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Background
High throughput sequencing technologies help in uncovering the mechanisms of 
gene regulation and cell adaptation to external and internal environments [1, 2]. One 
widely used technology is chromatin immunoprecipitation followed by next generation 
sequencing (ChIP-seq). It allows the genome-wide investigation of the structural and 
functional elements encoded in a genomic sequence, such as transcriptional regulatory 
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elements. The main goal of a ChIP-seq experiment is the detection of protein-DNA 
binding sites and histone modifications genome-wide in various cell lines and tissues. 
Many peak calling methods have been proposed for the identification of regions of 
enrichment (putative binding sites) in ChIP-seq data [3–7].

Every experiment is prone to noise and bias, and ChIP-seq experiments are no excep-
tion. While some read pileups correspond to regions of true enrichment, others may be 
a result of the distortion of the ChIP-seq signal. Biased or noisy datasets (with a high 
number of false negative or false positive peaks) negatively impact downstream biologi-
cal and computational analyses [8]. Thus, accounting for both noise and bias is impor-
tant. Existing peak callers generally account for noise by assessing statistical significance 
under some statistical model. Bias is a more complicated subject and is usually addressed 
explicitly only via some control data to which the ChIP-seq is compared. We return to 
the issue of controls shortly.

There are many sources of bias in a ChIP-seq experiment. In the experimental design, 
for example, the quality of the experiment is predetermined by antibody and immuno-
precipitation specificity. Low sensitivity, resulting from poor affinity to the target pro-
tein of interest, or low specificity, from cross reactivity with other unrelated proteins, 
degrades the quality of a ChIP-seq experiment [9]. The fragmentation step may also 
introduce bias [10]. Prior to immunoprecipitation, the DNA-protein complexes undergo 
fragmentation. However, due to the non-uniform nature of the chromatin structure 
(DNA), some regions are more densely packed (heterochromatin) than others and are 
thus more resistant to fragmentation. Less densely packed regions (euchromatin) will 
undergo more fragmentation. Another source of bias is mappability, which is the extent 
to which reads are uniquely mapped to regions along the genome [10, 11]. In an ideal 
situation, long enough reads are used such that there is higher coverage and uniformity 
in coverage. However, in practice, read length is short and there are “ambiguous” reads 
that map to multiple regions. Such multiple mapped reads can either be retained (cre-
ating ambiguous ChIP-seq signal) or discarded (creating empty, unmappable regions), 
with either choice creating a different sort of bias. GC content bias [12, 13], introduced 
by PCR amplification or sequencing, also results in imbalanced coverage of reads along 
the genome. For example, in PCR amplification, both GC rich and GC poor fragments 
are underrepresented in sequencing data [12]. These variations in coverage can have a 
significant impact on the results obtained.

Systematic and experimental biases hinder the full potential of ChIP-seq analysis. 
Thus, the quality of the input samples is important, especially in large scale analysis 
where low quality datasets have greater effects [8, 14]. Consequently, more than a decade 
after ChIP-seq was introduced, the ENCODE and modENCODE consortia developed 
a set of ChIP-seq quality control metrics and guidelines to produce high quality repro-
ducible data [9]. The protocols address all the stages of a ChIP-seq experiment, as bias 
and noise may be introduced at various stages, such as experimental design, execution, 
evaluation and storage methods [10].

One essential step for the alleviation of bias is the incorporation of control datasets 
in ChIP-seq analysis. It assists in the selection of true enrichment binding sites from 
false positives. Controls, such as input DNA and IgG, attempt to minimize the effects 
of immunoprecipitation, antibody imprecision, PCR-amplification, mappability bias, 
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etc., and thereby increase the reliability of the results. In the input DNA, using the same 
conditions as the original ChIP-seq experiment, the DNA undergoes cross linkage and 
fragmentation. However, no antibody nor immunoprecipitation is used [9]. For the IgG 
control, sometimes referred to as a “mock” ChIP-seq experiment, all the same steps and 
conditions as the original ChIP-seq experiment are applied. However, a control antibody 
(not specific to the protein of interest) is adopted to interact with non-relevant genomic 
positions [9]. DNase-seq and ATAC-seq are used to tackle open chromatin regions. 
According to ENCODE [9], the input DNA and IgG controls should have a sequenc-
ing depth greater than or equal to the original ChIP-seq experiment. Higher sequencing 
depth is recommended since input DNA signals represent broader genomic chromatin 
regions than ChIP-seq [9, 10]. Other crucial factors addressed by the protocols include, 
but are not limited to, biological/technical replicates and library complexity.

Many existing peak calling algorithms allow testing enrichment compared to a control 
[7, 15–20]. Whether biases in controls and ChIP-seq data are the same is not known, 
however. None of these methods selects a control or estimates background signals. 
Depending on which controls are selected and their nature, peak callers can produce 
different results (i.e., binding site positions) for the same ChIP-seq experiment. The BID-
CHIPS [21], CloudControl [22] and AIControl [23] studies have shown that different 
ChIP-seq datasets can be biased in different ways. They address different biases in differ-
ent ChIP-seq datasets via the integration of multiple control datasets through regression 
to improve enrichment analysis. There are some limitations to these studies, however.

For example, BIDCHIPS [21] has the ability to re-prioritize peaks already identified 
by another peak calling method. However, only five notions of control are accounted for 
and there are no mechanisms for de novo peak calling based on the combined control 
[21]. The Hiranuma et al. [22, 23] studies prove the advantage of using more controls to 
model the background signal. In CloudControl [22], the controls are subsampled in their 
regression fit proportional to their weights. This then allows the single customized con-
trol to be used as input to any peak calling method. However, the downsampling of the 
combined controls may introduce noise into the control signal.

