
G‑Tric: generating three‑way synthetic
datasets with triclustering solutions
João Lobo1, Rui Henriques2 and Sara C. Madeira1*

Abstract 

Background:  Three-way data started to gain popularity due to their increasing
capacity to describe inherently multivariate and temporal events, such as biological
responses, social interactions along time, urban dynamics, or complex geophysical
phenomena. Triclustering, subspace clustering of three-way data, enables the discov-
ery of patterns corresponding to data subspaces (triclusters) with values correlated
across the three dimensions (observations × features × contexts). With increasing
number of algorithms being proposed, effectively comparing them with state-of-
the-art algorithms is paramount. These comparisons are usually performed using real
data, without a known ground-truth, thus limiting the assessments. In this context, we
propose a synthetic data generator, G-Tric, allowing the creation of synthetic datasets
with configurable properties and the possibility to plant triclusters. The generator is
prepared to create datasets resembling real 3-way data from biomedical and social
data domains, with the additional advantage of further providing the ground truth
(triclustering solution) as output.

Results:  G-Tric can replicate real-world datasets and create new ones that match
researchers needs across several properties, including data type (numeric or symbolic),
dimensions, and background distribution. Users can tune the patterns and structure
that characterize the planted triclusters (subspaces) and how they interact (overlap-
ping). Data quality can also be controlled, by defining the amount of missing, noise or
errors. Furthermore, a benchmark of datasets resembling real data is made available,
together with the corresponding triclustering solutions (planted triclusters) and gener-
ating parameters.

Conclusions:  Triclustering evaluation using G-Tric provides the possibility to combine
both intrinsic and extrinsic metrics to compare solutions that produce more reliable
analyses. A set of predefined datasets, mimicking widely used three-way data and
exploring crucial properties was generated and made available, highlighting G-Tric’s
potential to advance triclustering state-of-the-art by easing the process of evaluating
the quality of new triclustering approaches.

Keywords:  Three-way data analysis, Three-dimensional data, Triclustering, Synthetic
data generation, Unsupervised learning, Subspace clustering

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​
cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Lobo et al. BMC Bioinformatics (2021) 22:16
https://doi.org/10.1186/s12859-020-03925-4

*Correspondence:
sacmadeira@ciencias.ulisboa.
pt
1 LASIGE, Faculdade de
Ciências, Universidade de
Lisboa, Campo Grande 016,
1749‑016 Lisbon, Portugal
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03925-4&domain=pdf

Page 2 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

Background
Current developments in technologies related to data collection, storing, and processing
allowed several fields of expertise to start exploring new ways of describing their activi-
ties using the data they produce. Data that will, then, be analyzed to extract meaningful
information to help decision-making processes or to draw conclusions about cases in
study. In recent years, three-way data (observations × features × contexts), also referred
as three-dimensional, tridiac, tensor, or cubic data, gained popularity due to their capac-
ity to describe events related across several dimensions (three, in this case) and have
properties that evolve with them. Different applications can be found across several
domains, such as biological, medical, social, financial or geophysical data analysis [1].

In biology, three-way gene expression data, represented as gene-sample-time [2–4], is
used to study how genes are expressed during the progression of a disease, or treatment,
and unravel complex biological and physical processes that influence their evolution.

Three-way data are also capable of capturing behaviors and trends common to several
individuals, being able to represent how communities function and respond together.
Notable examples can be found in medical data analysis, where temporal patient data
(patient-feature-time) [5] is used to describe patient profiles and disease progression
patterns during patient follow-up. Alternatively, in social data [6], individuals’ prefer-
ences (individual-feature-time) and interactions (individual-individual-time) are col-
lected to improve the contents provided, recommendations, to serve communities of
users sharing similar tastes.

In the financial domain, these data are used to study trading and stock investing to
improve profits. Stock-ratio-data [7] are used to relate stock prices and their respective
financial ratios during a time interval and can be used to identify groups of stocks whose
performance on different indicators can influence their prices.

To foster knowledge discovery from three-way data, further advances are needed in
triclustering [1], a new subspace clustering technique, proposed to enable the search for
patterns that correlate subsets of observations, showing similarities on a specific subset
of features, and whose values are repeated or evolve coherently across a third dimension,
generally time or space.

Several triclustering algorithms were already proposed [1], based on different
approaches, able to find different types of patterns, with distinct structures and tolerat-
ing noise and/or missing values. These approaches range from heuristic-based methods
to exhaustive ones, to balance the complexity of the task (NP-Hard [1]) with the number
of patterns that they can find. In this context, a key task during the development of a
new algorithm is the evaluation of how good the found solutions are, where a tricluster-
ing solutions is a set of triclusters. This evaluation is usually performed by testing the
new method with available data and checking the quality of the found triclusters using
a predefined set of metrics evaluating different properties, such as homogeneity, size or
statistical significance.

Real datasets are used in general during these tests, but this procedure has signifi-
cant limitations. Since there is no previous knowledge about the type of patterns that
are expected to be found, there is no ground truth, that is, a known baseline solution
that can be compared with the algorithm’s output to assess its effectiveness, besides its
efficiency. This means that each new algorithm can find different groups of triclusters,

Page 3 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

outputting a triclustering solution with distinct size and characteristics. This makes it is
difficult to establish an objective and independent criteria to evaluate them.

Synthetic datasets are one way to surpass this limitation. These data can be custom-
ized, generated containing specific properties, defined by the author, and a set of planted
triclusters (triclustering solution) with known structures, and then used to better assess
algorithms’ performance using ground truth.

Despite the inherent advantages of generating triclustering data, to our knowledge, no
three-way data generator is available to allow the generation of triclustering solutions.
Therefore, each author has to generate their own data. This task is critical, can be time
consuming, and even assuming synthetic data is generated correctly their properties can
be, and usually are, biased towards the triclustering algorithm under evaluation. Fur-
thermore, they are then used to compare the new algorithm with the state-of-the-art, in
turn proposed and evaluated using other data, compromising the validity of some com-
parisons, and making them unfair, even if experimentally correct. Several authors [2, 3,
5, 6] generated specific data to test their algorithms.

In this context, we propose a new synthetic data generator, G-Tric, able to generate
three-way datasets with planted triclusters (triclustering solution), where the user can
define several properties regarding the dataset and the planted solutions (customized
dataset and solution properties). Concerning dataset properties, the generator can cre-
ate numeric or symbolic data, with default or custom alphabets, using backgrounds fol-
lowing predefined statistical distributions, and allowing a predefined amount of noise,
missing values, and errors. Regarding solution properties (the planted triclusters), the
user can define: (1) how many triclusters should be planted (solution size) and how their
structure is defined using statistical distributions; (2) what type of patterns should to be
planted; (3) what are the overlapping properties of triclusters; and (4) what is the amount
of noise, missing values, and errors allowed in each tricluster. We also ensure the user to
be able to generate datasets with varying sizes without worrying with scalability issues.

Besides the ability to easily generate customized three-way data with triclustering
solutions, the proposed generator enables the possibility to perform benchmarks on
existing algorithms to study their efficiency within certain conditions, or their effective-
ness in finding different types of patterns, by allowing the creation of several datasets
with an extensive board of characteristics. This provides the unprecedented opportu-
nity to comprehensively assess the strengths and limitations of state-of-the art and new
triclustering algorithms, promoting the advance in the area of three-way data analysis.
To this end, we provide an initial set of generated benchmark datasets, that can then be
extended using the software.

The paper is organized as follows. The rest of this section defines the triclustering task
and its associated properties, such as coherence, quality, and evaluation methods. Sec-
tion "Related work" reviews the state-of-the-art, concerning synthetic data generation.
Section "Implementation" briefly discusses the software architecture, presents a possible
representation for the problem, and describes and exemplifies each feature of the generator.
Section "Results" presents the set of datasets generated, identifying the kind of problems
they describe, and the associated properties. Finally, section "Conclusions" draws conclu-
sions. As supplementary material (Additional file 1), we further provide a guide containing
the mapping between the set of properties the user can define to create a new dataset and

Page 4 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

displaying the respective way of doing it in the interface. By using a toy example, this exam-
ple can serve as a tutorial.

Triclustering task

Definitions

Definition 1  A three-way dataset, also termed three-dimensional dataset, D, is char-
acterized by n observations X = {x1, . . . , xn} , m features Y = {y1, . . . , ym} and p contexts
Z = {z1, . . . , zp} . Analogous to 2D data-matrices, the data in 3D datasets can be real-
valued or symbolic. Each element, aijk , relates an observation xi , an attribute yj and a
context zk [1].

This kind of datasets allows the representation of temporal data, when contexts correspond
to time points. If the value of a particular object is fixed, such as observation, a features, or
a context, a 2D data matrix is obtained, being called a slice. Figure 1 shows an illustrative
dataset D represented as a set of slices according to the size of the context dimension.

