17 21 12 6 6 9 15

Number of 
incorrect

10 12 10 4 15 13 4

Accuracy 
inside AD 
(%)

63 64 55 60 29 41 79

Coefficient 
of variance 
(R2

AD)

0.40 0.46 0.28 0.58 0.29 0.54 0.53

Quantita-
tive

Accuracy 
within a 
factor of 10 
(%)

85 67 59 100 52 55 89

Accuracy 
within a 
factor of 100 
(%)

96 91 91 100 86 64 95

Accuracy 
within a fac-
tor of 1000 
(%)

100 97 96 100 95 96 100

RMSE (log10 
scale)

0.82 0.91 1.24 0.48 1.49 2.06 0.70

R2
AD (log10 
LC50)

0.51 0.42 0.43 0.82 0.35 0.36 0.51

57 NCs Qualita-
tive

Number of 
inside AD

32 31 13 10 /a / 10

Number of 
outside AD 
and missing 
prediction

10 11 29 31 / / 32

Number of 
correct

20 9 7 3 / / 4

Number of 
incorrect

12 22 6 7 / / 6

Accuracy 
inside AD 
(%)

63 29 54 30 / / 40

Coefficient 
of variance 
(R2

AD)

0.45 0.04 0.76 0.09 / / 0.66
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Accuracies and R2
AD of Danish Q.D., Read Across and KATE after considering the AD 

are decreasing. Some PCCs with correct predicted were excluded as a results of outside 
the AD. Danish Q.D., Read Across and KATE assess the AD by the range of log10 Kow 
and structural classes, and the methods are not as rigorous as used by VEGA. Similar 
phenomena was also found by Melnikov et.al [43]. that KATE total accuracy decreased 
from 58 to 46% when analysis is limited to the compounds within its AD.

In quantitative assessment, performance of all tools is increase when inside the AD. 
VEGA shows the best performance with 100% accuracy when predictions fall within a 
factor 10 of the measured LC50. VEGA also has the lowest RMSE (0.48 log10 units) and 
highest R2

AD (0.82). Read Across and Trent Analysis have the worst predictive ability 
from all of the indictors: accuracies, RMSE and R2

AD.

In general, Based on the accuracies of quantitative assessment, the tested tools for daph-
nia can be ranked in the following order, from the highest to the lowest performers: 
VEGA> KATE > ECOSAR > T.E.S.T. > Danish Q.D > Trend Analysis > Read Across.

Prediction to 57 NCs  The number of NCs outside the AD and missing prediction 
are more for Danish Q.D, VEGA and KATE, except for ECOSAR and T.E.S.T. Accura-
cies inside AD of ECOSAR and Danish Q. D. are still high as same as in prediction to 
PCCs, whereas, T.E.S.T., VEGA and KATE are lower with accuracies of 29, 30 and 40%, 
respectively.

Figure 3 shows the error distribution of the daphnia toxicity predictions to PCCs and 
NCs with respect to under- and overestimation. Positive errors indicate predicted LC50 
is above experimental LC50 and toxicity is underestimated. Considering the error of pre-
diction between the log10 LC50 of the experimental value and the log10 LC50 of the esti-
mated toxicity value provided by the model, over- and underestimation of daphnia by 
ECOSAR, T.E.S.T, Danish Q.D. and KATE are more or less similarly distributed. Daph-
nia toxicity predicted by VEGA appear to be overestimated, whereas, Read Across and 

Fig. 3  Errors distribution (predicted – experimental) of daphnia toxicity categories. Positive errors indicate 
predicted LC50 is above experimental LC50 and toxicity was underestimated. Dataset of Read Across and Trend 
Analysis were based on PCCs, others were based on both PCCs and NCs. Mean is average error, SD is Standard 
Deviation, and N is number of chemicals.
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Trent Analysis are underestimated significantly. Underestimated toxicity does not meet 
the principal of reasonable worst-case.

Acute toxicity of fish

Experimental and predicted toxicity results to fish for the 37 PCCs are shown in Table 6, 
for the results of 86 NCs can be found in section of “Availability of data and materials”.

Model performance across the entire test set

Models performance were first evaluated on the entire dataset regardless of the AD to 
assess the tool utility for any new or existing chemical. The performance metrics for all 
models tested in this evaluation to acute toxicity of fish are summarized in Table 7.