AIControl [23], a peak calling framework, is an extension of CloudControl [22]. It 
integrates a group of publicly available control datasets and uses ridge regression to 
model the background signal. This eliminates the need for the user to input controls. 
However, some users may want to provide their own controls, and this is not accommo-
dated. Additionally, the number of datasets in ENCODE increases with time, so allowing 
controls as input in a weighted peak caller is important to represent the newly available 
datasets and newly explored cell lines.

In this work, we introduce a peak calling algorithm, Weighted Analysis of ChIP-Seq 
(WACS), which utilizes “smart” controls to model the non-signal effect for a specific 
ChIP-seq experiment. WACS first estimates the weights for each input control, with-
out requiring the fine-tuning of any parameters. Using the weighted controls, WACS 
then proceeds to detect regions of enrichment along the genome. WACS is an extension 
of MACS2.1.1 (Model-based Analysis for ChIP-Seq) [18], the most highly cited open 
source peak caller. Our development of WACS based on MACS2 allows researchers 
to use the weighted approach within a peak calling method with which they are famil-
iar, and which has many refined features. Fragment length estimation/detection, read 
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shifting, candidate peak identification, and peak assessment remain the same, while 
the construction of the control via the weighted combination of datasets is different. 
To allow for potentially large numbers of controls, we restructure the code invisibly for 
better memory footprint. We also correct a hashing bug in the pileup-computing code 
of MACS2, which becomes especially important when we have high read depth and/or 
many controls. (This bug has subsequently been corrected in the main MACS2 distribu-
tion as well.)

We evaluate WACS on a large collection of 90 ChIP-seq datasets and 147 control data-
sets from the K562 cell line in the ENCODE database [24]. To establish generalizability 
and study performance in a less expansive setting, we also investigate WACS on 20 ChIP-
seq datasets for each of the A549, GM12878 and HepG2 cell lines. (The terms ChIP-seq 
and treatment are used interchangeably throughout the paper.) We compare WACS to 
MACS2, as WACS is based on MACS2. We also compare WACS to AIControl, as it is 
the only other weighted peak caller which intellectually selects its controls. The results 
demonstrate the importance of smart bias removal methods and the use of customized 
control datasets for each ChIP-seq experiment, as the amount of bias varies across dif-
ferent ChIP-seq experiments. In the investigation of downstream genomic analysis, such 
as motif enrichment and reproducibility, the use of weighted controls in WACS shows a 
significant improvement in peak detection in comparison with the pooled unweighted 
controls in MACS2 and weighted controls in AIControl.

Results
WACS: a new algorithm for ChIP‑seq peak calling with a weighted combination of controls

Our approach, WACS, estimates a background distribution by weighting controls, and 
ultimately identifies regions of enrichment along the genome (Fig.  1 and Additional 

Fig. 1  Flowcharts for WACS and MACS2. Both methods take controls and a treatment as input
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file  1: Figure S1). Below we describe the five major steps of the WACS algorithm. To 
implement WACS, we modified a well-known open source algorithm, MACS2. Because 
there is limited written description of how MACS2 works, we describe some parts of 
MACS2 to fully describe WACS. The WACS algorithm is summarized into two parts: 
Derive Weights (Algorithm 1) and Peak Detection (Algorithm 2).

Algorithm  1: Derive Weights. The control and treatment samples (in BAM format) 
are first preprocessed, as seen in Algorithm 1. Using SAMtools [25], we index, sort and 
optionally filter (remove duplicates from) the BAM files (line 2 in Algorithm 1). We then 
use BEDtools [26] to convert the BAM files of mapped reads into read counts per 200 
base pair (bp) windows along the genome with 50 bp increments (line 3 in Algorithm 1).

Next, WACS normalizes the mapped reads per window for the preprocessed control 
and treatment samples. This ensures that the control and treatment samples are on the 



Page 6 of 21Awdeh et al. BMC Bioinformatics           (2021) 22:69 

same scale. WACS applies reads per billion normalization to both the control and ChIP-
seq samples (line 4 in Algorithm 1). For each sample m and window i:

where rmi is the read count in the window, nmi is the normalized read count, and 
TotalReadCountm is the total number of reads in sample m. This effectively reproduces 
the normalization in MACS2, which linearly scales the control sample to the ChIP-seq 
sample. In what follows, we assume k total controls comprise samples 1 to k, and sample 
k + 1 is the ChIP-seq data.

WACS then calculates the weights per input control (line 5 in Algorithm 1). WACS 
performs non-negative least squares (NNLS) to model the treatment dataset as a func-
tion of the controls. The overall objective of the regression is to find the values of the 
parameters (weights), that minimize the sum of squared differences between predictions 
and target values, with an additional constraint that allows only positive weights. Given 
n instances (windows), yi = nk+1,i target values (one per window), xi = (n1i, . . . , nki) fea-
ture vectors (one vector per window), a vector � of coefficient weights and a constant 
offset �0 , NNLS’s objective function is:

To solve the NNLS regression we rely on the nnls module from scipy.optimize, part of 
the scipy [27] package in Python. This produces a weighted control model for the treat-
ment, with weights that indicate the relative importance of each control in modelling the 
treatment background signal. Zero weights are given to controls not required for model-
ling the treatment experiment. If there is one control, WACS and MACS2 produce the 
same output, as by default, the control in WACS gets a weight of exactly 1. The controls 
can also be weighted by the user, instead of using NNLS to compute the weights of the 
controls.