Definition 2  Given the 3D dataset D, a tricluster, T = (I , J ,K) , is a subspace of the
original dataset, where I ⊆ X , J ⊆ Y and K ⊆ Z are subsets of observations, features
and contexts, respectively [1].

Definition 3  In this context, the triclustering task consists in finding the set of tri-
clusters T = {t1, . . . , tn} , such that each Ti ∈ T satisfies specific properties, such as,
homogeneity and statistical significance, as defined below [1]. Figure 2 shows the data-
set with the set of triclusters resulting from a triclustering task (a triclustering solution)
highlighted. Figure 3 shows, in detail, the four triclusters in these triclustering solution.

Coherence

The types of patterns that the triclustering task is able to find are defined by the type
of coherency that the desired subspaces can express. These subspaces can be correlated
according to the following assumptions:

Fig. 1  Example of Dataset D (10 observations × 10 features × 3 contexts). Each 2D matrix represents a
context with 10 observations × 10 features

Page 5 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

(1) Constant: subspaces that exhibit constant [symbolic data (Eq. 1)] or approximately
constant [real-valued data (Eq. 2)] values.

where aijk is the value of observation i, feature j and context k, c is the common value
(seed) and ηijk corresponds to noise. Figure 3a shows an example of a constant tricluster.

(2) Additive: where each element is correlated through the sum of a factor from each
dimension,

where αi , βj and γk are contributions from observation xi , feature yj and context zk . The
assumption can be fully additive when αi = 0 , βj = 0 and γk = 0 , or partially additive

(1)aijk = c,

(2)aijk = c + ηijk ,

(3)aijk = c + αi + βj + γk + ηijk ,

Fig. 2  Dataset D highlighting a triclustering solution with four triclusters, colored blue, red, green and yellow

Fig. 3  Set of triclusters found by a triclustering task on dataset D in Fig. 1 and highlighted in Fig. 2
(triclustering solution of size 4). Since there is an overlapping between triclusters c and d, the elements
(x9, y6, z1) and (x9, y6, z2) represent the individual contributions for the additive plaid model presented in Fig. 2

Page 6 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

otherwise [1]. Figure 3c shows and example of a full additive triclusters with c = 2 ,
αi = γk = {1, 2, 3} , and βj = {1, 2}.

(3) Multiplicative: when the tricluster can be obtained through a product of terms
from each dimension,

where αi , βj and γk are contributions from observation xi , attribute yj and context zk . The
assumption can also be full or partial multiplicative. Figure 3b shows an example of a full
multiplicative tricluster, where c = 1 and αi = βj = {1, 2, 3} , and γk = {1, 2}.

(4) Order preserving: when instead of looking at the actual tricluster’s values, the
search goal is to find linear orderings across a specific dimension. For example, a matrix
can be order preserving across columns, if there is a permutation of the said dimension
for which each row has an increasing sequence of values [8]. On a three-dimensional
dataset, it is expected that this ordering is maintained across different contexts. An order
preserving tricluster across columns is shown in Fig. 3d.

Plaid effects

Unlike other clustering methods, and similarly to biclustering [9, 10], in triclustering an
element (observation, feature or context) can be part of more than one cluster (triclus-
ter), or in none. When a set of elements belong, simultaneously, to a group of triclusters,
we are in the presence of overlapping triclusters. Overlapping regions between two
or more triclusters can be described in accordance to a plaid assumption. Under this
assumption, the value of an element that participates in multiple triclusters is a func-
tion of the expected value from each tricluster. As such, elements are defined using the
cumulative effects of the overlapping triclusters considering two assumptions: additive
(5) or multiplicative (6), where each element is computed by the sum or the product of
the individual contributions of each tricluster.

where θijkt defines the contribution from tricluster Bt = (It , Jt ,Kt) and ρit , κjt and τkt
are binary values that indicate if observation i, attribute j and context k are present on
tricluster t. Figure 2 shows an overlapping example, with an additive plaid assumption,
between the red and blue triclusters. Figure 3 reveals the individual contributions of
each tricluster in the overlapped region.

Quality

The triclustering task should be able to tolerate predefined levels of noise (deviations
from the expected values) within the data under study, as well as, missing data (values
of a particular observation that are not available) or errors (values whose deviation level
is higher than that found in noisy elements, caused by incorrect measurements, for

(4)aijk = c ∗ αi ∗ βj ∗ γk + ηijk ,

(5)aijk = c +

q∑

t=0

θijktρitκjtτkt ,

(6)aijk = c +

q∏

t=0

θijktρitκjtτkt ,

Page 7 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

example). The higher the amount of these defective values, the lower the quality of the
data, impacting the desired coherency for a given subspace.

Evaluation

After obtaining a triclustering solution, it is necessary to evaluate its correctness and
quality, to be able to compare solutions. This analysis should be carried out using met-
rics that measure different views, with two existing goals: single solution evaluation and
comparison between solutions.

Single solution evaluation

The first perspective tries to assess how good a found solution is by evaluating its quality
across different performance views. This solution can be evaluated either by extrinsic
methods, where a known ground truth exists, or by intrinsic methods, where there is
not any prior information about the subspaces that can be present on the dataset under
study.

Regarding extrinsic metrics, generally, a set of known triclusters is planted on the
dataset, and each algorithm is supposed to find them. The solutions found are then com-
pared with the planted subspaces, and the higher the number of shared elements is, the
better they are. This comparison can be made using metrics based on F-Measure [11]
and Jaccard-based scores [6], for example, or the 3D Revised Match Score (RMS3) pro-
posed by Henriques and Madeira [1].

The solution’s intrinsic quality can be computed by evaluating its coherence, by calcu-
lating its degree of intra and interplane homogeneity, that is, correlation between values
across two or more dimensions, using metrics such as MSR [12], Pearson [2] and Spear-
man correlations [13], that can be extended to a third dimension, or Mutual Information
Score [14].

In addition, metrics that consider the statistical significance of a tricluster can be ben-
eficial to distinguish true triclusters from random patterns on the dataset. This would
allow a reduced number of false-positive (triclusters that appear by chance) and the
number of false-negative (real triclusters that are excluded from the solution) [1]. This
evaluation can be done through methods that analyze deviations between the observed
data and the underlying data distributions [15], thresholding methods [16], or size
expectations collected from randomized data [17]. However, these tests are limited by
the allowed homogeneity criteria and placed assumptions on the underlying data.

Another view on the quality of the solution is to evaluate how insightful and meaning-
ful the triclusters found are to the problem at hand. How actionable are the triclustering
results? For instance, in biological domains [3, 5, 13], functional annotations and gene
ontologies are used to extract meaning from the sets of genes found and to understand
why they are correlated.

Comparison between solutions

Comparison of triclustering algorithms is also key to identify their relative strengths and
weaknesses. Relevant comparisons can be made either by studying the inherent struc-
ture and coherency of the produced solutions, establishing a framework of compari-
son, and combining it with information about the background or prior information of

Page 8 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

planted solutions. Also, by their actionability and relevance to the problem to which the
algorithms are applied.

In this context, the extrinsic metrics, discussed above to evaluate one triclustering
solutions, can be extended to compare solutions produced from different algorithms.
The intrinsic scores achieved by different algorithms can also be compared side-by-side.
According to Horta and Campello [18], in order to perform a correct analysis of the
quality of each biclustering solution, the evaluation metrics should respect eight prop-
erties that are intended to favor algorithms than can clearly distinguish different pat-
terns. In particular, the ability to retrieve maximal subspaces, that is, subspaces that are
not included on a larger subspace, and can do so without adding noise to increase the
subspace’s area. The authors studied 14 similarity measures and verified the ones that
respect most of the properties were the Clustering Error (CE) [19] and a measure of soft-
clustering, CSI. Since triclustering is an extension of biclustering, both metrics could be
extended and used to evaluate triclustering solutions.

Authors proposing triclustering algorithm have also defined comparison metrics to
test the performance of the developed algorithms against the existing state-of-the-art.
Bhar et al. [20] used a set of metrics, such as TQI, Affirmation Score, Coverage and SBD
to perform the comparisons. Gutiérrez-Avilés et al. [21] proposed a new metric, TRIQ,
to evaluate triclustering algorithms by combining correlation measures, graphic valida-
tion, and functional annotations, combining this way the coherency expressed with the
relevance of the found subspaces to the problem.

Triclustering algorithms should also be evaluated on their ability to tolerate noise. The
Adjusted Rand Index [13] and Jaccard Similarity Coefficient [6] have been considered to
this end. Furthermore, and given the complexity and often size of the three-way data to
be analysed, efficiency and scalability should also be of great concern. Thus, the ability
to handle different dataset sizes, the memory consumption and execution time needed
constitute additional and important criteria to consider when deciding which algorithm
is better.