Prediction to 37 PCCs  In qualitative assessment based on predictive power of classifi-
cation into the four toxicity categories of the entire dataset, all models besides ECOSAR 
are performance not well, with accuracies not more than 50%. ECOSAR has the highest 
predictive power, with accuracy of 54% and all of the 37 chemicals predicted. The perfor-
mance of ECOSAR to fish is similar as well as to daphnia. The total accuracies followed 
are Danish Q.D., T.E.S.T. and VEGA, with the accuracy of 50, 49 and 47%, respectively. 
Read Across and Trend Analysis have the lowest total accuracies, which are same as the 
situation of prediction to daphnia. The total accuracy of KATE is only 36%, the perfor-
mance to predict the toxicity of fish is far less than prediction to daphnia.

In quantitative assessment of comparison log10 LC50 of experiment value with predicted 
value, VEGA and T.E.S.T. shows excellent predicted ability as they can achieve the accu-
racy of 80% when the absolute deviation between predicted and experimental value is 
limited to 10 times. The performance is followed by KATE and ECOSAR when deviation 
is limited to 10 times, with the accuracy of 71 and 68%, respectively. The coefficient of 
variance also reflect the same tendency with accuracy.

Prediction to 86 NCs  In qualitative assessment based on classification into the four 
toxicity classes of the entire 86 NCs, total accuracies decreased comparing with predic-
tion to PCCs. As T.E.S.T., Danish Q.D and KATE could not predict 25, 45 and 49 NCs, 
respectively, the predictive power of these three tools are lowest. Both total accuracy and 
predictive power of VEGA are about 20%, which are decrease dramatically compare with 
prediction to PCCs. ECOSAR has the highest total accuracy and Predictive power com-
pare with others tools, however, it is still not high with accuracy of about 40%.

Model performance within the AD

Model performance within AD to fish toxicity is shown in Table 8.

Prediction to 37 PCCs  The number PCCs inside the AD of VEGA, Read Across and 
Trend Analysis is most, with 29, 31 and 30 tested chemicals, respectively. T.E.S.T. and 
KATE have the minimal number of chemical inside the AD.
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In qualitative assessment based on classification into the four toxicity categories, ECO-
SAR, Danish Q.D. and VEGA have the highest performance, with R2

AD of 0.66, 0.58 and 
0.57 and accuracies of 55, 58 and 55%, respectively. The performance of tested tools for 
fish can be ranked in the following order, from the highest to the lowest performers: 
ECOSAR = Danish Q.D. = VEGA> T.E.S.T. > KATE > Read Across > Trend Analysis. The 
prediction Accuracies inside the AD is not significant improved in comparison to entire 
accuracy not considering the AD. This phenomenon is similar in prediction of daphnia.

Table 7  Tool performance and comparison summary statistics to 96 h-LC50 of fish based on entire 
dataset

a   Total accuracy is the fraction of chemicals assessed by each tool for which the predictedLC50 falls within the same 
regulatory category as the measured LC50. b Similar to total accuracy, predictive power measures the total number of correct 
category assignments. However, lack of prediction was treated as an incorrect assignment

Chemicals Methods Measures of 
predictive 
accuracy

ECOSAR T.E.S.T Danish 
Q.D.

VEGA Read 
Across

Trend 
Analysis

KATE

37 PCCs Number of missing predic-
tions

0 2 3 1 2 4 9

Qualita-
tive

Number of 
correct

20 17 17 17 14 10 10

Number of 
incorrect

17 18 17 19 21 23 18

Total accuracy 
(%)a

54 49 50 47 40 30 36

Predictive 
power (%)b

54 46 46 46 38 27 27

R2 (toxicity 
class)

0.50 0.39 0.38 0.43 0.17 0.10 0.25

Quantita-
tive

Accuracy 
within a 
factor of 10 
(%)

68 80 65 81 57 36 71

Accuracy 
within a 
factor of 100 
(%)

89 89 79 94 83 48 86

Accuracy 
within a fac-
tor of 1000 
(%)

92 97 85 97 94 76 89

R2(log10 LC50) 0.31 0.35 0.27 0.34 0.32 0.03 0.21

86 NCs Qualita-
tive

Number of 
correct

34 25 17 18 / / 17

Number of 
incorrect

47 36 24 65 / / 40

Number of 
missing 
predictions

5 25 45 3 / / 29

Total accuracy 
(%)a

42 41 41 22 / / 30

Predictive 
power (%)b

40 29 20 21 / / 20

R2 (toxicity 
class)

