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Background
Next-Generation Sequencing (NGS) technologies and applications, including whole 
genome, whole exome, and targeted sequencing, have drastically improved the study 
of hereditary diseases. The field of NGS technologies is evolving rapidly with con-
stant improvements. Hence, it is mandatory to benchmark bioinformatic pipelines to 
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study of hereditary diseases. Since the evaluation of bioinformatics pipelines is not 
straightforward, NGS demands effective strategies to analyze data that is of paramount 
relevance for decision making under a clinical scenario. According to the benchmark‑
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mented a new simple and user-friendly set-theory based method to assess variant call‑
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Results:  We implemented and compared three variant calling pipelines (Isaac, 
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for Isaac, when compared with the reference material, and (3) a ROC curve analysis with 
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nize the expected variants in the gold standard data set.
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pipelines using gold standard materials to achieve the most reliable results for clinical 
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evaluate reproducibility with standardized protocols [24]. Several studies have shown 
that variant identification is influenced by complexity of genomic region, sequencing 
technology platform (including libraries and other preparation steps), and bioinfor-
matics pipelines for data analysis [5, 9, 22, 23, 28]. In addition, performance testing is 
currently challenging due to the paucity of standards and the no consensus definition 
for performance metrics [9, 14]. Thus, pipelines can result in dramatic differences 
that affect medical decisions in clinical laboratories that are developing or relied on 
sequencing-based tests [9]. This may involve changes in the diagnosis, prognosis, and 
treatment of patients [20].

Accordingly, robust and standardized benchmarking methods are critical for the 
development, optimization, and comparison of sequencing, mapping, and variant calling 
tools [14]. In this field, benchmarking of variant calling methods is not straightforward 
[9]. Therefore, the gold standard and quality control materials are essential for the per-
formance evaluation of approaches in both, experimental assays and data analysis pipe-
lines. Efforts to create gold standard materials in order to compare NGS approaches have 
been developed by several programs, e.g. the Genome in a Bottle (GIAB) [31], Illumina 
Platinum Genomes Project, and Genetic Testing Reference Materials (GeT-RM) Coor-
dination Program by NCBI [10]. Global Alliance for Genomics and Health (GA4GH) 
Benchmarking Team has also implemented the best practices guideline to standardize 
variant calling benchmarking [14].

In the particular case of the GIAB consortium, a reference material (high confidence 
genotype) for the pilot genome NA12878 (one individual sample in the 1000 Genome 
project) was developed to offer a benchmark set of small variants and reference variant 
calls [32]. This gold standard material has been used in different benchmarking studies 
of variant calling pipelines [5, 9, 25].

In this context, and as an example of a clinical application, we conducted a systematic 
comparison of three variant calling methods using NA12878 targeted sequencing data 
and the gold standard variant calls set. The recently suggested benchmarking frame-
work of GA4GH was used as a reference to implement a new simple and user-friendly 
strategy to compare pipelines using a set-theory approach. Publicly available sequencing 
data was generated employing the TruSight Cardio kit (Illumina), a panel of 174 criti-
cal genes related to Inherited Cardiac Conditions (ICCs), i.e., a group of cardiovascular 
diseases with a genetic basis. ICCs such as cardiomyopathies, arrhythmias, aortopathies, 
and others [12] may have severe clinical manifestations, with high rates of morbidity and 
mortality [34]. A more detailed description and genes associated with some of these car-
diopathies are presented in Additional file 1 “Analysis of variants related to ICCs”.

Thereby, identification of causative or related mutations in multiple ICCs-genes makes 
molecular biology and subsequent bioinformatics analysis key tools for confirming the 
diagnosis [34], studying overlapping phenotypes, patient management and prognosis, 
screening for family members, and other applications [20].