Related work

The generation of synthetic data is advantageous to test specific algorithm’s properties.
Real data are, sometimes, difficult to obtain, and it is impossible to control the peculi-
arities they exhibit. In this context unsupervised learning tasks, including pattern min-
ing and (subspace) clustering tasks, frequently resort to synthetic generators, as shown
below, to produce custom data describing distinct problems to potentiate the work
developed, facilitate analysis, and comparisons.

In pattern mining, Omari and Conrad [22] proposed a generator to create datasets
consisting of transactions that record purchases, with an associated timestamp to study
customer buying habits. Generators are also useful for context-aware recommender sys-
tems, as they allow to create sets of actions taken by users with some context informa-
tion that describe them [23]. Machine learning techniques, such as image recognition,
also benefit from these tools, with a generator based on generative adversarial networks
that produces image-based datasets with demographic parity [24] being an example.
Statistical learning methods can also be trained using data produced using the Bayes

Page 9 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

framework [25] also resorting to synthetic data. Other domains, such as software test-
ing [26] or the development of anonymization techniques [27], also make use of syn-
thetic data.

In clustering, some tools were also proposed to facilitate algorithm evaluation. One
of them, proposed by Pei and Zaiane [28] enables the creation of datasets with planted
clusters based on the user’s requirements, such as the number of points, the number of
clusters, the size, shapes, and locations of clusters, and the density level of either cluster
data or noise/outliers in a dataset. With the goal of performing clustering and outlier
detection analysis. In biclustering, several benchmark contributions were made through
the generation of synthetic data, with some of them providing the tools needed to rep-
licate them. In this context, BiMax [29], produces datasets with biclusters with varying
degrees of noise and overlapping, but is not capable of producing dynamic structures,
with different sizes and coherencies. BiBench [30] was also proposed to fulfill some of
the limitations of BiMax, by allowing the generation of datasets with different sizes and
different numbers of biclusters with shift and scale patterns (additive and multiplicative).
However, BiBench assumes only constant values across columns, preventing the gen-
eration of observations with different, yet correlated values. It does not consider order-
preserving patterns, and the biclusters have fixed dimensions. BiGen was later proposed
by Henriques [31] to correct these limitations by allowing the generation of biclusters
of both symbolic and numeric natures, with varying sizes (each dimension is described
through a statistical distribution), with more and different patterns, and with parameter-
izable overlapping and quality (noise and missings) settings. This is the data generator
used to evaluate all the algorithms made available in BicPams software [32].

Concerns triclustering, several algorithms were developed and tested on synthetic
data produced by the authors [1]. Unfortunately, none of them made available the
respective generators. RSM and CubeMiner [33] were evaluated using IBM’s Quest
Data Generator,1 even though this generator is more suitable for pattern mining data-
sets since it generates sets of transactions. Three-way data generators are scarce, and, to
the best of our knowledge, there is no generator producing three-way data with planted
triclusters to be used to foster the research on triclustering algorithms and three-way
data analysis. For that reason, G-Tric used BiGen [31] as a basis to develop a generator
able to create 3D datasets with planted triclusters, interacting with each other and hav-
ing varying properties. Besides the introduction of a third dimension, G-Tric also adds
new features to BiGen, such as allowing the definition of a pattern to each dimension (in
BiGen, a specific coherency was applied to one dimension while the other was filled with
non-constant elements), dividing the quality parameters in two sets, one for the data-
set’s background and the other for the subspaces planted (unlike the global definitions
of BiGen). In G-Tric, the background elements can follow a discrete distribution, where
each symbol/element follows a user-defined probability. Moreover, the overlapping set-
tings were extended so that the user can choose how many triclusters can overlap and
the number of elements they can share.

1  https​://githu​b.com/zakim​jz/IBMGe​nerat​or.

https://github.com/zakimjz/IBMGenerator

Page 10 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

Implementation
To create fully customized datasets, G-Tric requests the user to define desirable
properties related to both the dataset and the triclusters, as described by the work-
flow of Fig. 4. For all of them, default values are automatically inserted and the user
can choose whether to control the generation of the whole dataset properties or to
explore only a subset of properties of interest. A dataset is defined by its type (sym-
bolic or numeric), its dimensions, and the distribution of values in its background
(data in the absence of local correlations).

Regarding the triclusters, the user can define how many will be planted and how is
their structure generated, using statistical distributions to choose how many rows,
columns, and contexts each one will have. The other tricluster-related properties to
be defined are the set of patterns to use while composing the planted solution and the
level of overlap between triclusters.

The last customization step is related to the quality of the data and is where the
amount of missing values, noise, and errors to plant are defined. For each of these
quality criteria, the user can decide the percentage of affected elements for the tri-
clusters and the background, separately.

The number and characteristics of the generated three-way dataset and planted
triclustering solutions that the user can control resemble the properties commonly
found in 3D real data.

After generating the new dataset, a new feature is made available in the interface so
that the user can visualize graphically the set of triclusters planted, which are the pat-
terns chosen, where they are located, and how they evolve across the context dimension.

The following subsections will detail the properties and parameter set made avail-
able by the generator. The dataset D, introduced earlier (Figs. 1, 2), will be used as a
toy example to demonstrate how the generator can simulate real-world datasets.

Fig. 4  Generation stages

Page 11 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

G‑Tric overview

Before starting the development of the proposed generator, the first step was to define
the best way to represent a tricluster, and its associated properties, in an efficient and
low memory consumption way.

Since a tricluster can be seen as a set of correlated biclusters, the chosen model
represents a tricluster as a single bicluster (template) that is repeated through a set of
slices, according to the third dimension. This template is supposed to have three main
characteristics: (1) seed (integer or real-valued for numeric triclusters, or a 2D matrix
for symbolic ones), (2) row and column patterns, and (3) set of row and columns fac-
tors (only for numeric triclusters). The definition of symbolic triclusters is slightly dif-
ferent due to its non-numeric nature.

A single tricluster contains one template, and the information needed to repeat this
template across the context dimension, together with the context pattern. In case of
a numeric tricluster, the information refers to the context factors that enable the use
of Eqs. (3) and (4) to represent the tricluster’s coherency, as illustrated in Fig. 5. In
case of a symbolic tricluster, the tricluster is represented either by the repetition of
the template seed across the context dimension (in the case where a constant pattern
across contexts exist) or by a particular seed for each context, illustrated by the ’con-
text seed’ in Fig. 6 (in the case where the tricluster is only coherent across the row or
column dimensions).

Following this model, there is no need to store all the values of a tricluster, since they
can be obtained by correlating the respective seed with the dimension’s factor, as shown
by Eqs. (1) to (4). The template bicluster also stores the set of rows and columns where
it is located, while the tricluster stores the context identifiers, where the template is pre-
sent and the plaid coherency assumed.

This structure is reflected on the generator through the Bicluster, Tricluster and Slice
classes.

Given that each dataset/tricluster set can be numeric or symbolic, the software has to
handle different data types and subtle structural differences between these two types of
datasets/triclusters. This was done through the use of the inheritance concept, using a
set of abstract classes such as Generator, that is responsible for creating the dataset and

Fig. 5  How a numeric tricluster is represented in the software

Page 12 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

plant the triclusters; Dataset, that is composed of the background and a set of triclusters;
and Bicluster, and Tricluster, that are based on the structure presented in Figs. 5 and 6.

The GUI (Graphical User Interface) was developed using JavaFX, and uses a dedicated
class, GTricService to allow communication between the interface and the business layer.
Figure 7 exemplifies the described organization using a simplified domain model, con-
taining the main classes of the generator. The visualization of the output was performed
using an open-source library for Java, called XChart,2 modified to allow the creation of
Heat Maps with missing and non-numeric (symbolic dataset) values. An additional file is
made available, as supplementaty material, to provide guidelines for using G-Tric to gen-
erate a particular dataset, providing a mapping between the set of properties describing
the dataset (type, structure, patterns, overlapping and quality, as described below) and
GUI parameters.