0.08 0.10 0.13 0.001 / / 0.03
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In quantitative assessment, there are four models: VEGA, KATE, ECOSAR and T.E.S.T., 
with which the prediction accuracies are greater than 80% when the absolute error is 
limited to 10 times. VEGA reaches highest accuracy of 90%, with accuracy increased 
significantly after considering the AD. RMSE is a measure of accuracy, the lower of the 
RMSE, the higher of the predication accuracy. ECOSAR has the best RMSE (0.71 log10 

Table 8  Tool performance to 96 h-LC50 of fish for chemicals within each applicability domains

Chemicals Methods Measures of 
predictive 
accuracy

ECOSAR T.E.S.T. Danish 
Q. D.

VEGA Read 
Across

Trend 
Analysis

KATE

37 PCCs General Number of 
inside AD

29 22 19 29 31 30 22

Number of 
outside AD 
and missing 
prediction

8 15 18 8 6 6 15

Qualita-
tive

Number of 
correct

16 9 11 16 11 8 8

Number of 
incorrect

13 13 8 13 20 23 14

Accuracy 
inside AD 
(%)

55 41 58 55 35 26 36

R2
AD (toxicity 
class)

0.66 0.41 0.58 0.57 0.07 0.06 0.35

Quantita-
tive

Accuracy 
within a 
factor of 10 
(%)

83 82 74 90 55 42 86

Accuracy 
within a 
factor of 100 
(%)

100 95 79 97 81 55 95

Accuracy 
within a fac-
tor of 1000 
(%)

100 100 84 100 94 84 100

RMSE (log10 
LC50)

0.71 0.87 1.83 0.75 1.47 2.09 0.80

R2
AD (log10 
LC50)

0.68 0.52 0.57 0.68 0.14 0.00 0.50

86 NCs Qualita-
tive

Number of 
inside AD

58 61 22 50 / / 21

Number of 
outside AD 
and missing 
prediction

28 25 64 36 / / 67

Number of 
correct

32 25 13 18 / / 7

Number of 
incorrect

26 36 9 32 / / 12

Accuracy 
inside AD 
(%)

55 41 59 36 / / 37

R2
AD (toxicity 
class)

0.37 0.10 0.42 0.03 / / 0.37
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units) and Trend Analysis has the worst (2.09 log units). All RMSEs of ECOSAR, T.E.S.T., 
VEGA and KATE are below 1 log10 scale, which are at same performance levels.

In general, based on the predictive power of quantitative assessment, the tested tools 
for fish can be ranked in the following order, from the highest to the lowest performers: 
VEGA > ECOSAR = KATE = T.E.S.T. > Danish Q.D > Read Across >Trend Analysis.

Prediction to 86 NCs  Accuracies inside AD of ECOSAR, T.E.S.T., Danish Q. D. and 
KAT are as same as prediction to PCCs. Whereas, Accuracy inside AD of VEGA to 
decreased from 55% for PCCs to 36% for NCs. The lower accuracy of VEGA’s predic-
tion of NCs, probably because most of the measured results of SCs were non-toxic 
(LC50 > 100 mg/L), but when VEGA predicted, the lowest value of the 7 model included 
in VEGA was used and finally the probability of being predicted to be toxic category 
increased.

Figure 4 shows the distribution of the 96 h-LC50 fish toxicity predictions with respect to 
under- and overestimation. Positive errors indicate predicted LC50 is above experimental 
LC50 and toxicity is underestimated. Considering the error of prediction between the 
log10 LC50 of the experimental value and the log10 LC50 of the estimated toxicity value 
provided by the model, over- and underestimation of fish toxicities by Danish Q.D. are 
more or less similarly distributed. Fish toxicity predicted by ECOSAR, T.E.S.T, VEGA 
and KATE appear to be more often overestimated than underestimated, which meet the 
principal of reasonable worst-case.

