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Background
The spatial separation of biological processes into different compartments constitutes 
one of the central features of eukaryotic cells. It allows for a specific control of pH, oxi-
dative state and metabolite concentrations as well as keeping transcriptional and trans-
lational processes separated. Furthermore, ionic gradients across organellar membranes 

Abstract 

Background:  Computational modelling of cell biological processes is a frequently 
used technique to analyse the underlying mechanisms and to generally understand 
the behaviour of these processes in the context of a pathway, network or even the 
whole cell. The most common technique in this context is the usage of ordinary dif-
ferential equations that describe the kinetics of the relevant processes in mechanistic 
detail. Here, it is usually assumed that the content of the cell is well-stirred and thus 
homogeneous - which is of course an over-simplification, but often worked in the past. 
However, many processes happen at membranes and thus not in 3D, but in 2D. The 
scaling of the rates of these processes poses a special problem, if volumes of compart-
ments are changed. They will typically scale with an area, but not with the volume of 
the involved compartment. However, commonly, this is neglected when setting up 
models and/or volume scaling also sometimes automatically happens when using 
modelling software in the field.

Results:  Here, we investigate generic as well as specific, realistic cases to find out, how 
strong the impact of the wrong scaling is for the outcome of simulations. We show that 
the importance of correct area scaling depends on the architecture of the reaction site 
and its changes upon volume alterations and it is hard to foresee, if it has a significant 
impact or not just by looking at the original model set-up. Moreover, scaled rates might 
exhibit more or less control over the behaviour of the system and therefore, accord-
ingly, incorrect scaling will have more or less influence.

Conclusions:  Working with multi-compartment reactions requires a careful consid-
eration of the correct scaling of the rates when changing the volumes of the involved 
compartments. The error following incorrect scaling - often done by scaling with the 
volume of the respective compartments can lead to significant aberrations of model 
behaviour.
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can be utilized for energy conversion as it is done by the proton gradient across the inner 
mitochondrial membrane, and nuclear signaling pathways require downstream factors 
to cross the nuclear membrane to reach their target. With compartmentalization playing 
such a central role in many processes, it comes as no surprise that researchers trying to 
understand these processes must take trans-membrane transport and other membrane 
bound processes into account.

As most biological processes are complex to a degree that a pure qualitative descrip-
tion of what is happening in a specific situation is not sufficient to fully understand the 
system in question, computational modeling has become an indispensable part of bio-
logical research [1]. A variety of modeling approaches exists. A commonly used descrip-
tion of metabolic networks on a higher level of abstraction describing flux distributions 
has become popular in recent years—whole genome-scale metabolic models that are 
based on stoichiometric information and do not require kinetic detail [2]. However, 
using more coarse grained information also limits the analysis and predictions of such 
models to more general results. Other, less frequently used computational modeling 
approaches include stochastic formalism [3], partial differential equations (PDEs) [4], 
Bayesian networks [5], Boolean descriptions [6] and Petri-Nets [7] to name just a few. 
The most common formalism used in computational modeling however are ordinary 
differential equations (ODEs) [8]. These allow detailed mechanistic descriptions of the 
involved processes in a given system, but also require some existing knowledge of these 
mechanisms and the corresponding kinetic parameters or—alternatively—a lot of quan-
titative experimental data to determine at least some of the parameters via parameter 
fitting. While modeling received more and more attention, a need for a standardized for-
mat for storing and exchange of models in different modeling software arose. Therefore, 
the systems biology markup language (SBML) format was developed [9] which allows 
loading and analysis of computational models with different software and platforms. 
This format is especially suitable, but not restricted to ODEs.

