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Background
When measuring molecular responses to a certain treatment or gaining insights into clini-
cal phenotypes, gene set or pathway enrichment techniques are tools of first choice to infer 
mechanistic biological information from high-dimensional molecular omics data. Through 
different statistical techniques, such as over-representation analysis (ORA) or gene set 
enrichment analysis (GSEA), these methods are capable of identifying specific sets of genes 
or molecular response/signaling pathways that are triggered upon a certain treatment or 
disease. These sets might represent specific molecular functions, as defined by Gene Ontol-
ogy (GO) [1], biological processes or experimentally derived gene sets which are publicly 
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available in databases such as Reactome [2] or the Molecular Signature Database (MSigDB) 
[3].

Up to date nearly one hundred algorithms have been developed for gene set or path-
way enrichment, each of which has its own strengths and weaknesses. In principle, these 
methods can be grouped into two distinct classes: (1) pure gene set enrichment, where the 
algorithms solely focus on a plain list of features and (2) topology-based enrichment, where 
algorithms include additional information derived from pathway or network databases, e.g., 
which genes or proteins are directly connected and how they influence each other. There 
are several comprehensive reviews on this topic available, see for example [4, 5]. Besides 
a plain quality assessment of different enrichment techniques, this review also evaluated 
the robustness of available methods, i.e., how error-prone these methods are w.r.t. the pre-
diction of either false positive or false negative gene sets or pathways. The popular GSEA 
method showed a decent quality in terms of rank- and p value-based pathway enrichment 
but moreover was the only method not found to produce any false prediction [5].

Over the last decade, combined analysis of molecular responses through the integration 
of multiple omics types has become prevalent, e.g. combining transcriptomics, proteom-
ics, and metabolomics. This is becoming necessary since single-omics analyses will only 
measure biomolecules of a specific type and will often not even detect its entirety but only 
a subset thereof. Furthermore, the response time and the life-span of biomolecules varies 
substantially within and between single omics layers. Thus, only the combined analysis of 
several molecular layers through multi-omics measurements reliably allows to uncover a 
significant fraction of cellular effects [6].

There are a few integration tools available that incorporate pathway knowledge to inter-
pret multi-omics datasets like PaintOmics [7] or IMPaLA [8]. These methods exhibit sev-
eral limitations hampering their unrestricted application. PaintOmics, for example, is 
capable of including several different omics layers into its pathway enrichment analysis, but 
solely relies on pathway definitions from the KEGG database. Furthermore, impacted path-
ways are determined based on Fisher’s exact test, which was shown to be particularly prone 
to reporting false positive pathway enrichments [5]. IMPaLA on the contrary supports 
the analysis of a range of different pathway databases but is limited to two different omics 
input layers, allowing to integrate either transcriptome and metabolome or proteome and 
metabolome. While PaintOmics is applicable to several model organisms (mouse, rat, fruit 
fly, etc.) IMPaLA is restricted to human pathway definitions only.

Here we introduce the multiGSEA R package that provides multi-omics-based pathway 
enrichment employing the robust GSEA algorithm and allowing to use pathway or gene set 
definitions from several curated databases. In its current version multiGSEA is applicable 
to a combination of transcriptome, proteome, and metabolome data measured in 11 differ-
ent organisms, including human, mouse, or rat.

Implementation and workflow
In principle, the workflow of the multiGSEA package is composed of three essential 
steps: (1) prepare pathway definitions and omics data (2) single omics gene set enrich-
ment analysis (3) combined multi-omics enrichment. These steps are graphically out-
lined in Fig. 1 and described in detail below:
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Collecting pathway definitions, feature extraction, and mapping

Over the last decades, several pathway databases have been established. Some of which 
are peer-reviewed and manually curated while others follow a community-based 
approach to develop and refine pathways. However, often these databases contain 
their own format in which pathway definitions are provided, making it cumbersome to 
include multiple databases in an analysis workflow. The ‘graphite‘ ‘R‘ package [9] was 
designed to bridge this gap since it is able to provide pathway definitions from eight pub-
licly available databases – the numbers of currently available human pathway definitions 
in these databases are listed in parentheses: KEGG (311) [10], Biocarta (247), Reac-
tome (2208) [2], NCI/Nature Pathway Interaction Database (212) [11], 
HumanCyc (48682) [12], Panther (94) [13], smpdb (48668) [14], and PharmGKB (66) 
[15]. Within the first step of the multiGSEA workflow, we make use of the graphite 
package to retrieve pathway definitions from up to eight public databases.