Discussion
Methods to assess AD

All models provide AD assessments that predictions fall inside or outside the AD of the 
models. Most of these models (ECOSAR, KATE, Read Across and Trent Analysis) assess 
the AD directly with the range of log10 Kow. In addition to log10 Kow, these models also 

Fig. 4  Errors distribution (predicted – experimental) of fish toxicity categories. Positive errors indicate 
predicted LC50 is above experimental LC50 and toxicity was underestimated. Datasets of Read Across and 
Trend Analysis were based on PCCs, others were based on both PCCs and NCs. Mean is average error, SD is 
Standard Deviation, and N is number of chemicals.
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consider the structural similarity. The ECOSAR package provides warnings when the 
model prediction is above the substance solubility limit or if the substance log10 Kow is 
outside the AD, it is helpful when non-professional application.

T.E.S.T. does not provide the AD of results directly. However, T.E.S.T has AD for each 
method and a final AD where predicitons must be made by at least 2 methods for a con-
sensus value to be used .

Although there is no criterion to judge the validity or invalidity of the predicted data, 
predicted results within the AD are preferred. Although, the prediction accuracy inside 
the AD is not obviously improved compare to total accuracy not considering the AD in 
qualitative assessment, it improved significant in quantitative assessment.

There is no single and absolute AD assessment methods for a given model. Gener-
ally, the broader the definition of the AD, the lower the accuracies. This principle can 
be confirmed in the prediction of daphnia, in which the number of PCCs outside the 
AD and missing prediction are most by VEGA, however, the performance is best. In the 
quantitative evaluation within AD with the 10-fold factor, the accuracy of VEGA is the 
highest among all of the models, both to daphnia and to fish toxicity, with accuracy of 
100 and 90%, respectively. The reason for the highest accuracy of VEGA prediction may 
be attributed to the detailed definition of the AD.

VEGA assess the AD with overall reliability, which is a relative complex mechanism. 
An overall reliability of the prediction is measured in a quantitative manner, whose 
value ranges from 1 to 0, by considering five factors, including Global AD Index, simi-
lar index of molecules with known experimental value, accuracy index of prediction 
for similar molecules, concordance index for similar molecules, index of Atom Cen-
tered Fragments similarity check. All those considerations are weighted and summed 
up into reliability of a model.

Difference between classification and quantitative assessment

The qualitative method has a certain randomness for the substances at the classifica-
tion boundary point. Substances at the toxicity boundary point will be divided into 
two distinct toxicities class easily. Therefore, qualitative method with toxicity clas-
sification method to assess accuracy will be inferior to quantitative methods in terms 
of scientific significance. The current aquatic acute classification method is based on 
the 10-fold factor in toxicity values. The quantitative method with a 10-fold factor 
is similar to the toxicity classification method, but it overcomes the uncertainty of 
the boundary points and is more meaningful for accuracy evaluation. It can also be 
proven from the results that the accuracy of the quantitative method is higher than 
that qualitative method. Therefore, the results of quantitative method is a good indi-
cator to assess the performance of tested tools.

Integrated assessment strategy when predicting the fish acute toxicity using VEGA

In the quantitative evaluation to prediction both daphnia and fish toxicity inside the 
AD, VEGA performs very well with the highest accuracy. However, there are seven 
models can be used to predict the fish acute toxicity in VEGA. Some confuse existing 
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even if internal reliability is given. For example, several models may give the same 
liability with different AD index. And SarPy/IRFMN model is a classification model, 
it will give a toxicity class instead of toxicity value. Therefore, it is crucial to choose 
the most rational value of different models, and to use the toxicity class provided by 
SarPy/IRFMN model in quantitative effect assessment.

In order to make full advantage of VEGA, we proposed an integrated assessment 
strategy for fish acute toxicity, as shown in Fig. 1. This integrated assessment strategy 
were used in this study except that experimental values were not used, and it is prove 
to be useful.

Step 1: if experimental value exist, it should be used, else go to step 2.
Step 2: if reliability shows 3 stars with all ADI =1, it should be used, else go to step 
3 at the following case:

-If more than 1 models have 3 stars, or.
-If models have only 2 stars or 1 star.

Step 3: if it has a highest global ADI, it should be priority used, else go to step 4.
Step 4: if the other ADI outperforms the others models, it should be priority used.

Notes: (1) A lowest toxicity value should be used when all ADIs are same; (2) Toxicity 
class given by SarPy/IRFMN model is transformed to lower limit, if needed. e.g. trans-
formed the toxic-3 (between 10 and 100 mg·L− 1) to 10.1 mg·L− 1.

