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Abstract 

Background:  Predicting physical interaction between proteins is one of the greatest 
challenges in computational biology. There are considerable various protein interac-
tions and a huge number of protein sequences and synthetic peptides with unknown 
interacting counterparts. Most of co-evolutionary methods discover a combination 
of physical interplays and functional associations. However, there are only a handful 
of approaches which specifically infer physical interactions. Hybrid co-evolutionary 
methods exploit inter-protein residue coevolution to unravel specific physical inter-
acting proteins. In this study, we introduce a hybrid co-evolutionary-based approach 
to predict physical interplays between pairs of protein families, starting from protein 
sequences only.

Results:  In the present analysis, pairs of multiple sequence alignments are con-
structed for each dimer and the covariation between residues in those pairs are 
calculated by CCMpred (Contacts from Correlated Mutations predicted) and three 
mutual information based approaches for ten accessible surface area threshold groups. 
Then, whole residue couplings between proteins of each dimer are unified into a single 
Frobenius norm value. Norms of residue contact matrices of all dimers in different 
accessible surface area thresholds are fed into support vector machine as single or 
multiple feature models. The results of training the classifiers by single features show 
no apparent different accuracies in distinct methods for different accessible surface 
area thresholds. Nevertheless, mutual information product and context likelihood of 
relatedness procedures may roughly have an overall higher and lower performances 
than other two methods for different accessible surface area cut-offs, respectively. The 
results also demonstrate that training support vector machine with multiple norm 
features for several accessible surface area thresholds leads to a considerable improve-
ment of prediction performance. In this context, CCMpred roughly achieves an overall 
better performance than mutual information based approaches. The best accuracy, 
sensitivity, specificity, precision and negative predictive value for that method are 0.98, 
1, 0.962, 0.96, and 0.962, respectively.

Conclusions:  In this paper, by feeding norm values of protein dimers into support 
vector machines in different accessible surface area thresholds, we demonstrate that 
even small number of proteins in pairs of multiple alignments could allow one to accu-
rately discriminate between positive and negative dimers.
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Background
Proteins are key functional molecules playing critical roles inside cells. These impor-
tant biomolecules accomplish their roles using inter-molecular interactions [1, 2]. Pro-
tein–protein interactions (PPI) are involved in numerous cellular processes [3, 4]. Most 
proteins accomplish their tasks through physical interactions. Prediction of those physi-
cal interplays is a grand challenge in computational biology [5]. There are considerable 
various protein interactions and myriads of protein sequences and synthetic peptides 
with unknown interacting counterparts waiting to unveil. Therefore, developing new 
approaches for accurate prediction of physical interactions among proteins directly from 
primary amino-acid sequence would be a breakthrough in the field of bioinformatics.

Protein coevolution occurs to prevent disrupting a critical interaction. In this case, 
mutations in key interfacial residues in one of the interacting pairs of proteins enforce 
compensatory mutations in the other one. Therefore, two interacting proteins coevolve 
through interdependent changes at their interaction interface [6, 7]. This residue coev-
olution can be exploited to decipher specific physical interacting proteins. Some of 
sequence-based approaches to infer PPI use coevolution at amino acid level but others 
apply it at protein level mostly using principles of molecular phylogenetic [6].

Coevolution at the level of protein sequence potentially discovers both physical and 
functional interactions [8–13]. A pair of proteins tend to interact if their correspond-
ent protein family coevolve [14, 15] and possess cognate phylogenetic tree with similar 
distance matrices [8, 10, 16–18]. A dozen of "Mirror-tree"-based studies are focused on 
deciphering protein-level interaction. Those studies measure the similarity of distance 
matrices of two phylogenetic trees by correlation coefficient. All of those methods pre-
dict physical interaction or functional associations between two protein families [8–13] 
or inside pairs of Multiple Sequence Alignments (MSAs) [14, 17, 19, 20].