Depending on the database, pathway features (nodes) are encoded with different ID 
formats. The KEGG database, for example, uses Entrez Gene IDs for transcripts and pro-
teins while KEGG Compound IDs are used for metabolites. The Reactome database 
on the contrary stores transcripts and proteins by means of Uniprot identifiers, while 
ChEBI IDs are used for metabolites. Further metabolite ID formats are CAS numbers 
and Pubchem IDs. To solve this issue, especially when dealing with multiple pathway 
databases in a single analysis, we implemented an ID mapping for features of all three 
supported omics layers. Transcriptomics and proteomics features can be mapped to the 
following formats: Entrez Gene IDs, Uniprot IDs, Gene Symbols, RefSeq, or Ensembl 
IDs. The mapping procedure is accomplished by means of the AnnotationDbi Bio-
conductor package [16] and depends on the loaded annotation database such as org.
Hs.eg.db for human [17].

Metabolomic features can be mapped to Comptox Dashboard specific IDs (DTXSID, 
DTXCID), CAS numbers, Pubchem IDs (CID, SID), KEGG Compound IDs, HMDB IDs, 
or ChEBI IDs. For enhanced usability we encapsulated this comprehensive metabolite 
mapping data set in a stand-alone AnnotationHub package called metaboliteID-
mapping [18]. In its current version the package contains more than 1.1 million com-
pounds and was collected and integrated from four different databases: Comptox 
Dashboard1,2, HMDB3, and ChEBI4.

Gene set enrichment analysis

Measured omics data are necessary for the calculation of gene set enrichment scores. 
These data have to be loaded for each of the omics layers that have been defined in 
the previous step of extracting pathway-specific features from external databases. 
Prior to the enrichment score computation, a differential expression analysis has to 
be performed such that all omics features have an associated fold change and p value. 

1  ftp://newft​p.epa.gov/COMPT​OX/Susta​inabl​e_Chemi​stry_Data/Chemi​stry_Dashb​oard/PubCh​em_DTXSI​D_mappi​
ng_file.txt.
2  ftp://newft​p.epa.gov/COMPT​OX/Susta​inabl​e_Chemi​stry_Data/Chemi​stry_Dashb​oard/2019/April​/DSSTo​xSDF.zip.
3  http://www.hmdb.ca/syste​m/downl​oads/curre​nt/hmdb_metab​olite​s.zip.
4  ftp://ftp.ebi.ac.uk/pub/datab​ases/chebi​/Flat_file_tab_delim​ited/datab​ase_acces​sion.tsv.

ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/PubChem_DTXSID_mapping_file.txt
ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/PubChem_DTXSID_mapping_file.txt
ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/2019/April/DSSToxSDF.zip
http://www.hmdb.ca/system/downloads/current/hmdb_metabolites.zip
ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/database_accession.tsv
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Fig. 1  Figure illustrating the workflow of the multiGSEA package. In step 1 pathway databases are 
queried, the features are extracted and mapped to user-defined ID formats. Single omics pathway 
enrichment using a GSEA-based approach is performed in step 2. p values from these calculations are 
combined in step 3 to create a multi-omics pathway enrichment
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The pre-processing step has to be done externally and is not part of the multiGSEA 
package.