Symbolic and numeric datasets

The first step to generate a new dataset is to define its type and dimensions. To this end,
the user has to define the following parameters related to the dataset’s structure only:

Fig. 6  How a symbolic tricluster is represented in the software

Fig. 7  Simplified domain model showing the interactions between the main classes involved on the
generation process

2  https​://githu​b.com/knowm​/XChar​t.

https://github.com/knowm/XChart

Page 13 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

1	 Dataset type: Regarding the dataset type, G-Tric allows the creation of both sym-
bolic and numeric datasets. This choice will influence the kind of patterns that can be
planted (more on section "Tricluster patterns"). The symbolic type is useful when the
experiment that the user wants to reproduce is better represented by symbols, and
the trends shown by data are more interesting than the actual values that cause them.
For other studies, a numeric dataset can be used, with either integer or real-valued
elements;

2	 Dimension: The dimension ( X × Y × Z ) parameter defines the actual structure of
the dataset, as it is requested to the user to indicate how many observations, |X|, fea-
tures, |Y|, and contexts, |Z|, are going to be generated;

3	 Alphabet: The set of symbols, or the range of values in the dataset. For symbolic
datasets, the user can define the length, n, of the alphabet, and the generator will
create a default set of n symbols. Alternatively, the user can indicate a list of pre-
ferred symbols and G-Tric will use it. In this case, the order in which the symbols are
provided determines the ordering of the alphabet. Numeric datasets are limited by a
minimum and maximum value;

4	 Background distribution: The last step regarding the datasets structure is the
definition of how the alphabet will be distributed across the 3D matrix, that is, the
background. To help with this, G-Tric makes available four types of backgrounds to
choose from: (1) Uniform: assuming each alphabet element has the same probability
to fill a certain position of the matrix; (2) Normal: that uses the Gaussian distribution
to generate the background; (3) Discrete: allowing the user to define the probability
associated to each symbol (this type of background is only available on symbolic, or
numeric datasets with integer values); and (4) Missing: assuming a null background,
i.e. elements that do not belong to a pattern are missing.

Tricluster structure

After deciding the properties of the dataset, the next task is to define the characteristics
of the triclusters to be planted, starting by the amount and structure they will express:

1	 Number of triclusters to plant: The first parameter allows the user to define the
number of triclusters that are going to be planted. The size of the planted subspaces
will limit this number. In the current version, if the user inserts a large number of
triclusters, possibility preventing the software to plant all of them, G-Tric will try to
maximize the number of placed triclusters and will output this;

2	 Dimension: To define the dimension of the triclusters, G-Tric, again, makes available
two distributions, Normal and Uniform, for each dimension, not only to select how
many observations, features, and contexts each tricluster will have, but also to define
how their size will vary. Allowing the creation of flexible structures;

3	 Contiguity: The last parameter regarding the triclusters properties is the contiguity
that is useful to simulate certain types of data, such as time-series. G-Tric allows the
existence of triclusters with a contiguous dimension, that can be either the features
or the contexts.

Page 14 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

The positioning of triclusters in a given three-dimensional dataset follows a set of prin-
ciples that starts with a random selection of a subset of objects from each dimension,
I ⊆ X , J ⊆ Y ,K ⊆ Z , to avoid biases associated with random point selection followed
by side-specific extension of the subspaces. The settings related to size selection, using
Uniform and non-Uniform distributions, and overlapping properties allow the user to
further define regions with higher coherence density on a specific dimension. For data-
sets that are temporal in nature, the selection of objects along the time dimension can
be contiguous, following the Uniform distribution for selecting the starting time point,
U(0,T − |K |) , or non-contiguous.

Tricluster patterns

The crucial aspect regarding triclusters is the type of coherency they show. This is what
makes them attractive relative to the background data and is what guides every algo-
rithm. Triclustering patterns are the available way to express the existing coherency
across the cluster’s values.

As explained in section "Coherence", there are four types of coherency that a tricluster
can have: order preserving, constant, additive, and multiplicative. G-Tric makes available
four kinds of patterns, each one corresponding to the shown type of coherency.

Each tricluster’s dimension has a corresponding pattern, and all of them can have any
one of the four available above or one more called None. This new pattern is useful to
represent dimensions that do not have any coherency, considering that to have a triclus-
tering is it only needed coherency over a single dimension. In short, the five patterns
G-Tric makes available are: Order Preserving, Constant, Additive, Multiplicative, and
None.

To represent a tricluster, a triple of patterns, (Prow ,Pcol ,Pctx) , is used and each element
represents the specific pattern applied to each dimension, determining the value for the
respective term in Eqs. (3)–(4), or the respective template/context seed. For example, in
a numeric tricluster, for an Additive (or Multiplicative) tricluster, Eq. (3) [or (4)] is used
and the Additive (or Multiplicative) pattern in any dimension represents the existence of
a particular factor and a Constant pattern sets the factor to 0 (or 1). In a symbolic triclus-
ter, the dimension where the None pattern is applied determines the existence of a single
seed (template seed), when it is applied to either the observation and feature dimension,
or the need for a set of context seeds, when it is applied to the context dimension.

Even though a single dimension can have any pattern, there are some restrictions on
the allowed set of patterns that can be combined to form a triple. For example:

•	 The Order Preserving pattern can only be attributed to a single dimension, and the
other two must not show any type of coherency, that is, must have the None pattern;

•	 The Constant pattern can only be combined with either itself, the Additive or the
Multiplicative one;

•	 Additive and Multiplicative patterns cannot be combined. This restriction exists
because of the way a tricluster’s additive/multiplicative model is defined [see Eqs. (3)
and (4)].

•	 The None pattern can only be used with Order Preserving and Constant triclusters.

Page 15 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

Moreover, the type of dataset influences the allowed set of tricluster patterns that can be
used. Since symbolic datasets can be formed using non-numeric symbols, it is not pos-
sible to use the Additive or Multiplicative patterns. On the other end, numeric datasets
have no restrictions.

The set of available pattern triples, and information about which ones can be used in
both types of datasets are summarized in Table 1. Figure 8 shows and example of how
an Order Preserving pattern on columns looks like. When the Order Preserving pattern
is applied on the context dimension, to be able to simulate time profiles that resemble
real-world data, such as gene expression time series data [34], G-Tric makes available
three types of temporal patterns (Monotonically Increasing, Monotonically Decreasing
and Random), to replicate processes that exhibit monotonic increasing or decreasing
functions, or none.

Figure 9 instantiates a tricluster, T, of size |I | × |J | × |K | = 3× 3× 3 , that follows
an additive model. In this case, the triple used is (Constant, Additive, Additive), and
is mapped to Eq. (3), where the seed is c = 1 , set of row’s contributions is αi = 0 , the
set of column’s contributions is βj = {1, 2, 3} , the factors for the context dimension are
γk = {2,−1, 6} , and where there is no noise associated, ηijk = 0 . This example illustrates
how a group of similar observations evolve together along the contexts. Multiplicative
patterns work analogously but follow the multiplicative model in Eq. (4).

Overlapping properties

One relevant characteristic of triclustering is the possibility of several triclusters to
overlap each other, sharing their observations and attributes on certain contexts. In

Fig. 8  Tricluster with Order Preserving pattern on columns

Fig. 9  Tricluster with Constant rows but with an Additive pattern across columns and contexts, where, c = 1 ,
αi = {0, 0, 0} , βj = {1, 2, 3} , γk = {2,−1, 6} , and ηijk = 0

Page 16 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

G-Tric, the user can control the amount of overlapping allowed, as well as the type of
coherency assumed on the overlapped region:

1	 Plaid coherency: Plaid coherency defines how the values shared by a group of n
triclusters are correlated. This coherency can follow four possible assumptions: (1)
Additive, as defined in Eq. (5), where each value is composed by the sum of the n
individual values of each tricluster; (2) Multiplicative, as in Eq. (6), that does similarly
to the Additive using the product; (3) Interpoled, introduced by BiGen, where each
value is obtained by calculating the average value of the corresponding tricluster’s
elements, as described in Eq. (7),

 where θijkt defines the contribution from tricluster Bt = (It , Jt ,Kt) and ρit , κjt and τkt
are binary values that indicate if observation i, attribute j and context k are present
on tricluster t; and

(7)aijk = c +

∑q
t=0

θijktρitκjtτkt

q
,

Table 1  Available patterns of each dataset’s type

Rows Columns Contexts Symbolic Numeric

Order preserving

 Order preserving None None ✓ ✓
 None Order preserving None ✓ ✓
 None None Order preserving ✓ ✓

Constant

 Constant Constant Constant ✓ ✓
 None Constant Constant ✓ ✓
 Constant Constant None ✓ ✓
 Constant None Constant ✓ ✓
 Constant None None ✓ ✓
 None Constant None ✓ ✓
 None None Constant ✓ ✓

Additive

 Additive Additive Additive ✗ ✓
 Additive Additive Constant ✗ ✓
 Constant Additive Additive ✗ ✓
 Additive Constant Additive ✗ ✓
 Additive Constant Constant ✗ ✓
 Constant Additive Constant ✗ ✓
 Constant Constant Additive ✗ ✓