QSAR vs Chemical category approach

ECOSAR, KATE, T.E.S.T. Danish Q.D and some of models in VEGA belong to QSAR 
methods. Both Read Across and Trent Analysis method are category approach. QSAR 
models and category approach method have similarities and differences.

In QSAR Toolbox, application strategy of Read across, Trend analysis and QSAR mod-
els is addressed. Read across is recommended for “qualitative” (e.g. skin sensitisation or 
mutagenicity) or “quantitative endpoints” (e.g., 96 h-LC50 for fish) if only a low number 
of analogues with experimental results are identified. Trend analysis is the appropriate 
data-gap filling method for “quantitative endpoints” (e.g., 96 h-LC50 for fish) if a high 
number of analogues with experimental results are identified. QSAR models can be used 
to fill a data gap if no adequate analogues are found for a target chemical.

The issue of chemical-to-chemical similarity is not directly present in the case of 
QSAR models. In the case of QSAR models, the target chemical is in some way com-
pared with the whole population of chemicals as the basis of the model, and this is 
addressed within the AD of the model. Thus, the comparison is done not between one 
chemical and another, or a few others, as in the category approach, but with the whole 
set of compounds used for the model.

The overall structure of the SAR models model is like a collection of read across mod-
els, with similarity structure or fragment are collect and statistic. Identification of simi-
larity structure in QSAR models is completed automatically. The evaluation of similar 
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compound(s) in case of category approach is often done manually, typically done by the 
expert, which is quite subjective.

The accuracies of Read Across and Trend Analysis method are lowest among of tested 
tools. Read Across may be used when there are experimental data from high quality 
databases for one or more substances which are similar enough to the target chemical 
of interest. It is difficult to assess the quality of experimental data. Predictions applied 
in this research were based on category on organic functional groups, and standardized 
workflow in QSAR Toolbox. However, Trend Analysis can be further refined by subcat-
egorization, such as elimination of analogues, which are dissimilar to the target chemical 
with respect to have same mode of action or same elements. Expert judgement always 
used when removing outliers. Each expert is guided by his or her past experience, pieces 
of information may escape her or his knowledge, the weight assigned to each element 
of evidence and value may be different, and expressed in a subjective way, such as likely, 
plausible, reasonable, level of concern, etc. and hence often difficult to replicate. Besides, 
the category approach is typically not so strictly formalized, depending on the similar 
chemicals data existing in internal database [44].

A case study is shown in Fig. 5 that fish 96-h LC50 to 2,4,6-tri-tert-butylphenol was 
predicted using Trent Analysis. Figure  5a is the case that using standardized work-
flow in QSAR Toolbox without any manually disruption. An outlier can be judged 
easily. However, after deleting that obvious outlier, the result is still uncertain on how 
to refining shown in Fig.  5b. Thus, professional judgement require by chemical cat-
egory methods limit application in regulation purpose, especially in high throughput 

Fig. 5  Case study on predicting fish 96-h LC50 to 2,4,6-tri-tert-butylphenol using Trent Analysis. (a Using 
standardized workflow in QSAR Toolbox without any manually disruption, b Using standardized workflow 
after deleting an obvious outlier substance)
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screening in risk assessment. QSAR Toolbox also allows some different category 
methods, such as acute aquatic toxicity classification by ECOSAR, acute aquatic tox-
icity Mode of Action by OASIS, acute aquatic toxicity classification by Verhaar (Mod-
ified). Thus, performance of these category methods need further assessment, and 
they shall be used limiting in experts. At the same time, more intelligence technolo-
gies, such as artificial intelligence shall apply in category approach.

PCCs that were incorrect predicted frequently

There are two PCCs, which daphnia toxicity were predicted incorrectly by more than 
2 models (Table 9). The water solubility of anthracene is 0.047 mg·L− 1, which is lower 
than experimental LC50 value of 0.0356 mg·L− 1, indicating that experimental LC50 
value may be tested incorrectly. There was only one experimental data of anthracene, 
so the acute toxicity to daphnia needs further testing.

The experimental LC50 value to daphnia used to validate of dibutyl phthalate is 
0.5 mg·L− 1, which was evaluated and accepted by ECHA. However, values are range 
from 1.4 to 3.7 mg·L− 1 gathered from database of these models. Predicted LC50 value 
of dibutyl phthalate from T.E.S.T, Danish Q.D, Read Across and Trend Analysis is 
6.61, 17.5, 6.68 and 73.6 mg·L− 1, respectively. Therefore, it is the experiment value 
difference causing the “incorrectly prediction” to dibutyl phthalate by T.E.S.T, Danish 
Q.D and Read Across. Trend Analysis will still give a value that exceed to 10 times dif-
ference to experimental value, which performances not well.