ODEs express the time-dependent change of a substance concentration as a function 
of this concentration, the concentration of other involved substances in the system, as 
well as of kinetic parameters p:

where Si is the vector of substance concentrations and p a vector of kinetic parameters. 
By means of numerical integration, the time-dependent concentrations of the respec-
tive substances can be obtained. During the process of constructing an ODE model, 
the modeler needs to carefully examine which molecular species and reactions to con-
sider: On the one hand, all relevant processes of a system need to be captured. On the 
other hand, the model shouldn’t be unnecessarily complicated avoiding high computa-
tional costs during analysis and difficulties in being able to understand the behavior of 
the system in an adequate way. The same careful choices must be made when choos-
ing the kinetic rate law for each reaction and information about the reaction mecha-
nism is required during this process. In general, the velocity of a reaction is composed 
of the velocity of the forward reaction subtracted by the one of the backward reaction 
expressed as concentration change:

(1)
d[Si]

dt
= f ([Si(t)], p)
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which in the simple case of a reversible mass-action-governed reaction such as

would read

with equilibrium constant

Here, [S] and [P] denote the substrate and product concentrations and kf  , kr the kinetic 
constants of the forward and reverse reaction. More complicated kinetic terms, e.g. 
describing saturating rate laws as often caused by enzymatic catalysis like Michaelis–
Menten or involving inhibitors and activators in the system are common in the cell bio-
logical context [10].

These expressions, like the above Eq.  (3), are however only valid when the reactions 
occur within a single compartment. The reason for this is that the reaction velocity 
explicitly contains the concentrations of the reactants. If the reaction occurs across a 
membrane, such that S and P are present in different compartments with different vol-
umes V1 and V2 , respectively, the decrease of the concentration of S during a reaction 
instance does not lead to an equal increase of the concentration of P. To account for 
this, in many models, trans-membrane reactions are scaled with the volume ratio of the 
respective compartments (e.g. [11]). Another approach is required by SBML, where the 
usage of particle numbers instead of concentrations is the standard. Here, rates of trans-
port reactions describe particle fluxes. This standard was selected to avoid problems as 
discussed below. However, in this case, again, one could be tempted to assume that for 
obtaining the reaction velocity now in terms of changes in molar amounts, it is suffi-
cient to multiply the rates with the respective volumes of the compartments in which the 
respective substances reside in:

nS, nP being the molar amounts of S and P.
Indeed, both of the above scenarios (scaling with the volume ratio in the case of con-

centration changes or with the volumes in the case of molar amounts) can be found in 
publications and software in the field. However, in many, if not most cases the rate of 
a trans-membrane transport process will not scale with the volumes of the respective 
compartments—be it in the case of using particle numbers or in the case of concentra-
tions. Instead, the transport rate scales with the amount of transporters present in the 
membrane, or in the case of diffusion of lipophilic substances through the membrane, 
simply with the area of the membrane. A very detailed description of different geo-
metrical scenarios and the correct equations for each of these cases was recently pub-
lished [12]. Therefore, the scaling of reaction rates should take into account the number 

(2)ν = νf − νr

S ←→ P

(3)ν = kf ∗ [S] − kr ∗ [P]

(4)Keq =
kf

kr

(5)νn = V1 ∗ kf ∗
nS

V1

− V2 ∗ kr ∗
nP

V2



Page 4 of 12Holzheu et al. BMC Bioinformatics           (2021) 22:21 

of transporters in the membrane, or, assuming a constant transporter density, the sur-
face area of the membrane. Thus, when changing volumes of compartments and subse-
quently adjusting the rate of a transport process, in the latter case, one has to compute 
the change in area A rather than taking into account the change in volume:

Depending on the exact nature of the architecture of the compartments and their inter-
face the area might change at least in a non-linear correlation with the volume or it 
might not change at all, as we will discuss below. For example, when looking at sphe-
roidal compartment such as the nucleus, the volume is approximately given as 4

3
π ∗ r3 , 

while the surface reads 4π ∗ r2 . Consequently, the difference in reaction velocities 
between the two scaling approaches in this case scales linearly with r. In other situations, 
the volume and surface of the compartment of interest can have a nonlinear relation, as 
a growth in surface does not necessarily go along with a similar change in volume.

The impact of the precise scaling on the system’s behaviour is of course also influenced 
by the sensitivity that the behaviour exhibits with respect to the exact reaction rate 
under consideration. Therefore, it can be useful to calculate the sensitivities of the model 
output regarding the rate of the transport reaction which is altered by the scaling. If 
there is only very little sencitivity and therefore large robustness with respect to this spe-
cific rate, the difference made by the exact scaling will also not be of major importance.