Multiplicative

 Multiplicative Multiplicative Multiplicative ✗ ✓
 Multiplicative Multiplicative Constant ✗ ✓
 Constant Multiplicative Multiplicative ✗ ✓
 Multiplicative Constant Multiplicative ✗ ✓
 Multiplicative Constant Constant ✗ ✓
 Constant Multiplicative Constant ✗ ✓
 Constant Constant Multiplicative ✗ ✓

Page 17 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

	 (4) None, where the value on the dataset will correspond to the respective element of
the last tricluster generated;

2	 Percentage of overlapping triclusters: Defines how many of the dataset’s triclusters
can overlap. If the dataset has |T | = 10 triclusters, and Otriclusters = 50% , then only
half of the dataset’s triclusters will overlap;

3	 Maximum number of overlapping triclusters simultaneously: The user can also
control how many triclusters overlap together. This parameter, k, separates the set
of overlapping triclusters in |T|/k groups. Furthermore, at each group, a set of inter-
sections is generated between triclusters and can range from only pair-wise interac-
tions, where triclusters overlap two by two, to a maximum of k wise interactions,
where all triclusters share something. For example, in a dataset with |T | = 10 ,
Otriclusters = 100% , and the maximum number of triclusters that can overlap together
is k = 3 , we will have 10/3 ≈ 3 groups of overlapping triclusters, and a last group,
with only one, that will not overlap with any other. In the overlapping groups,
each one will have 3 triclusters, so, we can have interactions from something like
T0 ∩ T1 �= ∅,T1 ∩ T2 �= ∅,T0 ∩ T2 = ∅ , as in Fig 10a, to T0 ∩ T1 ∩ T2 �= ∅ , repre-
sented in Fig. 10b;

4	 Maximum percentage of overlapping elements: lets the user define the maximum
number of elements of a tricluster that can be overlapped. For example, with two tri-
clusters T1 and T2 , whose dimensions are 2× 2× 2 and 3× 3× 3 , if Oelements = 50%
then the amount of shared elements between the two triclusters will be 50% of the
smallest one, T1 , so that both will share 0.5× 8 = 4 elements;

5	 Allowed amount of overlapping across rows, columns, or contexts: the user can
also restrict how much of each dimension, relative to the other tricluster, can be
used in the overlapping region. By default, these three parameters, Orows , Ocolumns ,
and Ocontexts are set to 100% . This way, when two triclusters, T1 and T2 , overlap, both
can share all observations, all attributes, or all contexts, as long as they respect the
restrictions above. On the other end, if Orows = 50% , then, T1 and T2 can still share
all attributes and all contexts, but can only share, at maximum, half of their observa-
tions.

Fig. 10  Two possible ways of overlapping, with additive plaid coherency, between a set of slices of three
triclusters (for simplicity sake we are omitting the representation of the slices along a third dimension)

Page 18 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

Quality

One aspect to take in account in any kind of dataset is its quality. Three-way data is not
an exception, as a set of diverse factors can influence how well the dataset can represent
reality. These factors can appear in the form of missing values, where the dataset does
not possess all the elements it should; in noisy data, where some values show a slight
deviation from what should be the true values; or errors, where some elements show
unexpected values, huge deviations from expectations or are outliers. These factors
can also influence the coherency of a tricluster, since they are not immune to them. In
this scenario, some state-of-the-art triclustering algorithms can deal with these factors,
mostly with missings or noise when searching and evaluating a solution. Since this is an
important feature, G-Tric allows the user to control the quality of the produced dataset,
either on the background data or on the planted triclusters, by adjusting the following
parameters:

1	 Percentage of missing values on background: lets the user define the exact amount
of elements on the background, that is, elements that do not belong to any triclus-
ter, that are missing. Assuming a dataset D with |D| = 10× 10× 10 = 1000 ele-
ments, a set triclusters T = {t0, t1, . . . , tn} , where |T | =

∑n
t=0 |Tt | = 100 , then

the background size will be |B| = |D| − |T | = 900 . If Mbackground = 50% , then
900× 50% = 450 values on the background will be replaced by missing values;

2	 Percentage of missing values on planted triclusters: controls the amount of miss-
ing values allowed on each triclusters. Unlike Mbackground , to facilitate the generation
of dynamic structures Mtriclusters defines only the maximum percentage of elements
that can be replaced by missing values. For example, given a tricluster t with a dimen-
sion of |t| = 2× 2× 2 = 8 and Mtriclusters = 50% , the tricluster will have a number
of missing values ranging, randomly, between [0, 4];

3	 Percentage of noise on background: Controls the exact amount of noise on the
dataset’s background. A given value is considered noisy if the difference between
it and the original value is smaller than a defined threshold, that is, has to respect
the following restriction |originalValue − noisyValue| ≤ Ndeviation , where Ndeviation
represents the said threshold, that controls how much a value can diverge from the
original. More on this parameter below. Using the same dataset D defined above, if
Nbackground = 30% , then 900× 30% = 270 values on the background will be replaced
by noisy values;

4	 Percentage of noise on planted triclusters: Defines the maximum amount of
noise that can be present on a tricluster’s values. For the tricluster t defined above, if
Ntriclusters = 25% , the tricluster will have a number of noisy values ranging, randomly,
between [0, 2];

5	 Noise deviation: Defines the boundary from which noise and errors can be distin-
guished. This value can be an integer, for integer or symbolic datasets, or real-valued
for non-integer data. Assuming a symbolic dataset D, with an alphabet with 10 sym-
bols, AD = {0, 2, 3, . . . , 9} , if Ndeviation = 2 and the current value in study v = 5 , then,
for v to become a noisy value, it should range between the values which are at a max-
imum distance of two, in this case, {3, 4, 6, 7} . If it is replaced by a value at a higher
distance, like one of the following, {1, 2, 8, 9} , then the new value will be considered

Page 19 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

an error. For both aspects, the new value is chosen randomly from the set of possible
ones;

6	 Percentage of errors on background: Defines the exact amount of errors on the
background data. In this case, each error value is either the minimum of the maxi-
mum value or the dataset, considering their distance to the expected value of the
selected background distribution;

7	 Percentage of errors on planted triclusters: Sets the maximum amount of errors
than can be planted on a triclusters. In this parameter, the Ndeviation argument is used
to generated the new error value. On the example dataset D, if Ebackground = 10% ,
then 900× 10% = 90 values on the background will be considered errors.

The definition of the quality level on background data and tricluster data was divided to
allow a higher degree of customization as well as to encourage the generation of flexible
structures with varying properties.

Output

After the generation is completed, the generator outputs three files: the first one, with
the suffix “_data“, contains the dataset in a tab-separated format. The last ones, with
the suffix “_trics“ and in txt and JSON formats, contains information about the num-
ber of triclusters planted, including their number, their coverage (how many elements in
the dataset belong to the triclusters), and for each one indicates its size, its location, by
showing the corresponding set of rows, columns, and contexts, the pattern associated
to each dimension and the percentage of missing, noise and errors planted in it. The file
also shows the percentage of missing values, noise, and error on the whole dataset. The
user can also visualize the output using a G-Tric’s feature that uses a graphical tool to
generate heatmaps representing the tricluster’s slices.

Results
As described in the previous section, G-Tric makes available a wide set of custom fea-
tures allowing the creation of several types of datasets, diverging either in their nature,
structure, or on how coherent their hidden subspaces are. These set of features allow
also the user to simulate the properties of existing datasets.

Together with the generator, this work provides, two sets of publicly available data-
sets: the first contains a simulation of real world data, replicating the characteristics
of the datasets listed in Table 2, so that further comparisons made with that data can

Table 2  Example datasets used during the development of some of the existing
algorithms

Dataset type Description Dimensions

1 Gene expression Yeast cell cycle (elucitration) [39] 7679 × 13 × 14

2 Financial Stock market ratios [40] 3200 × 30 × 28

3 fMRI Average blood-oxygen-level-dependent
contrast [41]

20 × 464 × 94

4 Social Bibsonomy [42] 51 × 924 × 2844

5 Georeferenced time-series Dutch daily average temperature [43] 28 × 20 × 365

Page 20 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

have the plus of considering the ground truth; while the second set contains a group
of datasets designed to test and evaluate some behavioral specificities of tricluster-
ing algorithms.

Table 2 describes a set of sample datasets used by triclustering authors when
developing and testing their algorithms [2, 6, 7, 35, 36]. These datasets show the
range of possibilities covered by G-Tric, since they describe different domains,
from genetics, to health records without forgetting social, economic, or geographic
use cases. They show different data types, from binary data, describing the exist-
ence of triples, to real-valued data reflecting expression values. They further pre-
sent distinct patterns present on the existing subspaces, such as the ones presented
in section "Background", as well as distinctive levels of quality. Finally, each data-
set explores a different dimension. Biological datasets, for example, generally have
a higher number of genes (observations) than samples (features), while in health
records, the number of patients (observations) is usually a lot smaller than the num-
ber of features.