So far, residue level coevolution is exploited to decipher residue contact maps inter 
and intra proteins. Physical interactions between pairs of protein sequences are indeed 
local phenomena and occur in specific interfacial residue components [6]. Accord-
ingly, groups of co-evolutionary physical PPI prediction methods (hybrid methods) are 
extended in which inter-protein residue coevolution is employed to predict the inter-
action between protein molecules in higher scales. Given that PPI inference through 
hybrid methods is performed by prior inter-protein residue contact map prediction, 
those approaches are applied to infer specific physical PPI.

In literature, the problem of hybrid PPI inference approaches has thus far been pre-
sented in two different concepts [21, 22]. Some of those approaches explore the interac-
tion between specific protein partners inside a paired MSA [23–30] whereas a handful 
of others assess the possibility of interaction between protein families [31–33]. Among 
the former approaches, Bitbol (2018) addressed paralogous problem within pairs of pro-
tein families. She applied Iterative Pairing Algorithm (IPA) to maximize the final co-evo-
lutionary signal and predicted the best possible matchings between protein partners in 
each paired MSA [24]. The second group of approaches are desired for deciphering the 
physical couplings between pairs of protein families. The growing need to build accurate 
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datasets and computational costs of building hundreds of paired MSAs for hundreds 
of putative pairs of proteins and employing residue coevolution on those datasets has 
limited those studies. Nevertheless, a few studies have thus far focused on this meth-
odology. Our method is among this group. In 2002, Pazos et al. proposed a basic idea, 
in-silico two hybrid (i2h), that correlation between pairs of residues in paired MSAs of 
proteins is sufficient for reconstruction of protein interaction networks. Application of 
that system on various test sets revealed that i2h has a good capacity to discern between 
true and false interactions [31]. Feinauer et al. (2016) applied plmDCA on paired MSAs 
of simulated and biological pairs of proteins. They tested their co-evolutionary analysis 
on ribosomal and tryptophan operon proteins and indicated that residue coevolution is 
strong enough to discriminate interacting protein families from non-interacting family 
pairs [32]. In a recent study, Cong et al. (2019) proposed a hybrid PPI prediction method 
in which they performed sets of residue coevolution screenings on several protein 
benchmark datasets and predicted the possible physical interactions among proteins. 
They indicated that their screen outperforms several experimental procedures [33].

Local and global residue co-evolutionary methods have thus far been used to unravel 
physical PPI. In local residue coevolution approaches including Mutual Information 
(MI) [34, 35], McBASC [36] and so forth, each pairs of residues are considered inde-
pendent of other residues whereas in global approaches as CCMpred [37] and so forth 
[38–44], the correlation between each residue pair is taken into account.

In the present survey, a hybrid method is applied in which three MI-based methods 
and a single representative global approach, CCMpred, are employed for residue coev-
olution analysis for further physical PPI prediction. A set of Accessible Surface Area 
(ASA) thresholds are considered and residues exceeding those cut-offs are assumed as 
exposed residues. Inter-protein residue contact matrices are acquired in different ASA 
groups for each putative pair of proteins for CCMpred and MI-based approaches. There 
are various magnitudes of signals in each residue contact matrix most of which are indi-
rect noisy signals. In order to attenuate the impact of those signals, we take advantage of 
a novel innovative application of "Frobenius norm" concept. Whole elements of residue 
coevolution matrix of each interacting pair are summarized into a single "norm" value. 
The aim is to reduce the effect of noisy signals by considering power of two of the ele-
ments of the matrix [see expression (9)]. This approach both reduces the effect of noises 
and amplifies the power of direct residue interactions.

The present study indicated that the whole entries of residue coevolution matrices are 
strong enough to discriminate interacting protein families from non-interacting family 
pairs.