Altogether, our study aimed to assess a new simple method based on set-theory for 
benchmarking three variant calling pipelines for targeted sequencing data using gold 
standard material as a reference. To address this, NA12878 sequencing data from the 
TruSight Cardio kit was used to compare Isaac [21], Freebayes [7], and VarScan [13] 
pipelines. To contrast identified variants by callers against gold standard data, we 
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implemented a new simple method based on set-theory. This method represents an 
easy and user-friendly approach to evaluate custom implementations in variant calling 
analysis.

Results
A general comparison between pipelines

In order to evaluate the performance of three variant callers using targeted sequencing 
data, Isaac, Freebayes, and VarScan pipelines were implemented (see Figs. 1 and 2). A 
different number of total variants (SNP) were obtained with the three pipelines: 255, 
259, and 311 for Isaac, Freebayes, and VarScan, respectively. The ratio of transitions/
transversions (Ts/Tv ratio), variant rate, and functional class were similar in all the cases, 
being the VarScan approach the one that differed the most (Table 1).

Besides, 251 common variants were identified by the three algorithms (Fig.  2a), 
while 52 exclusive variants were found with VarScan. When we compared the variants 
obtained by the three pipelines with the gold standard set, 231 true variants were identi-
fied (Fig. 2b). Performance comparison in the number of variants identified per chromo-
some revealed that Freebayes and Isaac had a similar resolution, which contrasted with 
slightly higher values obtained by VarScan (Fig. 2c).

A set‑theory approach for evaluating variant calling pipeline performance

Using the gold standard variants and high confidence regions of the NA12878 sample as 
a template, we implemented a simple and user-friendly approach using the set-theory 
methodology. The final model was achieved with the following sets (more details are 
presented in Fig. 3):

Fig. 1  Workflow for variant calling analysis by three pipelines
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Set A: List of all variants in gold standard variant calls in targeted sequencing 
regions.
Set B: List of all identified variants by pipeline in targeted sequencing regions.
Set C: List of all identified variants by pipeline in high confidence genomic regions.

Each set was created using the variant calling files (VCF, for both gold standard 
material and evaluated pipeline) and the chromosomal regions (BED file for both tar-
geted sequencing genes and high confidence material). A total length of 271  227  bp 
was obtained intersecting target regions (total length 575 148 bp) and high confidence 
regions. This means that 47.2% of the target regions are part of high confidence regions.

Fig. 2  Comparison of identified variants by three variant calling pipelines (a), including benchmark using the 
gold standard variants set (b) and the number of variants per chromosome (c)

Table 1  General metrics for three variant calling pipelines

Metrics Variant calling pipeline

Isaac Freebayes VarScan

Number of variants (SNP) 255 259 311

Variant rate 1/1 121 0146 1/11 633 348 1/9 799 651

Ts/Tv

 Transitions (Ts) 204 208 241

 Transversions (Tv) 51 51 70

 Ts/Tv ratio 4.00000 4.07841 3.4429

Functional class

 Missense 218 237 321

 Silent 495 499 507

 Missense/silent ratio 0.4404 0.4749 0.6331
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Our set-theory approach can be used not only to identify a list of variants in each case 
but also to calculate metrics. Metrics performance was defined, as explained below, either 
by using basic set operations according to set-theory mathematics (discrete metrics, value 
is an integer number) or by using ratios (continuous metrics, value is a real number) (see 
details in Fig. 4).

Fig. 3  Set-theory approach for benchmarking variant calling pipelines

Fig. 4  Metrics calculation for evaluation and validation of variant calling pipelines using a set-theory model 
(true variants in the high confidence regions are marked with *)
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Discrete metrics: based on set‑theory operations

•	 True positives (TP): variants called by a variant caller as the same genotype as the 
gold standard data, also known as analytical sensitivity. TP is calculated by intersect-
ing sets A and B: TP = A ∩ B

•	 False positives (FP): variants called by a variant caller but not within the gold stand-
ard variant set. In this approach, it is calculated by intersecting sets B and C, and 
then eliminating variants in gold standard material: FP = (B ∩ C)\A. Variants in high 
confidence region are reported in benchmark variants set, thus, an identified variant 
absent in gold standard set is one FP.