Algorithm 2: Peak Detection. WACS is identical to MACS2 in its initial processing of 
the treatment sample, including: loading the mapped reads (line 2); estimation/calcula-
tion of fragment length d, which differs depending on whether the ChIP-seq reads are 
sequenced single-end or paired-end (line 3); and construction of the treatment pileup, 
which also differs for single-end or paired-end reads (line 4). Because these details have 
been described elsewhere, we do not repeat them here [18, 28, 29].

Where WACS differs substantially from MACS2 is how it reads in, processes, and com-
bines the control samples. WACS reads the controls into memory one at a time, accu-
mulating them into overall (weighted) control pileups at three different length scales: d, 
1 kb and 10 kb. The length scale is essentially the diameter of a Parzen-windows density 
estimator used to smooth the control reads. As each control is read in, it is smoothed, 
scaled so that its total reads are commensurate with the treatment, and further scaled by 
the control weight computed in Algorithm 1 (unless the user opts for unweighted con-
trols). The function BidirectionExtendReads performs the actual smoothing, extending 

nmi ← rmi × 109 ÷ TotalReadCountm

min
�,�0

1

2n

n∑

i=1

(yi −� · xi −�0)
2

subject to� ≥ 0

and�0 ≥ 0
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the read starts into intervals with diameter equal to the length scale. The smoothed and 
scaled control is added to the growing overall control at that length scale. In contrast, 
MACS2 reads all the control data in before beginning smoothing, which can create an 
unmanageable memory footprint when very many controls are being combined. Finally, 
WACS (as does MACS) creates an overall control pileup by taking the pointwise maxi-
mum of the “background” read density �BG and the control pileups computed at each 
length scale.

Finally, WACS calls peaks using the same mechanism as MACS2, which involves iden-
tifying candidate peaks and comparing the pileup heights at their summits with the con-
trol track. In the case of unweighted controls, WACS produces an identical control track 
to MACS2 and identical peak calls. However, when control samples are weighted differ-
ently, a different control track is produced and different peaks may be called. Each peak 
is associated with a p-value and a q-value, the latter accounting for multiple compari-
sons across the entire genome.

Duplicate removal. Duplicate reads—multiple reads mapped to the same position on 
the genome—are often due to the overamplification of DNA fragments by PCR, which 
leads to the repeated sequencing of a DNA fragment. For WACS and MACS2, dupli-
cate removal is optional. To produce more reliable peak calls, MACS2/WACS remove 
redundant reads at each genomic locus for both the treatment and control datasets [18]. 
The default number per genomic locus is determined by the sequencing depth. However, 
when dealing with multiple controls, MACS2 performs duplicate removal after pooling 
reads. WACS does the same thing when used in unweighted mode, for the sake of con-
sistency with MACS2. In this case, apparent “duplicates” arising from different sequenc-
ing runs may be removed incorrectly, artificially flattening the control read distribution 
in high density areas. This phenomenon can be particularly prominent when hundreds 
of controls are being pooled. Thus, we recommend that users who want to perform de-
duplication do so prior to feeding the mapped read files to MACS2 or WACS.

Average number of peaks per algorithm and average percentage overlap 

between algorithms

To evaluate the performance of WACS with other methods, we downloaded ChIP-seq 
and control data for four cell lines: K562, A549, GM12878 and HepG2. For each ChIP-
seq sample, we generated peaks under five conditions: (1) MACS2 with all the controls 
from the same cell line (All MACS2), (2) MACS2 with the matched ENCODE controls 
(Matched MACS2), (3) WACS with all the controls from the same cell line (WACS), (4) 
WACS with 10 randomly selected controls from the same cell line (WACS Random10) 
and (5) AIControl with its predefined controls (AIControl). We also used two methods 
to study the quality of peaks. “All Peaks” considers all the original peaks output by each 
method, whilst “Standardized” peaks normalizes the peaks output by each ChIP-seq 
sample by the number of peaks and peak width. (See Methods below.)

In this section, we examine some basic statistics regarding the peaks generated by each 
algorithm and their corresponding pairwise overlap with the other peak calling meth-
ods. We focus on the K562 results in this and the following several subsections; results 
for additional cell lines are reported further below. This will help us understand how 
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different the peak callers are. In Table 1, we report the average number of peaks output 
by each algorithm across the different ChIP-seq datasets for all peaks and standardized 
peaks.

We notice that AIControl outputs the largest number of peaks—over seven times as 
many peaks as WACS, and nearly 4 times as many as Matched MACS2. WACS out-
puts the smallest number of peaks on average. Matched MACS2 and All MACS2 out-
put approximately the same number of peaks, and roughly twice as many as produced 
by WACS, while WACS Random10 generates a number of peaks intermediate between 
WACS and MACS2. For standardized peaks, however, all algorithms have the same 
number of peaks per dataset, which averages out to 12016.