While a first-order reaction in a homogeneous system has the unit s−1 , the need for 
area scaling can lead to unusual units of the resulting phenomenological kinetic param-
eters, as in the above described case: m ∗ s−1 for kaf  and kar . This is however no problem 
if one carefully assesses the meaning of the affected parameters.

Since what is stated above is not yet common practice among modelers, we investigate 
in the following the implications of not taking the surface area at which a transport reac-
tion proceeds into account. We examined several published multi-compartment models 
without area scaling. We further compared their behavior in diverse physiological cir-
cumstances, where volume ratios or the area to volume ratio change. Here, we demon-
strate that the correct behavior can be obtained with any modeling approach as long as 
the parameters are treated accordingly.

Results
Vertical transport between root cells

Before studying the effects of different compartment conformations on models from 
the BioModels database, we first sought to understand the consequences of the different 
model structures in a simple toy model. Here, we used a model describing the vertical, 
reversible transport in Arabidopsis thaliana root epidermis cells. A particular character-
istic of plant root cells is that they increase mostly in length and only to a small degree 
in width [13]: Young cells at the root tip (Fig. 1—blue) are much smaller than mature 
cells in the older tissue (Fig. 1—orange). Consequently, the vertical interaction surface 
between cells changes on a vastly different scale compared to either total cell surface 
or cell volume. Considering the fact that directional transport between cells is a crucial 
aspect to proper plant development [14], any model of such processes would have to 
account for the special characteristics of plant cells.

(6)νn = A ∗ (kaf ∗ [S] − kar ∗ [P])
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For this simplistic model, we analysed the transport of a species X between two epi-
dermis cells in the A. thaliana root. This model comprises only one reaction:

where X1 and X2 denote X in epidermis cells A and B, respectively. The cell sizes were 
chosen according to the measured dimensions of epidermis cells in the different root 
regions [13]. As we simulated the transport of X1 from an older and therefore larger cell 
to a younger (smaller) cell, we analysed four different transit situations (Fig. 1—1 to 4) 
that cover the whole range of cell sizes starting with the younger cells (transition 1 red → 
blue) to the oldest tissue (transition 4 orange → green).

We set the initial concentration of X1 to 1 µM . This allows for an easy evaluation of 
not only the equilibrium concentrations of X in both cells but also of the speed, at which 
the equilibrium is reached. In particular, we analysed three different implementations 
of multi-compartment reactions: one universal compartment, multiple compartments 
with volume scaling and multiple compartments with area scaling using the membrane 
area between the cells. The parameters were adjusted so that the models exhibit identical 
behavior for scenario 1 (Fig. 1). For all subsequent simulations, the parameters were left 
unchanged to illustrate the differences of the different modelling assumptions (see Addi-
tional file 1: Tables S2 and S3).

X1 ←→ X2

Fig. 1  Impact of different modeling approaches on the vertical transport between root cells. The transport 
of species X was simulated for two epidermis cells at four different positions along the root vertical axis 
representing the different developmental zones: 1—from the meristematic zone (blue, smallest cell volume 
and age) to the transition zone (red); 2—within the transition zone (red); 3—from the transition zone (red) to 
the elongation zone (green); 4—from the elongation zone (green) to the maturation zone (orange, largest 
cell volume and age). a Simulations of the area-scaling model. b Simulations of the one compartment model. 
c Simulations of the volume-scaling model. Parameters are listed in Additional file 1: Table S1
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As illustrated in Fig. 1, the different implementations of the model react in different 
ways to changes in cell size. Here, the realistic area scaling model shows a clear delay in 
reaching the equilibrium as cell sizes increase (blue → red → green → orange) (Fig. 1a). 
Furthermore, the equilibrium concentrations of X1 and X2 shift on account of the differ-
ent cell sizes. In contrast to this, the model consisting of a single compartment shows no 
change between the different scenarios (b). Last, the volume scaling model demonstrates 
a great shift in equilibrium concentrations as the transport rates are scaled with the indi-
vidual compartment sizes (c). Unlike the area scaling model, X reaches the equilibrium 
at approximately the same time in the different scenarios. Altogether, this simple trans-
port model already demonstrates that the consideration of the proper and adequate scal-
ing can make a difference.