•	 False negatives (FN): gold standard variants in high confidence regions that were not 
called by the variant caller pipeline: FN = (A ∩ C)\B

•	 Non-assessed calls (NAC): variants outside the high confidence regions or gold 
standard material: NAC = B\(A ∪ C)

•	 Out of region of interest (O): variants in high-quality regions out of target regions. 
Not really useful for pipelines evaluation by targeted sequencing, but important for 
developers of gold standard materials in other contexts: O = C\(A ∪ B)

•	 Incongruences or Discordances (I): gold standard variants outside the high confi-
dence regions that resulted not called by the variant caller pipeline: I = A\(B ∪ C)

•	 True Negatives (TN): Due to limitations related to current reference materials, which 
makes TN difficult to interpret, we did not include it [14].

Continuous metrics: ratios

•	 Recall or sensitivity: ability to detect variants that are known to be present, i.e., the 
absence of FN. It is calculated as: Recall = TP

TP+FN

•	 Precision or specificity: ability to correctly identify the absence of variants, true nega-
tives, or the absence of FP: Precision =

TP

TP+FP

•	 FracNA : Proportion of non-assessed calls by a pipeline or not included in the refer-
ence materials. It is calculated using NAC: FracNA =

NAC

Total variants

•	 F1Score or F-measure: This metric integrates precision and recall in a single value 
using the harmonic average: F1Score = 2·Precision·Recall

(Precision+Recall)

We applied our set-theory approach to the TruSight Cardio data set. We analyzed 
data in each pipeline to contrast the results against high confident regions and the gold 
standard set. Comparison between gold standard in the high confidence region and each 
pipeline found 73 true calls for Freebayes, 74 for VarScan, and 75 for Isaac. VarScan had 
more NAC variants (60) compared to the other two pipelines (Isaac: 20, Freebayes: 23) 
(Fig. 5). All metrics were calculated according to definitions, and next, hap.py pipeline 
was applied to the Isaac results using the same gold standard set. As expected, all met-
rics found by both approaches, i.e., our set-theory model and the hap.py pipeline, ren-
dered exactly the same results. Table 2 shows that 233 TP were identified for VarScan 
and Freebayes, and 235 for Isaac. None FP was recognized for Isaac, only three for Free-
bayes, but 18 for VarScan.
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Recall was 1.000 for all pipelines, and precision rates were 0.928 for VarScan, 0.987 
for Freebayes, and 1.000 for Isaac. No FNs were identified, but two incongruent variants 
(I) were found for Freebayes and VarScan. Thus, VarScan showed slightly lower perfor-
mance, as reflected by the global performance value F1Score.

For the three pipelines, ROC curves presented good performance, with AUC > 0.94 
in all cases (p = 0.000), including perfect AUC = 1 for Isaac approach (Fig.  6). When 
pipeline comparison was done using AUC values, a statistically significant difference 
(p < 0.05, Fig. 6) was encountered in all the cases. In general, the results indicate that the 
three pipelines can discriminate the variants, with differences between algorithms.

Finally, we selected all identified variants by the three pipelines in ten HMC related 
genes. These variants were annotated using ClinVar and InterVar, and none was found to 
be pathogenic. They were classified mainly as benign or likely benign using the NA12878 
sample at genomic regions of the targeted sequencing. See Additional file  1: Table  S2 

Fig. 5  Set theory approach to benchmark three variant calling pipelines

Table 2  Evaluation of metrics for pipelines validation in high quality regions

a  Same values were obtained when hap.py pipeline was run

Variant caller Metrics

TP FP FN I NAC Recall Precision Frac_NA F1Score

Freebayes 233 3 0 2 23 1.000 0.987 0.089 0.989

VarScan 233 18 0 2 60 1.000 0.928 0.193 0.959

Isaaca 235 0 0 0 20 1.000 1.000 0.078 1.000

Fig. 6  Receiver operating characteristic (ROC) curve to assess and compare the variant callers
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“Analysis of variants related to ICCs” for details of the SNPs, genes, and SNP classifica-
tion by ACGM and ClinVar. This material also includes an analysis of false positive and 
incongruent variants (Additional file 1: Table S3).