In a second step, multiGSEA calculates the enrichment score by applying the fgsea 
R package [19] on each omics layer individually. The algorithm GSEA in its original form 
was first described to shed light on the mechanistic basis of Type 2 Diabetes mellitus 
[20]. The updated and most commonly applied version was introduced by Subrama-
nian et al. [21] two years later. In brief, measured omics features are utilized for a differ-
ential expression testing to derive fold changes and associated p values. Ranking metrics 
are then used to calculate the so-called local statistic. In multiGSEA, a ranked feature 
list is calculated based on the direction of the fold-change and the log-transformed p 
value. Different ranking metrics can be chosen individually and this choice can have 
strong effects on the outcome of the gene set enrichment analysis [22]. In the follow-
ing step, GSEA algorithms test whether gene sets accumulate at the top or bottom of 
those ordered gene vectors. The fgsea version used here is an efficient but yet accurate 
implementation of the prominent GSEA algorithm. Its performance is achieved through 
implementing a cumulative GSEA-statistic calculation allowing to reuse random gene 
set samples between different input pathways [19].

After the second part of the multiGSEA workflow, each downloaded pathway has 
been assigned fgsea-based enrichment scores, p values, and adjusted p values for each 
omics layer separately.

Combined multi‑omics enrichment

To more comprehensively measure a pathway response, multiGSEA provides different 
approaches to compute an aggregated p value over multiple omics layers. Because no 
single approach for aggregating p values performs best under all circumstances, Loughin 
proposed basic recommendations on which method to use depending on structure and 
expectation of the problem [23]. If small p values should be emphasized, Fisher’s method 
should be chosen. In cases where p values should be treated equally, Stouffer’s method 
is preferable. If large p values should be emphasized, the user should select Edgington’s 
method. Figure 2 indicates the difference between those three methods.

A first option is the Fisher’s combined probability test, which uses the p values 
from k independent tests (here up to three omics layers) to calculate a test statistic 
X2
F = −2

∑k
i=n ln(pi) . If all of the null hypotheses of the k tests are true, the test sta-

tistic will follow a X2 distribution with 2k degrees of freedom [24]. Fisher’s method is 
asymmetrically sensitive to small p values which results in a bias for aggregated p values 
from multiple studies on the same null hypothesis [25]. This can be seen in Fig. 2 (Fisher) 
especially in those cases where one of both single p value is close to 1 and yet the com-
bined p value is still considered to be significant, simply because the other single p value 
is small enough.

To circumvent this asymmetry, multiGSEA can also apply alternative methods: the 
Z-transform test and the weighted Z-transform test. The first algorithm is also called 
Stouffer’s method. Both versions make use of the fact that p values, ranging from 0 to 1, 
can be uniquely matched with a value in Z, representing a standard normal deviate, and 
vice versa. Each p value pi from k independent tests (here omics layer) is converted into 
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deviates Zi , with Zi = �−1(pi) and � being the standard normal cumulative distribution 
function. Stouffer’s method is defined as:

Zs follows a standard normal distribution if the null hypothesis is true, and thus can be 
compared to a standard normal distribution to provide a test of the cumulative evidence 
[26]. As can be seen in Fig. 2 (Stouffer), this method is smoother and more balanced.

The weighted version of this method is defined by:

It is still an open debate whether the weighted or unweighted version is preferential. 
However, it has been reported that if the weighted version is used, optimal results are 
obtained using weights proportional to the square root of the sample sizes [27, 28].

A third alternative method was created by Edgington and relies on untransformed p 
values. It was developed to combine probability values through an additive approach 
[29]:

with

and k being the number of individual studies. However, this is a rather conservative esti-
mate resulting in combined probability values that are too high when 

∑k
i=1 pi > 1 . To 

account for this, correction terms were added to the summation:

Zs =
∑k

i=1 Zi√
k

Zs =
∑k

i=1 wi ∗ Zi
√

∑k
i=1 w

2
i

Sk

k!

S =
k

∑

i=1

pi

Fig. 2  Figure illustrating the difference between Fisher’s combined probability test, Stouffer’s method, and 
Edgington’s method to aggregate multiple p values. Two times 25k p values have been randomly chosen 
to be subsequently combined by either of those three methods. Combined p values lower than 0.05 are 
classified as significant and plotted red
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Plus and minus signs alternate and the series continues until the numerator becomes 
negative. Finally, the result of this progression is compared to a chosen significance level 
on whether to reject the null hypothesis or not. As shown in Fig.  2 (Edgington), this 
combination method is much more conservative compared to Fisher’s and Stouffer’s 
approach.