Results
Overview

In this study, a set of gold standard positive and control negative heterodimers are exam-
ined to infer physical PPI only based on sequence-based co-evolutionary information. 
Pairs of MSA families are constructed for each dimer and the covariation between resi-
dues in those pairs are calculated by CCMpred and three MI-based approaches for ten 
ASA threshold groups. Frobenius norms of residue contact maps between interacting 
pairs of proteins are calculated for all dimers in those cut-offs (see Additional file 1). At 
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the next step, several SVM classifications are developed to distinguish between posi-
tive and negative heterodimeric protein couples. The input features of SVM models 
are Frobenius norms of covariation matrices. Norms of inter-protein residue contact 
matrices of all dimers in different ASA thresholds are fed into SVM as single (Fig. 1a) or 
multiple feature (Fig. 1b) models. Finally, the prediction performance of each model is 
evaluated using accuracy, sensitivity, specificity, precision, NPV, FPR, FNR and BM.

Datasets

The final remaining numbers of samples in our datasets are 166 couples of proteins in 
which 83 equal numbers of dimers exist in both positive and negative datasets.

More than 75% of whole datasets contain less than ∼ 450 sequences. Distributions of 
the numbers of sequences in MSA datasets are available in Additional file 2: Fig. S1.

Except a handful of deeper MSAs with N/L ratio of more than 5, nearly all alignments 
are shallow. The ratios for half and three-fourth of all putative pairs of protein families 
are less than ∼1 and ∼1.7, respectively. Distributions of N/L ratio in MSA datasets are 
shown by Additional file 2: Fig. S2.

In average, 96% of proteins in our datasets were prokaryotic and other remaining 4% 
were for unknown organisms.

To know whether the final sequences in each MSA are orthologous to query protein 
sequence, the identity of GO terms (molecular function, biological process and cellu-
lar component) of those protein sequences is compared and a final relative frequency of 
identical terms in each MSA is measured. Except a few outliers, that index for all MSAs 
fall within the range of > 0.93 to > 0.995 at the median of ∼0.97, for all three GO terms 
which approves qualified orthologous selection. Since ∼0.34 of each MSA are averagely 
related to unknown proteins, lower relative frequencies of GO terms are in part due to 
unknown sequences within protein families. Boxplots of the identity of GO terms among 
proteins in our MSA families is displayed in Additional file 2: Fig. S3.

Fig. 1  Contribution of features to SVM classifications. a For each single ASA threshold, SVM is trained by 
norm values of residue contact matrices as a single input feature for further prediction. b SVM models 
are developed for multiple groups norm values in different sets of ASA thresholds to predict the possible 
interaction in each heterodimeric pair
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We speculate that pairs of interacting proteins are involved in the same biological pro-
cesses and are located inside equivalent cellular components and therefore those part-
ners in each pair of protein families could be matched by the identity of aforementioned 
GO terms. The GO function of those protein partners could be identical, similar or com-
plementary. In this study, we also assessed the identity of GO terms between protein 
counterparts in each pair of MSAs and reported the relative frequency of identical pairs 
(see Additional file 2: Fig. S4). In this case, the median levels of all three GO terms are 
approximately 0.96. However, unlike two other GO terms, GO function relative frequen-
cies ranges widely, from ∼0.65 to 1 excluding several outliers.

We also compare covariation value distribution of expose residues with buried ones 
for different ASA thresholds. Those distributions show an obvious distinction among 
different cut-offs in CCMpred approach between exposed residues but no apparent dif-
ference is observed in three MI-based methods (illustrated in Additional file 2: Fig. S5).

SVM predictions

Single feature models

The input feature of each SVM model is norm values for each ASA threshold (see Fig. 1a 
and Additional file 1). SVM models are separately developed for ten ASA thresholds and 
the prediction results are finally obtained for each interacting proteins of each dimer in 
test set. The results are shown in Fig. 2 and Additional file 3. The results of single feature 
models (single norm value for each separate ASA threshold) are compared with all fea-
ture model (norm values for all ASA thresholds from 0.0 to 0.75) and presented in those 
figures and tables. As shown by Fig. 2, modelling SVM using all ASA groups of norm 
values (ASA0-075) represents much better accuracy, sensitivity, NPV, FPR, FNR and BM 
results than single ASA thresholds, thereby collectively providing much superior perfor-
mance than single input features.