In Tables 2 and 3, we report the average percentage peak overlap between each pair of 
algorithms across the ChIP-seq datasets, for all peaks and standardized peaks respec-
tively. More specifically, for every algorithm X (rows) and every other algorithm Y 
(columns), we computed the percentage of X’s peaks overlapping any of Y’s peaks for 
each of the 90 ChIP-seq datasets, and then averaged the percentages across the 90 data-
sets. When considering all peaks, for example, 27.1% of the peaks generated by WACS 
overlap with All MACS2 peaks. Most notably, less than 7% of the peaks generated by 
AIControl overlap with peaks generated by the other algorithms. For the other pairwise 
combinations, most overlaps are in the 30–40% range. Conversely, in Table 3 for stand-
ardized peaks, we notice an almost symmetrical matrix with an increase in percentage 

Table 1  Average number of peaks

Type WACS WACS Random10 Matched MACS2 All MACS2 AIControl

All Peaks 12,457 17,239 24,422 26,892 91,113

Standardized 12,016 12,016 12,016 12,016 12,016

Table 2  Average percentage of all peaks overlapping

WACS WACS Random10 Matched 
MACS2

All MACS2 AIControl

WACS – 37.3 29.0 27.1 29.0

WACS Random10 38.6 – 32.7 34.9 32.7

Matched MACS2 31.9 35.0 – 37.9 31.0

All MACS2 30.2 37.3 37.8 – 33.6

AIControl 6.5 6.3 5.0 5.5 –

Table 3  Average percentage of standardized peaks overlapping

WACS WACS Random10 Matched 
MACS2

All MACS2 AIControl

WACS – 42.0 37.7 39.6 25.1

WACS Random10 42.0 – 39.5 42.7 25.0

Matched MACS2 37.7 39.4 – 41.7 23.5

All MACS2 39.6 42.7 41.2 – 24.3

AIControl 25.1 25.0 23.5 24.3 –
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overlap across all algorithms, in comparison to Table 2. This is especially noticeable for 
AIControl, where approximately 25% of the AIControl peaks now overlap with peaks 
generated by other algorithms. All overlaps are in the range of 23–43%.

The different number of peaks generated by each algorithm, and the resultant differ-
ences in percentage overlaps, highlight the importance of standardizing the peaks to 
remove the effect of the number of peaks in our analysis. Standardizing the peaks allows 
us to select the top quality peaks for comparison.

Peaks identified by WACS are more enriched for known sequence motifs

The purpose of ChIP-seq analysis is the identification of regions of enrichment, such 
as transcription factor (TF) binding sites, along the genome. Thus, DNA binding motifs 
for a TF tend to be enriched in genuine binding sites. To evaluate the performance of 
our method in comparison to MACS2 and AIControl, we performed motif enrichment 
analysis on the peaks. Adopting a similar method as in [23], we first used JASPAR to 
obtain position weight matrices (PWMs) for each unique TF [30]. Motifs in JASPAR are 
derived from in  vitro assays, such as SELEX, and in  vivo high throughput sequencing 
experiments, such as ChIP-seq or ChIP-exo [30]. (See Additional file 1: Table S5 for the 
PWM IDs per TF.) Using PWMs as input, we then used FIMO (Find Individual Motif 
Occurrences) [31] in the MEME suite [32] to scan the entire human genome GRCh38 
and identify motif hits genome wide with a cutoff of 1e-5 to define significant matches. 
In our analysis, peaks with a motif are considered as true positives, while those lacking 
a motif hit are considered false positives. We quantify motif enrichment for a particular 
set of peaks as the precision, or equivalently the fraction of true positive peaks over total 
peaks.

Figure 2a and b display the motif enrichment for each of the 90 ChIP-seq datasets for 
all peaks and standardized peaks respectively, when using WACS (blue line), WACS 
Random10 (yellow line), Matched MACS2 (green line), All MACS2 (red line) and 
AIControl (purple line). The ChIP-seq datasets have been sorted so that the WACS per-
formance decreases from left to right. An immediate observation is that some ChIP-seq 
datasets result in much more motif-enriched peaks regardless of peak caller, while oth-
ers have much less motif enrichment. This may have to do with factors such as specific-
ity of the TF’s DNA binding, the accuracy of the JASPAR PWM used for motif search, or 
the quality of the ChIP-seq dataset itself.

When analyzing all the peaks (Fig.  2a), WACS is seen to outperform the other 
approaches the majority of the time—on 75 of 90 ChIP-seq samples in total. WACS 
Random10, All MACS2, and Matched MACS2 perform rather similarly, although 
we quantify this more carefully just below. AIControl performs the worst, with quite 
poor motif enrichment even in the datasets where all other algorithms perform very 
well. However, keeping in mind that AIControl tends to produce a large number of 
peaks, this could be a precision-recall sort of trade-off, in which the default behav-
ior of AIControl is oriented towards the recall end of the spectrum. Indeed, when 
we examine the width- and number-standardized peaks (Fig.  2b), the performance 
of all algorithms is much more similar. We still see a strong effect that some ChIP-
seq datasets have peaks with much better motif enrichment than others. We also still 
see that WACS still performs best, although by a smaller margin and less often—it 
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is the top performer in 61 of 90 datasets. Table 4 reports the number of times out of 
90 that each algorithm’s peaks show the best motif enrichment. By a proportion test, 
for either all or standardized peaks, WACS’s fraction of times as the top performer is 
statistically significantly greater than the expected fraction of 1/5 if all five algorithms 
performed equally well, with a p-value of less than 10−5 . That WACS outperforms the 
other peak callers on the majority of the treatment samples even after standardization 
suggests that better motif enrichment is not a result of being more selective of the 
peaks, but that the peaks have inherently higher quality, at last as measured by motif 
enrichment.