Introducing area scaling to more complex models

Next, we analysed two realistic examples from the BioModels database. Here, we con-
sidered a RanGTP shuttling model [15], (BioModelsID 192) and a TGF-β model [16], 
(BioModelsID 342). To select these models we analysed the curated model entries of the 
BioModels database according to the compartmentalization. Here, we considered the 
number of compartments as well as the compartment size. Notably, only a small fraction 
of entries consisted of multi-compartment models with realistic compartment sizes (22 
out of 825 curated models, see Additional file 1: Table S1). The vast majority of models 
comprises only one compartment.

Nuclear transport of HeLa cells is robust during growth

The RanGTP model by Görlich et al. (Fig. 2a) describes the shuttling of RanGTP from 
the nucleus to the cytoplasm and the transfer of RanGDP from the cytoplasm into the 
nucleus, the conversion reactions between RanGTP and RanGDP and the  (un-)bind-
ing of nucleo-cytoplasmic shuttling factors (Fig. 2a) [15]. This model was used to dem-
onstrate that the maintenance of a large RanGTP gradient requires a sufficiently large 
cytoplasm showing that compartment sizes themselves already have an impact on cel-
lular behavior [15]. As the RanGTP concentration in the model is sensitive to changes 
in the transport reactions (see Additional file 1: Table S4), we included a scaling factor 
describing the area of the nuclear envelope to scale these reactions with the nuclear area 
instead of the volume. In particular, there are two model reactions occurring between 
different compartments—the transport of RanGTP and RanGDP—are scaled with the 
nuclear volume in the original model (see Additional file 1: Section 4). Here, we changed 
the kinetic rate laws of those two processes to a nuclear area scaling version, with the 
kinetic parameters kpermRanGDP and kpermRanGTP adjusted such as to reproduce the origi-
nal model’s behavior (Fig. 2b).

There are two model reactions occurring between different compartments—the trans-
port of RanGTP and of RanGDP. These are scaled with the nuclear volume in the origi-
nal model. Here, we changed the kinetic rate laws of those two processes to a nuclear 
area scaling version, with the kinetic parameters kpermRanGDP and kpermRanGTP adjusted 
such as to reproduce the original model’s behavior (Fig. 2b).

HeLa cells, upon which the model is based, undergo growth in both cytoplasm and 
nuclear volume during cell cycle progression. The cell volume varies on average between 
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2.2 and 5.2 ∗ 103 µm3 , whereas the nuclear volume varies between 1.6 and 2.6 ∗ 103 µm3 
[17]. Assuming that a larger cell volume corresponds to a larger nuclear volume (due 
to DNA duplication before cell division), this results in the compartment sizes listed in 
Table 1. We subsequently simulated the behavior of both the area scaling and the volume 
scaling model for all cell sizes listed in Table 1. Here, the volume scaling model (c) shows 
a slower dynamics compared to the area scaling model (d), both reaching the same 
steady state concentrations for the different cell sizes. The differences in these cases are 

Fig. 2  Analysis of the RanGTP shuttling model by Görlich et al. a Model reaction scheme according to the 
SBGN standard. b Reproducing the behavior of the original model (red) with the area scaling model (blue). 
c Simulations of the volume scaling model at different cell sizes. d Simulations of the area scaling model at 
different cell sizes. Color code: green—small cell; orange—medium cell; red—large cell

Table 1  Cytosolic and nuclear compartment sizes of the HeLa cells [17]

Nuclear volume and surface area were calculated based on the nuclear cross-section

Original model Small cell Medium cell Large cell

Cell volume [µm3] 1.8 ∗ 104 2.2 ∗ 103 3.7 ∗ 103 5.2 ∗ 103

Nuclear cross section [µm2] NA 155 200 245

Nuclear volume [µm3] 1.2 ∗ 104 1.45 ∗ 103 2.13 ∗ 103 2.88 ∗ 103

Nuclear surface [µm2] 2533.88 619.28 800.23 979.79
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not particularly significant, especially for the medium (red) and large (orange) cell sizes. 
This demonstrates that including the area as a scaling factor is not always necessary, 
especially if the qualitative outcome is more important than the quantitative. However, 
even though relative size changes of the two compartments in this example are small, 
there is already a notable difference which also points out that larger differences would 
result in significant differences in model behavior if unrealistic scaling (to the volume) is 
taken into account.