In all four approaches especially in MIp and CLR, increasing ASA shows an overall 
constant trend for accuracy, specificity and FPR results. The results of those metrics are 
close to each other, albeit slightly higher in MIp, for all cut-offs.

The highest single ASA sensitivity, NPV and BM results are related to ASA 0.65 and 
ASA 0.75 in MIp procedure. In the case of CLR method, those indices have an overall 
constant trend for all ASA threshold groups, roughly the lowest performance in com-
parison with other three.

In comparison with other approaches, the highest numbers of TP and FN, and the 
lowest numbers of FP and TN are obtained for ASA 0.75 in CLR method which results 
in the highest precision and specificity and the lowest NPV and FPR. This threshold col-
lectively behaves different from other CLR cut-offs. The lowest sensitivity, accuracy and 
BM is also obtained in the case of ASA 0.0 in CLR approach.

Additional file 2: Figures S6 and S7 respectively represent distributions and box plots 
of norm values in CCMpred and MI-based methods in two datasets (positive and nega-
tive control) for different single ASA thresholds. As denoted by those figures, both 
CCMpred and MIp methods better distinguish norm values of positive and negative 
putative interacting pairs of proteins in comparison with the other two approaches. A 
Mann–Whitney U test was performed with a significance level of 5% or lower to com-
pare norm values of positive and negative datasets in different ASA thresholds. The 
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Fig. 2  Prediction of evaluation metrics for SVM models developed by single norm features in separate 
ASA thresholds in comparison with all norm features at all ASA thresholds in CCMpred and three MI-based 
methods. Accuracy, sensitivity, specificity, precision, NPV, FPR, FNR and Informedness (BM) are, respectively, 
denoted by a, b, c, d, e, f, g, h. Note: ASA 0–0.75 is a set of norm values for all ASA thresholds from ASA0.0 to 
ASA0.75
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results indicated that those datasets are significantly different in all ASA thresholds in 
CCMpred and MIp approaches (p value < 0.05). The difference between averages of norm 
values of positive and negative datasets are only significantly different at ASA = 0.65 in 
MI method, and ASA = 0.45 to ASA = 0.65 in CLR approach (Additional file 2: Fig. S7).

Multiple feature models

We develop SVM models using multiple feature sets of norm values for ASA threshold 
groups from 0.0 to 0.75 (see Fig. 1b). Multiple norm sets of ASA thresholds are applied 
for training SVM models in groups of 2 to 10 features. Figure  3 and Additional file  4 
illustrate a comparison between prediction results for different sets of multiple fea-
tures in multiple ASA threshold groups. Increasing the numbers of input feature sets 
improves prediction results of SVM models.

As shown by Fig.  3, CCMpred has an overall higher accuracy, specificity, precision, 
FPR and BM in comparison with the other three approaches. Although more accurately 
discriminates positive and negative dimers than other three approaches, CCMpred 
method undergoes downtrend in four feature groups (0.35–0.75, 0.45–0.75, 0.55–0.75, 
0.65–0.75) due to uptrend in the number of FPs. Meanwhile, CCMpred represents the 
best sensitivity, NPV and FNR for all sets of ASA thresholds other than three feature 
groups (0.45–0.75, 0.55–0.75, 0.65–0.75), where it undergoes a sustained downtrend 
reaching the worst value for ASA 0.65–0.75. Since BM depends on both sensitivity and 
specificity, the concomitant reduction in the numbers of FP and FN for three aforemen-
tioned feature groups leads to an even greater decline in BM index in comparison with 
constructing indices.