To evaluate further the quantitative differences in motif enrichment, we computed 
the percentage differences relative to Matched MACS2—which is the method used by 

a b

c
Fig. 2  Motif enrichment of peaks found by five different peak calling approaches in 90 ChIP-seq samples. 
Motif enrichment is defined as the fraction of all peaks that contain at least one motif occurrence for the 
transcription factor in question. a Motif enrichment for all peaks. b Motif enrichment for the standardized 
peaks. c Distributions of percentages differences in motif enrichment relative to Matched MACS2. Box and 
whisker plots show the 0th, 25th, 50th, 75th and 100th percentiles

Table 4  Number of  datasets out  of  90 where  each algorithm’s peaks show the  highest 
motif enrichment, compared to the other algorithms

Type WACS WACS Random10 Matched MACS2 All MACS2 AIControl

All peaks 75 5 7 3 0

Standardized 61 8 10 4 7
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ENCODE and something of a “gold standard”. Specifically, for each other algorithm and 
for each ChIP-seq dataset, we calculated the difference in motif enrichment, divided by 
the Matched MACS2 motif enrichment, and converted to a percentage. Figure 2c dis-
plays box plots of the percentages differences, for all peaks (green) and standardized 
peaks (yellow). For all the four methods, we observe that the standardized peaks in com-
parison to all peaks results in reduced dispersion and variability of the data. We will 
focus on standardized peaks in our discussion. For WACS, we notice a positive motif 
enrichment difference for most of the ChIP-seq datasets, with a mean improvement 
of 45% when all peaks are considered, or a more modest 14% when peaks are stand-
ardized. WACS Random10 also shows improvements over Matched MACS2 on aver-
age, although they are not as large as the WACS improvements. Nevertheless, all four 
cases (WACS and WACS Random10 with all or standardized peaks) are statistically sig-
nificantly greater than zero by one-sample t-tests, with p-values of less than 10−5 . All 
MACS2 performs similarly to Matched MACS2, as does AIControl when peaks are 
standardized, with none of the percent differences being statistically significantly differ-
ent from zero. Without standardization, however, the full set of AIControl peaks is sig-
nificantly worse on motif enrichment compared to Matched MACS2, with p-value less 
than 10−29 . Overall, these results again confirm the improved performance of WACS 
compared to other approaches, although standardization reduces its advantage.

Another method for evaluating motif enrichment is the area under the precision-recall 
curve (AUPRC) [23]. The AURPC is designed to compare algorithms on the same set 
of instances. Each algorithm, however, generates a different set of peaks for a specific 
ChIP-seq dataset. Thus, we believe precision is a more appropriate evaluation metric 
than AUPRC for this comparison. Nevertheless, for the purpose of comparison with 
AIControl [23], which uses the AUPRC metric, we performed the AUPRC analysis as 
well. Additional file 1: Figure S2 shows an example precision-recall curve for the ChIP-
seq dataset ENCFF109OWW with TF ZNF24, and Additional file 1: Figure S3 shows the 
the AUPRC for each of these ChIP-seq datasets when using standardized peaks. Using 
AUPRC, WACS outperforms WACS Random10, All MACS2, Matched MACS2 and 
AIControl on 73, 80, 78 and 81 of the 90 treatment samples respectively. These differ-
ences are statistically significant by a two-tailed sign test with p-value less than 10−5.

Peaks identified by WACS are more reproducible

Ideally, a ChIP-seq peak calling algorithm is able to reproducibly identify true regions of 
enrichment along the genome with no false positives. Reproducibility is most commonly 
measured by computing the percentage overlap of peaks between replicates [4, 5]. As 
described above, the K562 experiments we chose included exactly two ChIP-seq biologi-
cal replicate samples in 45 distinct experiments (see Additional file 1: Table S1). Using 
the five different peak calling approaches, we called peaks for every sample, and evalu-
ated the overlap between replicate samples. Overlaps means we took one replicate and 
computed the fraction of peaks that overlaps with the other replicate.

Figure 3a, b show the percentage overlap with all peaks and standardized peaks respec-
tively for each of the ChIP-seq experiments when using WACS (blue line), WACS Ran-
dom10 (yellow line), Matched MACS2 (green line), All MACS2 (red line) and AIControl 
(purple line). WACS has higher reproducibility than the other approaches on 26 of the 
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45 experiments when all peaks are considered, and on 28 of the 45 experiments with 
standardized peaks. These numbers are statistically significantly higher than expected 
under the null hypothesis that all algorithms perform equally, by a proportion test with 
p-value less than 10−4 . AIControl has lowest reproducibility of the five approaches, 
regardless of whether all peaks or standardized peaks are considered. See Table  5 for 
details on all five algorithms.

To further investigate the quantitative differences in reproducibility, we computed the 
percentage differences in overlap relative to the overlap obtained by Matched MACS2. 
Figure  3c displays box plots of these percentage differences for all peaks (green) and 
standardized peaks (yellow). We notice a positive percentage difference in overlap 
for WACS, with 16% improved reproducibility for all peaks, or 5.6% for standardized 
peaks, on average. These differences are statistically significant by t-test with p-values 

a b

c
Fig. 3  Reproducibility of peak calls between biological replicates. a, b Percentage overlap between 
replicates, for each of the five peak calling methods for 45 ChIP-seq experiments, when using a all peaks, or b 
standardized peaks. c Box plots of percentage difference in reproducibility relative to Matched MACS2

Table 5  Number of  experiments out  of  45 for  which each peak calling approach 
has the highest reproducibility between biological replicates

Type WACS WACS Random10 Matched MACS2 All MACS2 AIControl

All peaks 26 7 8 1 3

Standardized 28 7 5 4 1
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of less than 10−3 . However, WACS Random10’s performance is not statistically better 
than Matched MACS2, nor is All MACS2. AIControl has statistically significantly worse 
reproducibility both for all peaks ( p < 0.05 ) and standardized peaks ( p < 10−12 ). The 
significance is borderline for the all peaks case, despite a large drop in mean, because 
of the high variability in its performance. Thus, in this section and the previous sec-
tion, we see compelling evidence that WACS produces higher quality peaks than the 
other approaches, as measured by both motif enrichment and reproducibility between 
replicates.