Altered nuclear morphology in cancer cells affects signalling response

The model of Zi et al. describes the TGF-β induced Smad2 signaling pathway (Fig. 3a). 
The authors constructed the model to investigate the differential effects of variable TGF-
β-doses on the intracellular signal dynamics, finding distinct responses of the cell to 
both sustained and pulsating TGF-β-stimulation.

The model reactions include the binding and unbinding of TGF-β to T1R and T2R 
and their recycling at the plasma membrane, complex formation of R-Smad with 

Fig. 3  Analysis of the TGF-β induced Smad2 signaling pathway by Zi et al. a Model reaction scheme 
according to the SBGN standard. b Reproducing the behavior of the original model (red) with the area scaling 
model (blue). c Comparison of the simulations of the volume scaling model and the area scaling model at 
both increased cell and nuclear size. d Comparison of the simulations of the volume scaling model and the 
area scaling model at increased nuclear surface area



Page 9 of 12Holzheu et al. BMC Bioinformatics           (2021) 22:21 	

Co-Smad and the shuttling of R-Smad, Co-Smad and the Smads-complex across the 
nuclear envelope. Similar to the RanGTP model, the processes of nuclear shuttling were 
changed from being scaled with the nuclear or cytoplamic volume to being scaled with 
the nuclear membrane area (see Additional file 1: Section 5). The affected parameters 
were again adjusted to deliver the same output as before. The model was originally con-
structed using data from HaCaT cells, a human keratinocyte cell line. Skin cancer cells, 
as many other forms of cancer cells, often exhibit nuclei with irregular shapes as well 
as being bi- or multinucleated in several cases [18], both facts contributing to a higher 
surface area to volume ratio, thus posing a potential situation in which the differential 
behavior of volume- and area-scaled models can be observed.

The possible range of alterations here is large, so for the sake of this study, we ana-
lysed the effect of an increase of both the nuclear and cell radius by 50% (Fig. 3c) and the 
effect of a 50% increase of the nuclear surface area while keeping all volumes constant 
(Fig. 3d). This change affects only the area scaled model as in the volume-scaled version, 
the nuclear surface is not a parameter considered. Analogously to the example above, 
the parameters of the area-scaled model were adjusted to replicate the models original 
behavior (Fig. 3b) and we compared the simulations of both the original, volume-scaled 
model with the area-scaled one (Fig. 3c, d). Furthermore, the scaled sensitivities of the 
Smads-complex concentration to the transport reactions were calculated and shown 
to be sufficiently high (Table S5), suggesting that a change of the transport rates has a 
noticeable influence on the signaling output. It can be seen that both the steady state 
value of nuclear Smads-complex and especially its transient are different in both model 
versions, e.g. the peak concentration of nuclear Smads-complex in the area-scaled 
model is around 10% lower than in the volume-scaled version when both the cellular and 
nuclear volumes are increased by 50%, while its peak concentration is around 14% higher 
when just the nuclear area increased by 50%. Again, the differences are not huge. How-
ever, if the models serve a quantitative purpose they are significant enough. This result 
corroborates that depending on the system under investigation, a careful consideration 
of the scaling of trans-compartmental rate laws can change the model predictions.

Discussion
Kinetic modelling of biological systems has the potential to enhance our understanding 
of the respective processes. A good model can prevent unnecessary experiments and aid 
in the analysis of a system in states that are difficult to access experimentally. Compu-
tational models always represent a simplification of reality. Therefore, it is important to 
carefully examine the assumptions applied in the respective model as to not undermine 
its predictive power. These assumptions can concern the formulation of biochemical 
reactions, compartment sizes or the time-scale of different processes. In particular, bio-
chemical reaction velocities typically scale with the amount of enzymes present in the 
cell. For transport processes the rate of the reaction scales with the number of transport-
ers. If no accurate measurements of transporter concentrations are available, the mem-
brane area of the respective compartment can serve as proxy.