Collectively, MIp is the second qualified approach which represents an overall higher 
sensitivity, NPV and BM in comparison with CLR and MI. Persistent numbers of TN 
and FN in all sets of cut-off groups results in a roughly constant trend for sensitivity and 
NPV values in MIp which also lead to higher values in three feature groups (0.45–0.75, 
0.55–0.75, 0.65–0.75) than other three approaches. In MIp method, a sudden downfall 
and raise of the numbers of TP and FP in four feature groups (0.35–0.75, 0.45–0.75, 
0.55–0.75, 0.65–0.75), respectively, leads to a sudden decline of accuracy, specificity and 
precision indices. In that method, threshold groups of ASA 0.45–0.75 and ASA 0.55–
0.75 achieve a coincident worst numbers of TP and FP, and thereby the lowest of men-
tioned indices in comparison with all other approaches.

Altogether CCMpred, MIp, MI and CLR approaches, respectively, represent the best 
accuracy, sensitivity, NPV and BM in all sets of threshold groups other than three sets 
(0.45–0.75, 0.55–0.75, 0.65–0.75). Therefore, CCMpred and CLR methods are the most 
and the least accurate, sensitive, informative and negative value predictor approaches in 
those feature sets, respectively. On the other hand, CLR achieves an overall higher speci-
ficity and precision than MI. Therefore, all the above mentioned rules are met excluding 
the order of CLR and MI for specificity and precision metrics.

Discussion
In this study, we introduced a hybrid co-evolutionary-based method to predict physi-
cal PPI between pairs of protein families, starting from protein sequences only. Here, 
physically interacting proteins exhibit more strongly co-evolutionary signals (norm 
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Fig. 3  Prediction evaluation results for SVM models developed by multiple norm sets in series of ASA 
threshold groups in CCMpred and three distinct MI-based approaches. Multiple norm sets of ASA thresholds 
are employed to train SVM in 2 to 10 feature groups. Accuracy, sensitivity, specificity, precision, NPV, FPR, FNR 
and Informedness are, respectively, denoted by a, b, c, d, e, f, g, h. Note: 0.0–0.75 is a set of norm values for all 
ASA thresholds, ASA0.0 to ASA0.75. All other sets of ASA thresholds have similar symbols
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values) than negative group. We hybridized inter-protein residue-level coevolution with 
protein scale one by unification of whole residue covariation map between proteins of 
each dimer into a single norm value. Generally, hybrid methods more specifically pre-
dict physical PPI than mere protein-level co-evolutionary approaches such as mirror-
tree [8–13], on account of considering whole interfacial residue interaction information 
as building blocks of proteins and contributing factors in physical PPI at lower scales 
[31–33]. By training SVM with norm values of positive and negative dimers in either 
distinct or several ASA thresholds, we demonstrated that even small number of ortholo-
gous proteins in pairs of MSAs could allow one to accurately discriminate between posi-
tive and negative dimers.

In the present work, several filtrations finally gave rise to the construction of shal-
low MSAs distinguished enough for covariation analysis. The advantages of the current 
study include accurate prediction of physical PPI in small alignments and lower com-
putational costs in the context of training with single features especially in higher ASA 
cut-offs. Nevertheless, PPI prediction in those alignments considerably improves at the 
expense of higher computational costs in the case of training SVM by several norm fea-
tures in multiple ASA thresholds.

A diverse group of protein complexes is selected in this study in which dimeric pairs 
of interactions are picked. Although assessing physical PPI on whole interactome is 
desired, the present experiment is not employed on proteome network scale on account 
of several limitations. Groups of designated dimers were discarded from our experiment 
due to limitations on the length of each dimer, the least acceptable number of sequences 
in each pair of protein families, different filtration steps for dataset construction, outlier 
removal, and so forth. Meanwhile, although our work has lower computational cost in 
calculation of inter-protein residue covariation for each pair of protein families, dataset 
generation steps from sequences to the ten final pairs of ER-MSAs for ten ASA thresh-
olds and calculation of ten covariation matrices for all those pairs are extremely time-
consuming for each dimer. In Cong et al. work [33], a sequential covariation screening is 
executed, where MI between all proteome-wide combinations of proteins in two prokar-
yotic species is measured at first step followed by a DCA and GREMLIN calculations on 
selected pairs of proteins, whereas in our analysis CCMpred and three MI-based covari-
ations are measured and compared for each dimer in several pairs of ER-MSAs in paral-
lel which makes proteome-wide analysis beyond the scope of current work.