A recommendable review on those three (and three additional) aggregation methods 
was published by Heard and Rubin-Delanchy [30] alongside some practical advises on 
how to chose a suitable method.
multiGSEA allows to choose from all above described approaches for p value combi-

nation, which are provided through the metap R package [31]. Both Fisher’s combined 
probability test and Stouffer’s method have been shown to control both type I and type II 
errors well upon p value combination. However, the weighted Z-transform method was 
reported superior regarding type II errors [25]. We are not aware of a comparable analy-
sis for Edgington’s method.

After computing combined p values, these can be adjusted for multiple testing. Since 
appropriate methods are available in R base packages, multiGSEA does not provide its 
own implementation. Type I and type II errors depend on each other and thus reducing 
type I errors through a p value adjustment will likely increase the chance of making a 
type II error and an appropriate trade-off has to be made [32, 33].

Finally, multiGSEA outputs a plain table listing the pathways with their single-omics 
and aggregated multi-omics p values and adjusted p values.

Results
Example use case

In the following, we will illustrate a use case scenario on human mitochondrial stress 
data. A comprehensive vignette of the multiGSEA package can be found in our git 
repository or at the Bioconductor package website.

Please visit the repository page to report issues, request features or provide other 
feedback.

Installation

For installation we recommend two ways: (i) use the BiocManager package from 
Bioconductor: 

(ii) use the devtools library [34] to install directly from our git repository: 

Sk
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Example data and pathway definitions

At the beginning we need to set up several prerequisites. This includes loading the 
package itself and those packages that are needed to map omics feature IDs such as 
transcript IDs or metabolite IDs (i). We furthermore need to load the multi-omics 
data (ii) and we have to download the pathway definitions where the enrichment 
should be calculated on (iii).

(i) Load the multiGSEA R package and the packages that are needed for the map-
ping of omics features IDs: 

Depending on the organism and omics layer for which an enrichment should be cal-
culated the users might need different packages that provide the necessary ID map-
ping information. In principle, the mapping of transcript and protein IDs relies on the 
AnnotationDbi package [16]. In this use case we want to analyse human data, and 
thus need to load the org.Hs.eb.db package which provides human specific map-
ping information [17]. When rat or mouse omics data should be analyzed, the user 
needs to load the corresponding packages org.Rn.eg.db [35] or org.Mm.eg.db 
[36], respectively. A list of supported organisms and their respective mapping pack-
ages can be found in the vignette. The mapping information for metabolites is inde-
pendent of the analyzed organism and only needs to be loaded when metabolomics 
data is used in the multi-omics enrichment. The metabolite mapping information is 
provided by the metaboliteIDmapping R package [18].

(ii) Load the multi-omics data sets: 

The multi-omics data set that is used in this example was originally published in its 
raw form by Quirós et al. [37]. In this publication the authors analyzed the mitochon-
drial response to four different toxicants, including Actinonin, Diclofenac, FCCP, and 
Mito-Block (MB), within the transcriptome, proteome, and metabolome layer. The 
original Actinonin data set was processed and log2 fold changes were calculated for 
all three omics layers. The processed data sets are deposited within the package and 
can be accessed with the data() command.
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Right after multiple omics data sets are loaded, we need to create a suitable data 
structure and calculate the ranked omics features for the following GSEA calcula-
tion. multiGSEA works with nested lists where each sublist represents an omics 
layer. Such a data structure is initialized with the initOmicsDataStructure() 
command: 

The feature ranks are calculated separately for each of the applied omics layers. In this 
example we simply use the signed and logarithm transformed p value [38] derived from 
the differentially expression analysis, which is implemented in the rankFeatures() 
command: 