Dataset 1 was collected from the yeast cell cycle data for the Elutritration experi-
ments and describes a set of genes whose expression value is measured from time 0
to 390 min at 30-min intervals (14-time points) across 13 attributes. Dataset 2 sum-
marizes 28 years of financial figures and price data from all North America that were
converted to 30 financial ratios for each of the 3200 stocks. Dataset 3 collected brain
fMRI data from 20 male subjects at rest over 94-time points. The blood flow (BOLD)
intensity was measured at every voxel of the brain along time, providing levels of
some 100,000 voxels every 2–3 s, where standard fMRI preprocessing was applied.
Dataset 4 shows a random sample of 3000 of the first 100,000 triples of the bib-
sonomy.org dataset, where objects are users, attributes are tags, and conditions are
bookmark names. Each triple contributes to a system developed for sharing book-
marks and publications easily. Dataset 5 combines temperature data collected from
28 dutch meteorological stations each day, over 20 years.

These examples meant to demonstrate the set of properties that can be shaped by
G-Tric, allowing the simulation of exiting data with two main advantages: the first
is that even when simulating existing data, the fact of possessing the ground truth
allows extracting more from the comparisons done with this data. There is no longer
the limitation of being restricted to the intrinsic quality of the solutions. Intrinsic
quality can be further combined with the extrinsic evaluation of data that expresses
the same characteristics as the real one and has more information than the simple
synthetic datasets that were currently used.

The second advantage is the possibility to explore how the algorithms perform on
specific tasks. After performing a general evaluation of each solution’s quality, the
authors can now effortlessly test or evaluate their algorithms under specific circum-
stances. For example, to assess how their methods respond on scenarios where one
or all dimensions are large, have low quality (high number of missings and the pres-
ence of noise and errors), show high levels of overlapping between subspaces, or to
simply test its ability to catch some specific type of patterns. This is useful when
developing an algorithm whose goal is to improve an existing approach in some
aspects.

Page 21 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

Simulating real data

For each dataset, some settings were collected from the data, such as, dimensions,
data type, size of the alphabet and the amount of missing values. However, since
there is no ground truth available, most of the settings regarding triclusters, overlap-
ping, and quality properties are unknown. We complemented the characterization of
triclustering properties provided in the survey by Henriques and Madeira [1] with
the conclusions drawn by different authors, [2, 5–7, 35, 37, 38], when applying their
triclustering algorithms to the chosen datasets, summarized in Table 3 and detailed
below.

Dataset 1 was used by the following algorithms: Tricluster [2], THD-Tricluster [5],
SubCubeMiner [37], and SS-Sim-Tri [38]. When analysing the respective results we
noticed that the number of triclusters vary between 4 and 6, with a clear dominance

Table 3  Settings to simulate the real datasets

Properties Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Dataset

 Data type Real valued Real valued Real valued Binary Real valued

 Dimensions 7679 × 13
× 14

3200 × 30 × 28 20 × 494 × 94 51 × 924 ×
2844

28 × 20 × 365

 Alphabet [0, 500] [5, 1000] [−5, 5] 0, 1 [−10, 30]

 Background Uniform Norma l(500, 150) Uniform Discrete (0.7,
0.3)

Normal (14, 7)

 Missings 0% 20% 0% 0% 15%

 Noise 0% 10% 20% 0% 20%

 Errors 0% 10% 15% 0% 5%

Triclusters

 Number 7 10 5 7000 128

 Dimensions U(80, 400) ×
U(2, 4) × U(3,
13)

U(100, 500) ×
U(10, 20) × U(5,
15)

U(5, 15) × U(50,
200) × U(15, 50)

U(5, 8) × U(20,
70) × U(100,
400)

U(4, 4) × U(4, 4)
× U(8, 8)

 Contiguity No No No No No

 Patterns All types All types All types Constant All types

 Missings 0% 10% 0% 0% 5%

 Noise 0% 15% 10% 0% 10%

Errors 0% 5% 5% 0% 2%

 Noise devia-
tion

0 2 1 0 1

Overlapping

 Plaid coher-
ency

No overlapping Additive Additive None No overlapping

 % Overlap-
ping trics

0% 40% 100% 80% 0%

 Max. interac-
tions

0 2 3 300 0

 % Overlap-
ping elems.

0% 50% 40% 70% 0%

 Restrictions
on

rows/col-
umns/con-
texts

0%/0%/0% 100%/100%/100% 100%/100%/100% 100%/80%/80% 0%/0%/0%

Page 22 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

of the gene dimension without any overlapping reported. Although these results differ
from algorithm to algorithm and there is no ground truth to validate them, they are
useful for approximating the data’s real characteristics.

Dataset 2 was used by CATSeeker [7] and reported 20% of missing values across the
dataset, without explaining the number of found triclusters, since the analysis was only
focused on the average return value of the clustered stocks.

Dataset 3 was used by TWIGS [35] and reported five core modules (triclusters) with
overlapping subjects and parcels between them.

Dataset 4 was tested using both OAC-Triclustering (box and primes) [6] algorithm and
reported an average of 7000 triclusters with overlapping regions across the 3000 triples
available on the dataset.

Finally, Dataset 5 has a real-valued alphabet, representing the temperature values,
restricted between − 10 and 30, and reported 128 regular triclusters with the same
dimensions ( 4 × 4 × 8 ). The remaining settings were all filled with values that, although
they cannot guarantee the dataset’s identity, try to make them as interesting as the origi-
nal ones.

Testing algorithm’s properties

A first group of clean datasets was created without any noise or overlapping. These are
supposed to serve as base datasets for the next ones that will be created to test each
property, and consist of four datasets, one for each data type (R-Real-valued, S-Sym-
bolic, B-Binary and C-Integer and Contiguous). Table 4 summarizes the structure of
these datasets.

The first property to test is scalability, that is, how the algorithm handles different data
sizes, through its execution time, or memory consumption. The base datasets, of dimen-
sion 1000× 100× 10 have 106 elements. Three additional datasets S1, S2 and S3 were
created for each type, and containing patterns of all types, with, respectively, 107 , 108 and
109 elements. The number of triclusters increases linearly with the dataset’s size. Table 5
summarizes these settings.

The next property to test is the ability to find different types of patterns. To this aim,
another set of datasets was generated for each of the four types. At each set, there is one
dataset per pattern type, that is, one dataset with only additive patterns, another with
only multiplicative patterns, and so on. For Symbolic datasets, the only set of patterns
available are the Order Preserving and the Constant ones. For Binary, only the Constant
type was used.

Another interesting task is to assess how well algorithms find individual triclusters on
an overlapped subspace, with a varying number of interactions between triclusters. In
this context, another group of datasets was created, based on the base datasets, but with
two degrees of overlapping: a low one, where only 30% of the triclusters can overlap (4 of
the total 12) and can only interact with another one sharing no more than 30% of their
elements. And a high one with 75% of overlapping (9 triclusters of 12), where each one
can now overlap other two and share up to 80% of its values. This turns the planted tri-
clusters very similar, making harder for the algorithm to find them. Table 6 summarizes
these settings.

Page 23 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

Table 4  Settings for the base datasets

Properties Dataset R Dataset S Dataset B Dataset C

Dataset

 Data type Real valued Symbolic Binary Integer

 Dimensions 1000 × 100 × 10 1000 × 100 × 10 1000 × 100 × 10 1000 × 100 × 10

 Alphabet [−100, 100] {1, 2, 3, 4, 5} {0, 1} [0, 100]

 Background Normal (0, 30) Discrete (0.1, 0.15,
0.3, 0.3, 0.15)

Uniform Uniform

 Missings 0% 0% 0% 0%

 Noise 0% 0% 0% 0%

 Errors 0% 0% 0% 0%

Triclusters

 Number 12 12 12 12

 Dimensions U(30, 50) × U(5, 10)
× U(2, 4)

U(30, 50) × U(5, 10)
× U(2, 4)

U(30, 50) × U(5, 10)
× U(2, 4)

U(30, 50) × U(5, 10) ×
U(2, 4)

 Contiguity No No No On contexts

 Patterns All types Order preserving,
constant

Contant All types

 Missings 0% 0% 0% 0%

 Noise 0% 0% 0% 0%

 Errors 0% 0% 0% 0%

 Noise deviation 0 0 0 0

Overlapping

 Plaid coherency No overlapping No overlapping No overlapping No overlapping

 % Overlapping
trics

0% 0% 0% 0%

 Max. interactions 0 0 0 0

 % Overlapping
elems.