Controls used per treatment sample

Our results (and other results [21–23]) for motif enrichment and reproducibility analy-
sis suggest that smart controls offer superior background subtraction and peak-calling 
for ChIP-seq data. However, the standard practice remains to generate controls along-
side each ChIP-seq experiment, or to match them on the basis of experimental details, 
such as cell/tissue type, read length and sequencer. If smart controls are to be used, it 
is unclear how many controls should be considered, and how many will end up in the 
smart control. It is unclear whether ENCODE matched controls are, in fact, the best 
choices or even among the controls selected by a smart control procedure.

Here, we aim to increase our understanding of the smart controls used to model the 
background signal. Figure 4 displays a matrix where the rows and columns represent the 
ChIP-seq and control datasets respectively. The blue color in the matrix represents the 
controls selected by WACS to fit each ChIP-seq dataset, the maroon color represents the 
ENCODE matched controls [24] and the magenta color represents the controls selected 
by both ENCODE and WACS.

Let us first consider the WACS selected controls per ChIP-seq dataset (blue) in Fig. 4. 
Different subsets of the 147 controls are required by WACS for each ChIP-seq dataset, 
but these form several coherent clusters, where groups of ChIP-seq datasets use rela-
tively the same controls for modeling the background signal. For example, the 10 or so 
controls most towards the left of the diagram are used in modeling nearly all the ChIP-
seq datasets’ backgrounds. The next 10 controls are widely used, though less so, and are 
distinct in be used for some of the ChIP-seqs towards the top. Conversely, there is a set 
of ChIP-seq datasets about near but not quite at the top of the matrix that rely on a large 
number of controls for modeling their background, whereas ChIP-seqs in the lower half 
rely almost solely on the leftmost controls.

Although each ChIP-seq’s background is modeled by a unique combination of con-
trols, a clear trend is that many controls are combined—approximately 26 on average. 
Additional file 1: Figure S4 shows a histogram of the overall number of controls used by 
the ChIP-seq datasets using WACS.

For the ENCODE matched controls, we observe a range of 1 to 4 ENCODE matched 
controls per ChIP-seq dataset (maroon color in Fig. 4). For 40 of the 90 ChIP-seq data-
sets (44%), none of the matched ENCODE controls are used to model the background 
signal in comparison to those used by WACS (rows with no magenta color in Fig. 4). For 
example, 19 controls are used to model the background signal for the ChIP-seq dataset 
ENCFF651HPM in Fig. 4, none of which are the matched ENCODE controls. For the 
remaining 56% of the ChIP-seq datasets, some of the ENCODE matched controls are 
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also those selected by WACS, as seen in Fig. 4 (magenta color), and there are 30 ChIP-
seq datasets that use all their matched ENCODE controls (in addition to other controls 
samples). It is not clear from manual examination nor straightforward statistical analysis 
what features of a control, or jointly of a control and a ChIP-seq dataset, might cause the 
control to be desirable for inclusion. Determining the distinguishing characteristics of 
the best controls for a given ChIP-seq, beyond their utility in our regression formulation, 
is an important topic for future research.

Additionally, we further investigate which features resulted in the inclusion or exclu-
sion of a control by WACS for a specific ChIP-seq dataset. An instance is defined as 
each control and ChIP-seq dataset combination, and the target value is a boolean which 
indicates whether that control was selected for that specific ChIP-seq dataset. For each 
instance, we consider boolean features representing the similarity or difference between 
the ChIP-seq and control datasets. These include lab name, experimental release year 
and mapped read length. A value of 1 indicates that the feature is equivalent for both 
the ChIP-seq and control datasets, and 0 otherwise. We conduct an exact Fisher’s test 

Fig. 4  Comparison of controls used by WACS and ENCODE. The rows and columns correspond to the 
ChIP-seq and control experiments respectively. For each ChIP-seq dataset, the controls are given a blue color 
if they are used by WACS only, a maroon color if they are ENCODE matched controls only, and a magenta 
color if they are used by both ENCODE and WACS
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and found statistically significant results for each of these features with p < 0.005 . (See 
Additional file 1: Tables S7, S8 and S9). However, these predictions are far from perfect, 
and future work needs to be conducted to establish what a ‘good’ control is.

Validation on additional cell lines

Here, we further evaluate WACS, MACS2 and AIControl on three other cell lines: A549, 
HepG2 and GM12878. We specifically explored 20 ChIP-seq and 18 control datasets for 
each cell line. (See Additional file 1: Tables S4, S5 and S6 for accession codes of the sam-
ples.) We evaluated MACS2 with the ENCODE matched controls (Matched MACS2), 
MACS2 with the cell line specific controls (All MACS2), WACS with the cell line spe-
cific controls (WACS), WACS with the all controls across the three different cell lines 
(WACS AllCtrls), and AIControl with its predefined set of controls on ChIP-seq datasets 
(AIControl).