For the acute toxicity of fish, according to the evaluation criterion that the difference 
between the experimental value and the predicted value is 10 times, there are 6 sub-
stances that more than 3 models predicted incorrectly, shown in Table 10.

Table 9  The PCCs that daphnia toxicity were predicted incorrectly by more than 2 models

Substance Water solubility/
mg·L−1

Experimental
LC50/mg·L− 1

No. of models 
incorrect 
predicted

Used to validation Range in models 
and mean

Anthracene 0.047 0.0356 0.0356 4

Dibutyl phthalate 11.2 0.5 1.4 ~ 3.7, 3.52 4

Table 10  The PCCs that fish toxicity were predicted incorrectly by more than 2 models

Substance Water 
solubility /
mg·L−1

Experimental LC50/mg·L− 1 No. of models 
incorrect 
predictedUsed to 

validation
Range in models and mean

Musk xylene 0.15 0.2 2.9 ~ 47 (9.87) 3

Heptadecafluorooctanesul-
fonic acid

0.10 68 68 3

2,4,6-tri-tert-butylphenol 0.063 0.048 0.06 ~ 0.1 (0.07) 3

Benzene 1880 5.3 5.3 ~ 452 (83) 3

Bis(2-ethylhexyl) phthalate 0.27 0.16 0.16 ~ 1106 (573) 3

Pentadecafluorooctanoic acid 0.48 157 24.6 ~ 607 (316) 4
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Among them, five substance have low water solubility of below 1 mg·L− 1. In principle, 
the experimental LC50 value of a substance should be lower than its water solubility. The 
water solubility of musk xylene, 2,4,6-tri-tert-butylphenol and bis(2-ethylhexyl) phtha-
late, show no significant difference to experimental LC50 value. Water solubility of hep-
tadecafluorooctanesulfonic acid and pentadecafluorooctanoic acid is much lower than 
experimental LC50 value, indicating an incorrect experimental data. In fact, substance 
with low water solubility is classed as “difficult to test”, the aquatic toxicity of these dif-
ficult substance were often testing improperly even at GLP condition. Hence, the special 
caution should be given to this low water solubility substance when developing mod-
els. Meanwhile, uncertainly of models when validation and comparison of these PCCs, 
with low water solubility. As a result, some of the differences between model predictions 
and measured toxicity values can be partially attributed to the measured toxicity values 
themselves being less-than-perfect indicators of true toxicity. The errors associated with 
the measured toxicity values, however, should not affect our conclusions regarding the 
relative performance of the tested models (their rank orders), particularly in the com-
mon PCCs comparison, because all models are being evaluated against the same meas-
ured toxicity values.

Danish Q.D. predicted large errors to heptadecafluorooctanesulfonic acid, perfluoro-
1-octanesulfonyl fluoride, potassium perufluorooctane sulfonate, pentadecafluoroocta-
noic acid, with which all LC50 value are above 100,000 mg·L− 1. There are two models in 
Danish Q.D: Leadscope and SciQSAR. As a case to predict Heptadecafluorooctanesulfonic 
acid, Leadscope predict a 0.00636 mg·L− 1, that is much closer to its water solubility of 
0.10 mg·L− 1 than SciQSAR with predicted value of 354,065 mg·L− 1. This situation is similar 
in prediction of Perfluoro-1-octanesulfonyl fluoride, Potassium perufluorooctane sulfonate, 
Pentadecafluorooctanoic acid. Therefore, the SciQSAR model in Danish Q.D. is note suite 
for estimate the fish acute toxicity of perfluorinated compounds.

There are 54 experimental 96 h- LC50 fish values of benzene ranging from 5.3 mg·L− 1 to 
542 mg·L− 1 collected in QSAR Toolbox, covering 21 fish species within the Actinopterygii 
class. As many factors affect the experimental results, such as test method, test conditions, 
species, or even the experience dealing with difficult substance.

It is difficulty to select a fish species to compare the models performance, as the fish spe-
cies in tanning data of some model are not deterministic. Hence, this single point compari-
son method has some limitation when more than one experiment data exist. Therefore, we 
suggest that distribution of multiple data other than single value should be consider when 
developing in silico models.