0% 0% 0% 0%

 Restrictions on
rows/columns/

contexts

0%/0%/0% 0%/0%/0% 0%/0%/0% 0%/0%/0%

Table 5  Different dataset sizes to test scalability

Dataset Base S1 S2 S3

Dimensions 1000 × 100 × 10 1000 × 100 × 100 10,000 × 100 × 100 10,000 ×
1000 ×
100

Num. of elements 106 107 108 109

Num. of triclusters 12 120 1200 12,000

Table 6  Settings for datasets with low and high level of overlapping

Overlapping Low High

% Overlapping trics 30% 75%

Max. interactions 2 3

% Overlapping elems. 30% 70%

Restrictions (|X|/|Y|/|Z|) 100%/70%/70% 100%/100%/100%

Plaid coherency R: additive, S: none, B: none, C: multiplicative

Page 24 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

The last property to test is how they cope with low-quality data, where the number of
missings and noise/errors can influence a subspace’s coherency degree. Similar to what
as made with the overlapping property, a new set of datasets was generated with two lev-
els of quality. These settings are also summarized in Table 7.

A last group of datasets were generated, now combining all the properties tested so
far, making them richer when compared with the base ones. This set of rich datasets are
described in Table 8.

The datasets are available at the project repository (see section "Availability and
requirements") inside a demo project that serves as an example of a programmatic way
to use G-Tric. Additional file 1 provides an example of a use case for G-Tric, by simulat-
ing the generation of one of the presented datasets.

Conclusions
Triclustering has recently gained increasing importance as an effective supervised learn-
ing approach to three-way data analysis. In this context, where the number of triclus-
tering algorithms exploded in recent years, and each algorithm tries to improve the
state-of-the-art generating their own datasets, comparisons and benchmarks get even
more crucial.

G-Tric is capable of generating three-way with embedded triclustering solutions, with
a varied range of properties that can be controlled, and patterns that can be explored.
Its goal is to help surpassing the limitations of current evaluation using real world data,
promoting the quality of research in triclustering and improving the quality of results.

The primary way to perform such evaluation is through the analysis of the method’s
performance on data. Although abundant, real-world data is quite limited on the type of
inherent properties and on the kind of conclusions that can be drawn from an execution.
Since no ground truth is usually available for real datasets, and different methods are
designed to find different solutions, these solutions can only be evaluated through their
intrinsic quality, not against one another. This limits the number and quality of conclu-
sions that can be drawn when evaluating new triclustering approaches.

The generation of synthetic data helps to overcome this problem. However, existing
generated data can show biases towards specific triclustering solutions, making them

Table 7  Quality settings for datasets with low and high levels of missings, noise and errors

Quality Higher Lower

Dataset type R S B C R S B C

Dataset

 Missings 2% 2% 2% 2% 10% 10% 10% 10%

 Noise 10% 10% 10% 10% 30% 30% 30% 30%

 Errors 5% 5% 0% 5% 15% 15% 0% 15%

Triclusters

 Missings 2% 2% 2% 2% 5% 5% 5% 5%

 Noise 10% 10% 10% 10% 20% 20% 20% 20%

 Errors 5% 5% 0% 5% 8% 8% 0% 8%

Noise deviation

 Real-valued 1 1 1 1 3 1 1 3

Page 25 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

bad benchmarks for other solutions. Furthermore, these datasets are often not made
available to the scientific community.

In this context, we propose G-Tric, a synthetic three-way data generator allowing the
creation of synthetic datasets with configurable properties and the possibility to plant
triclusters. The generator is prepared to create datasets resembling real 3-way data from
biomedical and social data domains, with the additional advantage of possessing the
ground truth.

To our knowledge, G-Tric is the first contribution of this kind for 3D data, it was
inspired by existing contributions for biclustering, improving many of their drawbacks.
Together with G-Tric, we make available a set of datasets, with predefined settings,
mimicking specific types of real-world data, supporting the development and testing
of new triclustering algorithms by enabling the community to accurately compare their
methods’ solutions with triclustering solutions provided as grouth truth with the gener-
ated three-way datasets.

Besides the ability to easily generate customized three-way data with triclustering solu-
tions, the proposed generator enables the possibility to perform benchmarks on existing
algorithms to study their efficiency within certain conditions, or their effectiveness in

Table 8  Rich dataset’s settings

Properties Dataset R Dataset S Dataset B Dataset C

Dataset

 Data type Real valued Symbolic Binary Integer

 Dimensions 1000 × 100 × 100 1000 × 100 × 100 1000 × 100 × 100 1000 × 100 × 100

 Alphabet [−100, 100] {1, 2, 3, 4, 5} {0, 1} [0, 100]

 Background Normal (0, 30) Discrete (0.1, 0.15,
0.3, 0.3, 0.15)

Uniform Uniform

 Missings 2% 2% 2% 2%

 Noise 10% 10% 10% 10%

 Errors 5% 5% 0% 5%

Triclusters

 Number 30 30 30 30

 Dimensions U(30, 50) × U(5, 10)
× U(3, 5)

U(30, 50) × U(5, 10)
× U(3, 5)

U(30, 50) × U(5, 10)
× U(3, 5)

U(30, 50) × U(5, 10) ×
U(3, 5)

 Contiguity No No No On contexts

 Patterns All types Order preserving,
constant

Contant All types

 Missings 2% 2% 2% 2%

 Noise 10% 10% 10% 10%

 Errors 5% 5% 0% 5%

 Noise deviation 2 1 1 2

Overlapping

 Plaid coherency Additive None None Multiplicative

 % Overlapping
trics

50% 40% 60% 60%

 Max. interactions 3 2 3 4

 % Overlapping
elems.

60% 50% 80% 70%

 Restrictions on
rows/columns/
contexts

100%/100%/100% 100%/100%/100% 100%/100%/100% 100%/100%/100%

Page 26 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

finding different types of patterns, by allowing the creation of several datasets with an
extensive board of characteristics. This provides the unprecedented opportunity to com-
prehensively assess the strengths and limitations of state-of-the art and new triclustering
algorithms, promoting the advance in the area of three-way data analysis.

Availability and requirements
Project name: G-Tric

Project home page: https​://githu​b.com/jplob​o1313​/G-Tric
Operating system(s): Platform Independent
Programming language: Java
Other requirements: Java 11 or above
License: GNU GPLv3
Any restrictions to use by non-academics: No

Supplementary information
The online version contains supplementary material available at https​://doi.org/10.1186/s1285​9-020-03925​-4.

Additional file 1. Dataset generation using G-Tric. Guide exemplifying G-Tric’s interface and demonstrating, step by
step, how datasets can be generated.

Acknowledgements
Not applicable.

Authors’ contributions
JL and SCM designed the algorithms for data generation, the methodology to generate datasets used in the paper and
the software. JL implemented the data generation algorithms and the software interface, together with the code gener-
ating the datasets used in the paper. JL further drafted the manuscript. RH contributed with code from a (non published)
data generator for biclustering. All authors revised and approved the final manuscript.

Funding
This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT), the Portuguese public agency for
science, technology and innovation, funding to projects Neuroclinomics2, iCare4U and ILU (PTDC/EEI-SII/1937/2014,
PTDC/EME-SIS/31474/2017 and DSAIPA/DS/0111/2018), LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020)
and INESC-ID Research Unit (UIDB/50021/2020), together with H2020-RIA funding to project Circles (Grant Agreement
No 818290).

Availability of data and materials
The datasets generated during and/or analysed during the current study are available in the G-Tric repository, https​://
githu​b.com/jplob​o1313​/G-Tric.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 016, 1749‑016 Lisbon, Portugal. 2 INESC‑ID
and Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1900‑001 Lisbon, Portugal.

Received: 16 August 2020 Accepted: 7 December 2020

References
	1.	 Henriques R, Madeira SC. Triclustering algorithms for three-dimensional data analysis: a comprehensive survey. ACM

Comput Surv (CSUR). 2018;51(5):1–43.
	2.	 Zhao L, Zaki MJ. Tricluster: an effective algorithm for mining coherent clusters in 3D microarray data. In: Proceedings

of the 2005 ACM SIGMOD international conference on management of data; 2005. p. 694–705.

https://github.com/jplobo1313/G-Tric
https://doi.org/10.1186/s12859-020-03925-4
https://github.com/jplobo1313/G-Tric
https://github.com/jplobo1313/G-Tric

Page 27 of 28Lobo et al. BMC Bioinformatics (2021) 22:16 	

	3.	 Bhar A, Haubrock M, Mukhopadhyay A, Maulik U, Bandyopadhyay S, Wingender E. δ-trimax: extracting triclusters and
analysing coregulation in time series gene expression data. In: International workshop on algorithms in bioinfor-
matics. Springer; 2012. p. 165–177.