In this study, GO matching strategy of orthologous sequences to query in each MSA 
is applied. Altenhoff et al. (2012) tested the identity of GO term annotations among 
orthologous sequences to assess if they have similar functions [45]. We also investi-
gated the identity of GO terms between the different sequences in the MSAs and their 
query protein, based on their findings and "Orthologue Conjecture" which assert that 
orthologous sequences are more functionally similar than paralogous ones [45, 46]. 
The results showed that except a handful of alignments, all three GO terms includ-
ing molecular function, biological process and cellular component are considerably 
similar among proteins of each MSA. Actually, in this study we selected orthologous 
sequences and tried to remove paralogous proteins. Cong et al. also selected ortholo-
gous sequences but by RBH procedure [33]. On the contrary, Feinauer et  al. (2016) 
constructed datasets composed of both paralogous and orthologous sequences [32]. 
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Another matching strategy applied in our work was GO matching between pairs of 
proteins in pairs of MSAs to acknowledge if pairs of plausible orthologues are cou-
pled and to ensure that erroneously retained paralogs do not match with orthologues. 
Interacting pairs in each organism should reside on the identical cellular component, 
take part in the same biological process [47] and often possess complementary or 
sometimes the same function [48]. Our results indicated that the identity of molecu-
lar function between protein partners is lower than two other annotations consisting 
of wide tolerance due to the fact that the mentioned property is sometimes similar 
but not identical. In the present work, only orthologous sequences are retained and 
functionally relevance of those partners in pairs of protein families is verified. That 
verification could also be promising in providing new insights on matching paralo-
gous proteins between pairs of alignments. In that context, paralogous pairs with 
identical GO components and biological processes and also similar or complemen-
tary GO functions could be simply matched. Therefore, paralogous problem could be 
readily addressed with less computational costs.

As previously mentioned, the first step after ER-MSA generation is residue coevolu-
tion measurement in order to perform a hybrid physical PPI inference method. There 
are a wide variety of approaches to unravel residue covariation between pairs of pro-
teins. Those approaches include simple local methods as MI [34, 35], McBASC [36], and 
so forth, and global approaches as CCMpred [37] and others [38–44]. Performing some 
global covariation methods like PSICOV [44] and GREMLIN [49] entail deep alignments 
including thousands of sequences, infeasible on some of our shallow MSAs. Accordingly, 
we infer inter-protein residue coevolution by taking advantage of fast and simple MI-
based methods as they could make a fair prediction on small alignments [50].

Inferring inter-protein residue coevolution between interacting pairs of each dimer 
results in construction of a matrix which contains whole residue coupling information. 
Residue pairs having strong covariation signals usually interact firmly and are spatially 
proximal. For that reason, strong signals are often the consequence of direct residue 
contacts. Most elements of the interaction matrix are weak noisy signals which are the 
result of indirect residue associations. Frobenius norm value describes and summarizes 
matrix size and whole matrix values into a single quantity and de-noises matrix entries 
and thereby more purifies direct residue interactions from background noises.