Analysis to Groups of NCs that were incorrect predicted frequently

The functional groups of NCs with more than three model prediction incorrectly were 
analyzed. Among them, the functional groups with more than 2 occurrences are shown in 
Table 11.

Of the 42 NCs in the daphnia toxicology prediction, 14 substances were simultaneously 
incorrect predicted by more than 3 models. The most frequently predicted functional 
groups are aryl, aryl halide, and aromatic amine.

Of the 86 NCs in the fish toxicology prediction, 40 substances were simultaneously incor-
rect predicted by more than 3 models. The most frequently predicted functional groups are 
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aryl, aromatic amine, organic amide and thioamide, alkyl (hetero)arenes, ketone, diketone, 
aryl halide, ether moiety, alkane branched with secondary carbon.

So these function groups should be pay more attention when developing in silico tools.

Outlook

In silico tools are developed based on existing information to hazard. However, over 
350,000 chemicals and mixtures of chemicals have been registered for production and 
use [1]. These chemicals consisted various type of chemicals. As science and technology 
advances, the chemicals synthetic or prepared chemicals are more and more complicated. 
Existing in silico tools have note covered all type of chemicals. It is expect that most of 
chemicals registered or used are not testing for their hazards, and hence no abundant data 
to support the development of in silico tools. Besides, in silico tools developed are most 
focus on individual compounds, it is difficulty to identified hazard of a number of mixtures, 
polymers and UVCBs, the number of which is over 75,000 [1].

So, testing is still needed whether it is used to identify chemical hazards or to provide 
more information to develop in silico tools. In silico tools are also need continuous devel-
opment to accuracy, and expansion to AD of various substance, such as mixtures, polymers 
and UVCBs.

Table 11  Groups in NCs that were incorrect predicted frequently and the number of occurrences 
(≥2)

a  n is the number of occurrences of a group that were incorrect predicted

Daphnia toxicity Fish toxicity

Group name na Group name na

Aryl 4 Aryl 9

Aryl halide 3 Aromatic amine 6

Aromatic amine 3 Organic amide and thioamide 6

Nitrile 2 Alkyl (hetero)arenes 6

Carbamate 2 Ketone 5

Alkyl (hetero)arenes 2 Diketone 4

Amidine 2 Aryl halide 4

Alcohol 2 Ether moiety 4

Organic amide and thioamide 2 Alkane,branched with secondary carbon 4

Alkyl-, alkenyl- and alkynyl (hetero)arenes 2 Amine,tertiary 3

Phenol 2 Alkene moiety 3

Alkane,branched with tertiary carbon 2 Alkyl halide 3

Pyrazolone 2 Alcohol 3

Carboxylic acid ester 2 Phenol 2

Alkance,branched with quaternary carbon 2

Alkane,branched with tertiary carbon 2

Isopropyl 2

Carboxylic acid ester 2

Aliphatic amine,tertiary 2

Azo 2

Carboxylic acid 2
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Conclusion
In this study, the performance of seven in silico methods (ECOSAR, T.E.S.T., Danish Q. 
D., VEGA, KATE, Read Across and Trend Analysis) for acute aquatic toxicity to daphnia 
and fish was evaluated and compared using PCCs and NCs datasets.

In the quantitative evaluation of PCCs with the criteria of 10-fold difference between 
experimental value and estimated value, the accuracy of VEGA is the highest among all 
of the models, both in prediction of daphnia and fish acute toxicity, with accuracy of 100 
and 90% after considering AD, respectively. The performance of KATE, ECOSAR and 
T.E.S.T. is at the similar level, with the accuracies are slight lower than VEGA. The accu-
racies of Danish Q.D. is lowest among above tools within them QSAR is the main mech-
anism. The performance of Read Across and Trent Analysis is lowest among all of the 
tested in silico tools by standardized workflow of QSAR Toolbox, indicating that chemi-
cal category approach shall limited in expert use at this stage. The main factor affects the 
accuracies of in silico tools may be the distribution of multiple experimental data, and 
the accuracies of experimental values for PCCs with poorly water solubility.

The performance of models to NCs that are much more complex are not as well as to 
PCCs, indicating in silico tools are also need continuous development. Testing is still 
needed whether it is used to identify hazards of NCs or to provide more information to 
develop in silico tools.
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