Discussion
One of the challenges of analysis in bioinformatics is dealing with the complexity of the 
data and the variable results, which depends in a great matter on algorithms and param-
eters [22]. Since high-throughput targeted sequencing is now used as part of the clinical 
routine [22] chmarking of bioinformatics pipelines is required to better understand the 
accuracy of sequence data, identify underlying causes of error, and quantify the improve-
ments obtained from algorithmic developments for its use in clinical settings [6, 29].

In our study, three variant calling pipelines were evaluated. Freebayes employs a 
Bayesian statistical framework using a haplotype-based approach [7], meanwhile, Var-
Scan uses a robust heuristic/statistic model [13]. In the case of Isaac Enrichment, it is a 
consensus approach that combines both Bayesian and heuristic analysis [21]. Diversity 
in the variant caller algorithms can explain the variable results in pipeline performance. 
For example, 311 variants were identified with VarScan, which contrasts with the 255 
and 259 variants identified with Isaac and Freebayes, respectively. Accordingly, a higher 
dissimilarity was observed in type and impact general metrics for VarScan, than for Isaac 
and Freebayes. This profile between variant callers was observed not only for the dis-
crete and continuous metrics but also for Ts/Tv ratio, a value commonly used as qual-
ity control. Some studies indicate that SNPs in exome regions should have a Ts/Tv ratio 
around 3, emphasizing that increment in Ts/Tv ratio usually indicates better quality [26].

As in our case, due to substantial discordance among callers, NGS strategies require 
highly accurate reference materials to benchmark bioinformatic pipelines [31, 32]. Nev-
ertheless, comparing variant calls from a particular sequencing pipeline to a gold stand-
ard set is not a trivial task, since there are different representations of the variants, the 
definitions for performance metrics are not yet standardized and the performance can 
vary across variant types and genomic region [14]. As discussed in recent studies and 
suggested by best practices for benchmarking variant callers, interpretation of different 
metrics (including FN and TN) is conflictive due it depends on the reference materials, 
the definition (i.e. the way to calculate it), and the algorithms that are applied [14, 33]. 
Thus, robust and standardized strategies are required to compare the performance of 
variant callers.

In this sense, we implemented a user-friendly and simple method using a set-theory 
approach to benchmark variants against a gold standard. Although there are automatic 
packages for the calculation of metrics and subsets of lists, our workflow based on a 
model of set-theory allows simple management for users in terms of: 

1	 Understanding the logic and comparison strategy between variants of gold standard 
sets, high confidence regions, and the variants identified by pipelines. This differenti-
ates it from automatic methods because this aspect usually is not explicitly shown 
to users. In this way, congruencies/inconsistencies between sets can be determined 
visually.
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2	 Variants lists are obtained according to each set or subset, thus variants can be 
described and annotated specifically under any of the conditions (e.g. variants falsely 
detected as true or negative). Other subsets of interest (variants outside the region of 
high confidence, variants not evaluated, incongruences, etc.) are easily identified.

In addition, since we focused on the benchmarking of variant callers and not on 
the particular results (using the NA12878 sample at genomic regions of the targeted 
sequencing as an example), our approach is flexible since it can be used to test newer 
versions of the gold standard set, other high confidence intervals, different target 
regions, and other variant callers.