Please note that every other ranking metric is, of course, possible as well, and the 
choice is up to the user. According to Zyla  et al. this decision does also have critical 
effects on the outcome of the gene set enrichment analysis [22]

(iii) Retrieve pathway definitions and map features to the same ID format as in your 
omics measurements: 

In this use case we merely retrieved KEGG-based pathway definitions but depending 
on the organism being analyzed up to eight different pathway databases can be queried. 
The function getMultiOmicsFeatures retrieves the pathway definitions from the 
specified databases, extracts the omics features thereof, and maps those features to the 
ID format that is been used in the omics data. Here, it maps Entrez Gene IDs and KEG-
GCOMP IDs that are used in KEGG pathways for transcripts/proteins and metabolites, 
respectively, towards Gene Symbols and HMDB identifiers, respectively.
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Run pathway enrichment

Now that we have ranked omics features and pre-formatted pathway definitions, we can 
calculate GSEA-based pathway enrichments for each omics layer separately by means of 
multiGSEA: 

The pathway enrichment within multiGSEA is done by the fgsea package [19]. This 
package allows to efficiently and accurately calculate arbitrarily low GSEA p values for a 
collection of feature sets. This speedup compared to the original GSEA implementation 
is basically accomplished because generated random gene sets are shared between dif-
ferent input pathways.

The returned data frame enrichment_scores contains nested lists for each ana-
lyzed omics layer and each omics-specific sublist contains the complete gene set enrich-
ment analysis for its respective layer.

Calculate aggregated p values

For further analysis, the function extractPvalues() creates a simple data frame 
where each row represents a pathway and columns represent omics related p values and 
adjusted p values: 

This data structure can then be used to calculate the aggregated p values and the 
adjusted p values. As explained in the workflow section covering the combination of 
multiple omics pathway enrichment p values (“Combined multi-omics enrichment” 
section), multiGSEA utilizes three different p value combination methods. By default, 
combinePvalues() will apply the Z-method or Stouffer’s method [26] which has no 
bias towards small or large p values. The two other options are Fisher’s combined proba-
bility test [24] and Edgington’s method [29]. These can be applied by setting the parame-
ter method to “fisher” or “edgington”, respectively. The choice to additionally correct for 
multiple testing is up to the user. It should be mentioned, however, that p value adjust-
ments have an effect on both type I and II errors. Here, we used the p.adjust() com-
mand to apply a Benjamini/Hochberg correction [39]. 
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Conclusions
The presented multiGSEA package substantially helps to minimize the drawbacks and 
restriction that have been identified in recent multi-omics enrichment tools. It utilizes 
a robust enrichment algorithm with GSEA that has been shown to keep both the type 
I and II error rate at a minimum. The multiGSEA package offers, furthermore, a high 
versatility and flexibility through the accessibility of eight different pathway databases 
and its support for 11 different model organisms. The user is able to calculate enrich-
ment scores for one, two, or all three provided omics layers and has access to a compre-
hensive mapping of omics features IDs on the transcriptome, proteome, and metabolite 
level. Finally, the whole process of data retrieval, mapping of feature IDs, the calculation 
of pathway enrichments, and the combination of those enrichment scores is wrapped 
into an intuitive and easy-to-use workflow which considerably simplifies the inference of 
biological meaning from multi-omics data sets.

Availability and requirements
The multiGSEA package is entirely written in R and available under the GPL-3 license. 
The package is part of the Bioconductor project to provide open source software for bio-
informatics at https​://bioco​nduct​or.org/packa​ges/multi​GSEA. The current development 
version of the package can be found on our GitHub page at https​://githu​b.com/yigbt​/
multi​GSEA or in the Bioconductor development branch at https​://bioco​nduct​or.org/
packa​ges/devel​/bioc/html/multi​GSEA.html.

Project name: multiGSEA
Project home page: https​://githu​b.com/yigbt​/multi​GSEA,
https​://bioco​nduct​or.org/packa​ges/multi​GSEA
Operating system(s): Platform independent
Programming language: R
Other requirements: No
License: GNU GPL V3.
Any restrictions to use by non-academics: No
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