In this study, we examined the effects of changing cell sizes both through growth and 
other, e.g. carcinogenic processes on multi-compartment processes in ODE models. So 
far, the effects of cell size and shape have been examined in PDE models, where they 
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influence the response in signaling pathways [19] and, on the macroscopic level, deter-
mine physiological as well as developmental outputs [20]. In contrast to this, the effects 
of changing cell shape or size on the simulations of ODE models have been largely 
ignored. While a great number of metabolic processes involve more than one compart-
ment, the existence of different compartments is not always considered explicitly in the 
respective ODE model. To avoid the complications of including several compartments, 
pathways are often simplified to comprise only one compartment or omit the existence 
of the membrane.

In fact, the majority of curated models in the BioModels database consists of one com-
partment. This simplification implies by no means that the resulting model is wrong or 
in any way unable to describe the experimental data correctly. However, as the respec-
tive model comprises only one compartment or the membrane is not explicitly included 
as scaling factor, the kinetic parameters of any multi-compartment reaction will implic-
itly include that information. Therefore, these models are only correct for that particu-
lar cell size with that particular spatial conformation. Any change in the compartmental 
situation, i.e. cell shape, can necessitate the adaptation of model parameters—and not 
just the respective volumes themselves.

Depending on the modeled system, the effects of changing cell shape or size can affect 
the model behavior greatly. As illustrated by the model describing the vertical trans-
port between A. thaliana root cells, growth can have a big impact on the speed of these 
processes. While this model nicely demonstrates the necessity of adjusting parameter 
values, not all cells grow as much as A. thaliana epidermis root cells that expand from 
an initial length of 8 µm to up to 220 µm in length. In fact, for the measured cell and 
nucleus sizes for HeLa cells [17], the behavior of the RanGTP shuttling model varies 
little between the different settings: While the RanGTP concentration is sensitive to 
changes in the transport reactions, the model response is quite robust as we change both 
reactions, nucleoplasmic and cytoplasmic transfer, concomitantly by the same factor.

In contrast to this, changing the compartment sizes caused a notable difference in the 
output of the TGF-β signaling model by Zi et al.. Not only is the Smad-complex concen-
tration sufficiently sensitive to the transport reactions, but the model architecture also 
means that the change compartment size has a notable impact on the output function. 
In more general terms, this means that—depending on how the system is decoded (sig-
nal amplitude versus signal duration)—the area scaling model would transmit different 
information than the volume scaling model unless the parameters are carefully adjusted.

Conclusions
Altogether, our analysis demonstrates that including the membrane as scaling factor—
or at least carefully adjusting the parameters of multi-compartment reactions—can be 
necessary to observe the correct model behavior. Nonetheless, the exact impact of not 
adjusting the model on the simulated behavior depends on the modeled system itself, 
its geometry and the control that a transport reactions holds over the behavior of the 
system.

It is important to note that there are software tools that always automatically scale with 
the volume, if this is changed. According to the above said this is clearly wrong. Software 
like COPASI does correctly assume the user to know about particle fluxes and adjust these 
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according to the impact that a changing volume of a compartment has. It also recently 
allowed for the definition of two-dimensional compartments, which should lead to more 
models considering the membrane as compartment or scaling-factor.

Methods
For model selection, we used the EBI BioModels database. From the curated models pub-
lished there (last accessed: 10.07.2019), we selected the ones comprised of at least two dif-
ferent compartments with non-arbitrary volumes. Of those, we excluded models in which 
only the ratios between biological compartment volumes are considered as well as pharma-
cokinetic models (Table S1).

The selected models were analysed and modified using the modeling software package 
COPASI, version 4.23 [21]. The time-courses of the relevant species’ concentrations were 
determined deterministically using LSODA as implemented in COPASI. Scaled sensitivi-
ties of steady-state concentrations and transient concentration maxima were calculated 
with COPASI as well.
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