To evaluate the quality of the peaks generated by each method for each cell line, we 
first investigate motif enrichment. Figure  5 displays the motif enrichment for all and 
standardized peaks for each of the ChIP-experiments corresponding to each cell line, 
when using WACS (blue line), WACS AllCtrls (yellow line), All MACS2 (red line), 
Matched MACS2 (green line) and AIControl (purple line). AIControl across all cell 
lines, for all and standardized peaks, has the lowest motif enrichment. For the cell 
line A549, as seen in Fig.  5a, d, WACS and WACS All Ctrls display the highest motif 
enrichment and have very similar performance. WACS and WACS All Ctrls outper-
form Matched MACS2, All MACS2 and AIControl on 14 treatment samples in total, as 
shown in Table 6. An equivalent trend is observed for the GM12878 cell line (Fig. 5b, e). 
However, when using all peaks, WACS has the highest motif enrichment; WACS out-
performs WACS All Ctrls, Matched MACS2, All MACS2 and AIControl on 15 treat-
ment samples in total, as shown in Table 6. Additionally, for standardized peaks, for cell 

a b c

d e f
Fig. 5  Motif enrichment of the peaks called by five methods for each of the three additional validation cell 
lines: A549 (a, d), GM12878 (b, e) and HepG2 (c, f)
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lines A549 and GM12878, we notice almost equivalent motif enrichment when using All 
MACS2 and Matched MACS2. For HepG2 with all peaks (Fig. 5c), on the other hand, 
Matched MACS2 outperforms WACS, WACS All Ctrls, All MACS2 and AIControl on 
11 treatment samples in total. For HepG2 with standardized peaks (Fig. 5f ), all methods 
display similar performance.

Finally, we explore the reproducibility of peaks in ChIP-seq replicates for each cell line. 
There are a total of 10 ChIP-seq experiments for each cell line, each with two replicates. 
Figure  6 show the percentage overlap with all and standardized peaks for each of the 
ChIP-seq experiments, when using WACS (blue line), WACS All Ctrls (yellow line), All 
MACS2 (red line), Matched MACS2 (green line) and AIControl (purple line). WACS 
All Ctrls outperforms WACS, Matched MACS2, All MACS2 and AIControl on all of 
the ChIP-seq datasets for all the three cell lines, A549, GM12878 and HepG2 for all and 

Table 6  Numbers of datasets for which each algorithm produces peaks with the best motif 
enrichment

Cell Line WACS WACS AllCtrls Matched MACS2 All MACS2 AIControl

All peaks

A549 7 7 2 4 0

GM12878 15 2 2 1 0

HepG2 0 9 11 0 0

Standardized

A549 10 8 1 1 0

GM12878 11 5 3 0 1

HepG2 3 6 5 0 6

a b c

d e f
Fig. 6  Percentage overlap in peaks between biological replicates, for each of the five peak calling methods 
for each of the three additional validation cell lines: A549 (a, d), GM12878 (b, e) and HepG2 (c, f)
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standardized peaks, as show in Table 7. Again, AIControl displays the lowest percentage 
overlap for A549, GM12878 and HepG2 for all and standardized peaks.

Moreover, we conduct a proportion test across all the three cell lines (A549, GM12878 
and HepG2) for both motif enrichment and reproducibility. We notice that at times 
WACS outperforms the other peak calling methods, and other times WACS All Ctrls 
does. The high variability and small sample size leads to less significance when consid-
ering WACS or WACS All Ctrls separately. However, there is an overall positive favor 
in terms of WACS. For either all or standardized peaks, we observe that the fraction of 
datasets where both WACS and WACS All Ctrls have the highest motif enrichment and 
highest reproducibility is statistically significant with a p-value less than 10−5.

Discussion
In this paper, we provide a method, WACS, for improved peak-calling and increase our 
understanding of ChIP-seq data, controls and their biases. WACS is built on the pre-
existing, widely-used and precise peak calling method in MACS2, but has been recoded 
internally for better efficiency with many simultaneous datasets, and provides weights 
per control for a more accurate background model. We showed that this form of “intel-
ligent” control construction is beneficial for peak calling. It appears to better estimate 
background signal in ChIP-seq datasets, as evidenced by better motif enrichment and 
better reproducibility in the called peaks. We showed that the controls selected by 
WACS are not necessarily the matched ENCODE controls. Additionally, for most of the 
ChIP-seq datasets, many more than two controls are selected to model the background 
signal. These findings run contrary to typical practice, where typically one or a small 
number of controls are chosen by the experimenter, sometimes based simply on controls 
having been done simultaneously with the ChIP-seq experiments, without any analysis 
of whether the control really models well the ChIP-seq background. As noted also by 
Hiranuma et al. [23], intelligent control selection or construction allows researchers to 
use other controls non-specific to their ChIP-seq experiment to model the noise dis-
tribution. This can decrease cost, time and resources required to perform the ChIP-seq 
experiments.

Moreover, WACS is a more selective peak caller in comparison to the other peak call-
ing methods—as it outputs the least number of peaks on average. We evaluate WACS 
using all peaks and standardized peaks and observe that WACS outperforms the other 

Table 7  Number of  datasets for  which each algorithm produces peaks with  the  greatest 
overlap between biological replicates

Cell Line WACS WACS AllCtrls Matched MACS2 All MACS2 AIControl

All peaks

A549 0 8 1 0 1

GM12878 3 4 1 1 1

HepG2 1 7 2 0 0

Standardized

A549 2 8 0 0 0

GM12878 2 4 3 1 0

HepG2 1 8 1 0 0
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peak calling methods in both cases. However, the difference in performance when using 
standardized peaks is less than when using all peaks. This shows that the performance of 
the other peak calling methods improves after standardization. Thus, this suggests that 
WACS pro-actively removes lower quality peaks.