With our approach, general metrics suggested a similar performance between Free-
bayes and Isaac, meanwhile, VarScan detected more variants classified as FP. These 
results are consistent with the ROC analysis for all pipelines, although VarScan showed 
a slight reduction in discriminatory ability. Besides, the comparison by AUC showed a 
statistically significant difference in the performance between all three pipelines. Some 
authors have found that Freebayes has the highest recall but lower accuracy compared 
to the other algorithms [6], while others associate better capacity with Isaac [20]. Our 
results are similar to the findings of Cheng et al. [3], which obtained less precise results 
using VarScan when comparing other variant callers [3]. Conversely, in some studies, 
VarScan has performed well compared to other algorithms [30].

In the context of ICCs and genomic analysis, our results can provide a practical and 
comprehensive guide to evaluate variant calling pipelines and select the best options for 
analysis of targeted sequencing data, as shown in the case of the TruSight Cardio kit. 
Under this scenario, a clear contribution can be made to give accurate and high-quality 
information during clinical decisions. Other targeted sequencing data can be used with 
our approach in a similar way.

On the other hand, we emphasize that reference materials are important not only for 
benchmarking variant calls, but also to stratify performance by variant type and genome 
context, including the case of novel variants, that not always are present in gold stand-
ard sets [14]. Another limitation is the use of a single data set, as in our case, therefore 
results must be taken with caution [11].

Altogether, it is anticipated that genomic sequence information will continue improv-
ing the clinical diagnosis as part of the new initiatives in precision medicine [6]. How-
ever, further analyses to optimize benchmarking bioinformatics pipelines are still 
required.

Conclusions
We implemented and compared the variant calling pipelines Isaac, Freebayes, and VarScan 
using targeted sequencing data. Benchmarking was done using reference materials and a 
new simple and user-friendly strategy based on set-theory for metrics calculation and 
results analysis. As expected, results were completely dependent on the selected algorithms, 
but in all cases with a good discriminatory ability to identify variants. Isaac and Freebayes 
pipelines had comparable performance, while VarScan resulted in more dissimilar results. 
These differences evidenced that there is a gap in respect to the implementations of stand-
ard pipelines and that there is still a dependence on the nature of the data and the general 
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experimental design. Therefore, it is still necessary to benchmark pipelines for specific data 
and characterize the conditions in which the most reliable results are achieved, which is 
critical in clinical applications.

Methods
Data source

Targeted sequencing data (fastq files, using TruSight Cardio kit) of reference genome 
NA12878 was retrieved from the BaseSpace public database. Data were generated using 
paired-end sequencing in a MiniSeq instrument using 2 × 76 bp read length [20].

Data and details: https​://bases​pace.illum​ina.com/sampl​e/35737​707/NA128​78. Access 
by the web-tool or command-line requires an account (free) in the BaseSpace platform. 
To access by command-line, see instructions here: https​://bioin​forma​tics.uconn​.edu/data-
downl​oad-from-bases​pace-illum​ina/.

Pre‑processing: quality analysis

Data quality evaluation was done with FastQC (version 0.11.6) using a standard analysis [1] 
including base quality, GC content, and sequence length distribution. Selection of reads for 
removing adapters and low-quality bases (Q < 20) was done using Trimmomatic (version 
0.36.3) [2], and reviewed by FastQC again.

Read alignment and variant calling

In order to identify single nucleotide polymorphisms (SNPs), three variant calling pipelines 
were implemented and evaluated (pipelines were named according to variant calling algo-
rithms: Freebayes, VarScan, and Isaac). An overview of the general protocol employed is 
shown in Fig. 1. The same files were processed with the three pipelines.

To align reads to the reference human genome (GRCh37-hg19), BWA (version 0.7.17.4) 
alignment package was run using default parameters [16]. for Freebayes and VarScan pipe-
lines. Picard tools (version 2.18.0) were used to remove eventual duplicate reads from single 
fragments of DNA [28]. For Isaac, the pipeline was run in the BaseSpace platform (https​://
bases​pace.illum​ina.com, which includes its aligner; fastq files were incorporated directly to 
map and then run the variant calling.

For the variant calling step (after alignment, Freebayes (version 1.0.2–29) [7], VarScan 
(version 0.1) [13] and Isaac [20, 21] algorithms were implemented with default parameters.