	4.	 Jiang D, Pei J, Ramanathan M, Tang C, Zhang A. Mining coherent gene clusters from gene-sample-time microarray
data. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining;
2004. p. 430–439.

	5.	 Kakati T, Ahmed HA, Bhattacharyya DK, Kalita JK. THD-Tricluster: a robust triclustering technique and its application
in condition specific change analysis in HIV-1 progression data. Comput Biol Chem. 2018;75:154–67.

	6.	 Ignatov DI, Gnatyshak DV, Kuznetsov SO, Mirkin BG. Triadic formal concept analysis and triclustering: searching for
optimal patterns. Mach Learn. 2015;101(1–3):271–302.

	7.	 Sim K, Yap G-E, Hardoon DR, Gopalkrishnan V, Cong G, Lukman S. Centroid-based actionable 3D subspace cluster-
ing. IEEE Trans Knowl Data Eng. 2012;25(6):1213–26.

	8.	 Ben-Dor A, Chor B, Karp R, Yakhini Z. Discovering local structure in gene expression data: the order-preserving
submatrix problem. In: Proceedings of the sixth annual international conference on computational biology; 2002. p.
49–57.

	9.	 Madeira SC, Oliveira AL. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol
Bioinf. 2004;1(1):24–45.

	10.	 Henriques R, Antunes C, Madeira SC. A structured view on pattern mining-based biclustering. Pattern Recogn.
2015;48(12):3941–58.

	11.	 Gonçalves J. Integrative mining of gene regulation and its perturbations. PhD thesis, Instituto Superior Tecnico,
Universidade de Lisboa, Lisboa; 2013.

	12.	 Gutiérrez-Avilés D, Rubio-Escudero C. Mining 3D patterns from gene expression temporal data: a new tricluster
evaluation measure. Sci World J. 2014.

	13.	 Jiang H, Zhou S, Guan J, Zheng Y. gTRICLUSTER: a more general and effective 3D clustering algorithm for gene-
sample-time microarray data. In: International workshop on data mining for biomedical applications. Springer; 2006.
p. 48–59.

	14.	 Sim K, Aung Z, Gopalkrishnan V. Discovering correlated subspace clusters in 3D continuous-valued data. In: 2010
IEEE international conference on data mining. IEEE; 2010. p. 471–480

	15.	 Moise G, Sander J. Finding non-redundant, statistically significant regions in high dimensional data: a novel
approach to projected and subspace clustering. In: Proceedings of the 14th ACM SIGKDD international conference
on knowledge discovery and data mining; 2008. p. 533–41.

	16.	 Sim K, Poernomo AK, Gopalkrishnan V. Mining actionable subspace clusters in sequential data. In: Proceedings of
the 2010 SIAM international conference on data mining. SIAM; 2010. p. 442–453.

	17.	 Mankad S, Michailidis G. Biclustering three-dimensional data arrays with plaid models. J Comput Graph Stat.
2014;23(4):943–65.

	18.	 Horta D, Campello RJ. Similarity measures for comparing biclusterings. IEEE/ACM Trans Comput Biol Bioinf.
2014;11(5):942–54.

	19.	 Patrikainen A, Meila M. Comparing subspace clusterings. IEEE Trans Knowl Data Eng. 2006;18(7):902–16.
	20.	 Bhar A, Haubrock M, Mukhopadhyay A, Maulik U, Bandyopadhyay S, Wingender E. Coexpression and coregulation

analysis of time-series gene expression data in estrogen-induced breast cancer cell. Algorithms Mol Biol. 2013;8(1):9.
	21.	 Gutiérrez-Avilés D, Rubio-Escudero C. Triq: a comprehensive evaluation measure for triclustering algorithms. In:

International conference on hybrid artificial intelligence systems. Springer; 2016. p. 673–684.
	22.	 Omari A, Langer R, Conrad S. Tartool: A temporal dataset generator for market basket analysis. In: International

conference on advanced data mining and applications. Springer; 2008. p. 400–410.
	23.	 del Carmen Rodríguez-Hernández M, Ilarri S, Hermoso R, Trillo-Lado R. Datagencars: a generator of synthetic data for

the evaluation of context-aware recommendation systems. Pervasive Mob Comput. 2017;38:516–41.
	24.	 Sattigeri P, Hoffman SC, Chenthamarakshan V, Varshney KR. Fairness gan: Generating datasets with fairness proper-

ties using a generative adversarial network. IBM J Res Dev. 2019;63(4/5):3–1.
	25.	 Frasch JV, Lodwich A, Shafait F, Breuel TM. A bayes-true data generator for evaluation of supervised and unsuper-

vised learning methods. Pattern Recogn Lett. 2011;32(11):1523–31.
	26.	 Whiting MA, Haack J, Varley C. Creating realistic, scenario-based synthetic data for test and evaluation of information

analytics software. In: Proceedings of the 2008 workshop on beyond time and errors: novel evaluation methods for
information visualization; 2008. p. 1–9.

	27.	 Ayala-Rivera V, Portillo-Dominguez AO, Murphy L, Thorpe C. Cocoa: A synthetic data generator for testing anonymi-
zation techniques. In: International conference on privacy in statistical databases. Springer; 2016. p. 163–177.

	28.	 Pei Y, Zaïane O. A synthetic data generator for clustering and outlier analysis; 2006.
	29.	 Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E. A systematic com-

parison and evaluation of biclustering methods for gene expression data. Bioinformatics. 2006;22(9):1122–9.
	30.	 Eren K, Deveci M, Küçüktunç O, Çatalyürek ÜV. A comparative analysis of biclustering algorithms for gene expression

data. Brief Bioinform. 2013;14(3):279–92.
	31.	 Henriques R. Learning from high-dimensional data using local descriptive models. PhD thesis, Instituto Superior

Tecnico, Universidade de Lisboa, Lisboa; 2016.
	32.	 Henriques R, Ferreira FL, Madeira SC. Bicpams: software for biological data analysis with pattern-based biclustering.

BMC Bioinform. 2017;18(1):82.
	33.	 Ji L, Tan K-L, Tung AK. Mining frequent closed cubes in 3D datasets. In: Proceedings of the 32nd international confer-

ence on very large data bases; 2006. p. 811–822.
	34.	 Madeira SC, Teixeira MC, Sa-Correia I, Oliveira AL. Identification of regulatory modules in time series gene expression

data using a linear time biclustering algorithm. IEEE/ACM Trans Comput Biol Bioinf. 2008;7(1):153–65.
	35.	 Amar D, Yekutieli D, Maron-Katz A, Hendler T, Shamir R. A hierarchical bayesian model for flexible module discovery

in three-way time-series data. Bioinformatics. 2015;31(12):17–26.

Page 28 of 28Lobo et al. BMC Bioinformatics (2021) 22:16

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	36.	 Wu X, Zurita-Milla R, Izquierdo Verdiguier E, Kraak M-J. Triclustering georeferenced time series for analyzing patterns
of intra-annual variability in temperature. Ann Am Assoc Geogr. 2018;108(1):71–87.

	37.	 Ahmed H, Mahanta P, Bhattacharyya D, Kalita J, Ghosh A. Intersected coexpressed subcube miner: an effective
triclustering algorithm. In: 2011 world congress on information and communication technologies. IEEE; 2011. p.
846–851.

	38.	 Kakati T, Ahmed HA, Bhattacharyya DK, Kalita JK. A fast gene expression analysis using parallel biclustering and
distributed triclustering approach. In: Proceedings of the second international conference on information and com-
munication technology for competitive strategies; 2016. p. 1–6.

	39.	 Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive
identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol
Biol Cell. 1998;9(12):3273–97.

	40.	 Compustat. http://www.compu​stat.com
	41.	 Vaisvaser S, Lin T, Admon R, Podlipsky I, Greenman Y, Stern N, Fruchter E, Wald I, Pine DS, Tarrasch R, et al. Neural

traces of stress: cortisol related sustained enhancement of amygdala-hippocampal functional connectivity. Front
Hum Neurosci. 2013;7:313.

	42.	 Bibsonomy. bibso​nomy.org
	43.	 KMNI. https​://www.knmi.nl/home

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.compustat.com
http://bibsonomy.org
https://www.knmi.nl/home

	G-Tric: generating three-way synthetic datasets with triclustering solutions
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Triclustering task
	Definitions
	Coherence
	Plaid effects
	Quality

	Evaluation
	Single solution evaluation
	Comparison between solutions

	Related work

	Implementation
	G-Tric overview
	Symbolic and numeric datasets
	Tricluster structure
	Tricluster patterns
	Overlapping properties
	Quality
	Output

	Results
	Simulating real data
	Testing algorithm’s properties

	Conclusions
	Availability and requirements
	Acknowledgements
	References