Hiranuma et al. [23] claim that AIControl is better at removing background noise than 
MACS2. However, our results suggest the contrary. This may be due to a number of rea-
sons. First, Hiranuma et al. [23] uses a different and nonstandard evaluation method for 
reproducibility analysis. Whereas we adopted the widely used approach of looking at 
peak overlaps between biological replicates [4, 5], Hiranuma showed that AIControl had 
higher irreproducibility than MACS when applied to unrelated datasets. Furthermore, 
Hiranuma et al. applied MACS2 using only one matched control, while for our analysis, 
we used either all the ENCODE matched controls for a treatment sample or simply all 
controls from the same K562 cell line. In either case, the provision of multiple controls 
may have improved MACS2’s performance.

In this manuscript, we described using NNLS to fit a model of ChIP-seq background 
to control densities, but other formulations are possible. For example, we experimented 
with an instance-weighted NNLS formulation, to account for differing variances on 
the regression targets yi (the ChIP-seq read counts per window). We did not find any 
improvement in performance. However, results may depend on how one estimates tar-
get variances. Relatedly, performing regression on log-transformed read counts may be 
worth exploring. RNA-seq analysis tools such as DESeq2 [33] use log linear models for 
read counts and comparisons between conditions. It would also make sense to explore 
L1-penalized regression formulations, to explore trade-offs between the number of con-
trols used to model background and the accuracy of the background model.

Future work will deal with a more thorough analysis of the weighted controls approach 
on other high throughput sequencing data, such as RNA-seq, and other cell lines. The 
weighted approach will be used to study the biases in RNA-seq data across different 
platforms, labs, cell types, tissues, etc. For example, RNA-seq is used to measure the dif-
ference in gene expression between tissues, where a tissue consists of a mixture of cell 
types. To generate a realistic control tissue, the weighted approach can be used to weight 
the cell types in the tissue to model the background signal. Also, in this analysis, we 
focused on sharp peaks, which are more generally found at protein-DNA binding sites. 
Thus, an analysis of other broader peaks, for example, will be conducted. Ultimately, 
our overall aim is to increase the fidelity of conclusions drawn from high-throughput 
sequencing datasets, each of which may be biased in different ways, and to take fuller 
advantage of the masses of data already published as a “reference” for interpreting new 
data.

Conclusion
We developed a peak calling method, WACS, which allows a mixture of weighted con-
trols as input. The user inputs the controls. These controls can either be weighted by 
the user, or the weights can be computed by our regression approach. The latter sys-
tematically estimates the weights of the input controls to model the background signal 
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for that ChIP-seq experiment. In the special case of equal weights which sum up to 1, 
the peaks output from WACS and MACS2 are identical. If different weights are allowed, 
the two algorithms have different outputs. WACS allows only positive weights for bet-
ter interpretability of results. Negative weights are biologically difficult to interpret; as it 
does not add to the background signal. WACS proceeds to use this devised background 
signal to identify regions of enrichment along the genome. WACS is an extension of the 
most highly cited peak calling algorithm, MACS2 [18]. We conducted a comparison 
between WACS, MACS2 and AIControl to evaluate our method and the significance of 
the weighted controls. WACS significantly outperforms both MACS2 and AIControl in 
motif enrichment analysis and reproducibility analysis.

Methods
We evaluated WACS, MACS2.1.1 (https​://githu​b.com/taoli​u/MACS) and AIControl 
(https​://githu​b.com/hiran​umn/AICon​trol.jl/) on data from the ENCODE consortium 
[34]. ENCODE ChIP-seq data is organized into “experiments”, which typically comprise 
two or more ChIP-seq samples generated at the same time and under the same con-
ditions. Experiments also have controls matched to the ChIP-seq samples, and peaks 
called for each of the ChIP-seq samples. The K562 cell line has the most data avail-
able, so we focused our empirical evaluation on that data. We identified experiments 
with precisely two ChIP-seq samples. We included ChIP-seq BAM files mapped to the 
GRCh38 genome with filtered alignments. We further restricted attention to TFs with 
position-weight matrices in JASPAR. By these criteria, we identified 90 ChIP-seq sam-
ples (in 45 experiments) for analysis. We also collected all available controls for the K562 
cell lines, resulting in 147 control samples for our analysis. Finally, to test the generality 
of our results in other cell lines, we selected 20 ChIP-seq and 18 control samples for each 
of A549, GM12878, and HepG2 cell lines. See Additional file 1: Tables S1, S2, S4, S5 and 
S6 for the accession codes of samples.

As seen in Fig. 1 (and Additional file 1: Figure S1), MACS2 pools the controls together 
for each ChIP-seq sample, whereas WACS estimates a weight for each control and com-
putes a unique weighted control pileup for each ChIP-seq sample. AIControl uses a 
predefined set of publicly available controls [23]. We used two methods to evaluate the 
quality of the peaks generated by WACS, MACS2 and AIControl. One method consid-
ers all the original peaks output by each algorithm (called All Peaks). However, differ-
ent peak callers can produce peaks in different locations based on the same data, and 
they can also produce different numbers of peaks. Thus, for additional comparison, we 
adopted the standardization procedure proposed by Hiranuma et  al. [23], where the 
peak width and number of peaks are normalized for each treatment sample. First, the 
peak width is normalized by binning the peaks in 1000 base pair windows. For example, 
a peak at chromosome 1 from 14520 to 15420 is counted as two peaks covering bins 
14000 to 15000 and 15000 to 16000. Next, the number of peaks for all five peak-calling 
conditions for the same dataset is normalized by retaining the top n most statistically 
significant peaks, where n is the smallest number of peaks in any of the five width-stand-
ardized peak sets.

https://github.com/taoliu/MACS
https://github.com/hiranumn/AIControl.jl/
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