Variants filtering was done using VCFfilter [18] (Version 1.0.0, default values for other 
parameters), including depth/coverage (DP > 10) and quality (QUAL > 20).

Annotation of variants and pipelines comparison

The VCF files of the three pipelines were annotated with ANNOVAR (version 0.2) [27]. 
using refGene as reference for gene annotation and snp137 as annotation database [27, 28]. 
Functional effect prediction was evaluated running SNPeff (Version 4.3) [4].

Pipelines performance against a gold standard: a set‑theory approach

Benchmark of variant callers was done against high confidence regions and gold stand-
ard variants set (NIST v2.18) for SNPs in NA12878. Both data set were downloaded 
from the GeT-RM Browser (https​://www.ncbi.nlm.nih.gov/varia​tion/tools​/get-rm/).

https://basespace.illumina.com/sample/35737707/NA12878
https://bioinformatics.uconn.edu/data-download-from-basespace-illumina/
https://bioinformatics.uconn.edu/data-download-from-basespace-illumina/
https://basespace.illumina.com
https://basespace.illumina.com
https://www.ncbi.nlm.nih.gov/variation/tools/get-rm/
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To compare variant calling pipelines, a user-friendly and simple method based on a 
set-theory approach was implemented. An exhaustive evaluation for building variant 
lists (sets) was done to establish variant callers performance. The evaluation included 
the following materials: (1) list of variants of a particular pipeline using a specific caller, 
(2) targeted sequencing regions, (3) high confidence regions of NA12878 vs reference 
genome (for analytical specificity evaluation), and (4) gold standard variants of NA12878 
(for analytical sensitivity evaluation). Variants were obtained in VCF files and BED 
files-regions.

The materials were used to create the final set conformation of the model, which was 
defined using set operations and ratios along with mathematical expressions of classi-
cal metrics for performance evaluation. Metrics were established considering the geno-
type mismatch approach recently reported by GA4GH [14]. Metrics were calculated for 
the three pipelines by using these mathematical definitions, and then the comparison 
was done. The hap.py pipeline (BaseSpace platform) was implemented for the results of 
the Isaac variant calling analysis, in a similar way to Krusche et al. [14]. Then we com-
pared the performance metrics for both the hap.py pipeline and our approach (Isaac). 
Moreover, the visual representation of sets was done using Venn diagram plots, using 
the Venn-tool, available at http://bioin​forma​tics.psb.ugent​.be/webto​ols/Venn/.

To compare the variant callers performance based on a more comprehensive assess-
ment, an analysis by receiver operating characteristic (ROC) curves was done. Area under 
the ROC curve (AUC) was calculated and used to determine the statistical significance for 
each approach and to compare the pipelines The analysis was done using the R software-
based easyROC Tool [8] with default parameters. The same program was used to plot 
the curves, and to calculate statistics for the discrimination ability per algorithm and the 
pipeline comparison, in both cases using AUC values and a significance level of 95%.

Annotation of clinically relevant variants

As an example of a specific application of targeted sequencing in the clinical context, 
the comparison of variant callers was done with ten genes related to HCM [12, 20]. Clin-
Var database was used for variants annotation [15],National Center for Biotechnology 
Information, 2018), and InterVar tool for clinical interpretation of genetic variants by 
the ACMG/AMP 2015 guideline [17]. See Additional file 1: Table S2 “Analysis of variants 
related to ICCs” for details of the SNPs, genes, and SNP classification by ACGM and 
ClinVar.

Running platforms

For all analysis, except Isaac pipeline, homemade scripts were written using python/
Unix code and run in the Kabré-CeNaT computational cluster (http://clust​er.cenat​.ac.
cr/). In the case of Isaac pipeline, and hap.py pipeline, the BaseSpace platform was used 
for running algorithms (https​://bases​pace.illum​ina.com/dashb​oard).
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