Based on the previously tested assumption that PPI is more related to surface accessi-
ble residues than buried amino acids at the protein core [51–53], we considered surface 
area as a feature for training SVM. A comparison between covariation score distribution 
of buried and exposed residues for different ASA thresholds showed that CCMpred pos-
sibly differentiates those scores while it appears that no differentiation is observed in 
MI-based methods. The reason seems to be on account of the fact that covariation by 
global methods like CCMpred inherently disentangle direct residue interactions from 
indirect ones, but MI method would probably discriminate those two interactions after 
employing Frobenius norm by attenuating noisy and intensifying direct signals. There-
fore, it sounds that direct covariation signals before applying Frobenius norm are not 
strong enough to make a discrimination between two buried and two exposed residues 
in MI. The difference between differentiation power of CCMpred and MI could also be 
interpreted as more influence of buried residue elimination on MI methods.
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MIp and CCMpred methods better discriminate positive and negative datasets than 
CLR and MI. Indeed, MIp removes the background noise imposed by all other residue 
couplings and also eliminates the influence of phylogeny or entropy from each residue 
contact. Therefore, that method more purifies signals related to more strongly coevolv-
ing positions and direct residue interactions between couples of protein families [54]. 
CCMpred as a representative DCA-based method also discriminates direct residue cou-
plings from merely correlated indirect contacts [37]. Removing the noise and entropy by 
MIp and indirect signals by CCMpred, results in boosting more strongly co-evolutionary 
signals and better discrimination of norm values between positive and negative datasets 
than CLR and MI approaches. Different sources of noise are available in MI and CLR 
methods which restrict significant discrimination of norm values between datasets to 
specific ASA thresholds.

The results of training the classifiers by single features i.e., norm values of residue 
contact matrices, showed no apparent different accuracies in distinct methods for dif-
ferent ASA thresholds. Nevertheless, comparison of covariation approaches by other 
evaluation metrics demonstrated that MIp may roughly have an overall better perfor-
mance than CLR method. It seems that optimal ASA threshold is varied in different 
kinds of proteins. To meet different optimality properties of various dimers, we trained 
SVM with multiple norm features for several ASA thresholds which led to a consider-
able improvement of prediction performance. The results of training with multiple fea-
tures demonstrated that increasing the number of features results in an overall uptrend 
in the accuracy and BM. Meanwhile, CCMpred roughly performs better than other 
approaches in the case of training with multiple feature sets. Here, the best accuracy, 
sensitivity, specificity, precision and NPV for that method are 0.98, 1, 0.962, 0.96, and 
0.962, respectively. In contrast to our PPI prediction procedure, the best reported preci-
sion by Cong et  al. for Mycobacterium tuberculosis was 0.83 [33]. Additionally, Fein-
auer et al. reported the sensitivity value of 0.11 and 0.7 for whole and top10 interactions, 
respectively [32]. These findings indicated that our procedure better predicts physical 
PPI than two other approaches. However, accurate comparison between several meth-
ods require the identical input dimers and similar outputs, but both of those criteria and 
methodologies are different between our method and two others. Our better prediction 
performance could either be due to our different methodology or our small sample size. 
Unlike other studies, our results are based on whole but not merely top covariation val-
ues. Actually, no threshold is delineated for those values in our analysis but a binary yes–
no prediction. However, all of three analysis indicate that residue coevolution could be 
exploited to accurately discriminate between positive and negative dimers in order to 
infer physical PPI [32, 33].

There are several limitations in the present study. Although shallow alignments increase 
the speed of covariation calculations, executing different filtrations for dataset generation 
is time consuming. Additionally, our analysis is constrained by the number of dimers. Less 
stringent filtration criteria could be performed both to prevent elimination of a large num-
ber of homologous sequences and final preliminary dimers to get deeper alignments for 
being able to test more residue co-evolutionary methods on the datasets. Meanwhile, deep 
alignments could be obtained by addressing paralogous problem. The results should be 
generalized to higher proteome scales and finally a number of unknown PPIs could become 
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candidates as plausible physical PPI for further biological experiments. Meanwhile, eukary-
otic protein dimers could be applied in future to see whether our method could also make 
an acceptable prediction in the context of those organisms. However, since there are usu-
ally a large number of paralogs in eukaryotes, addressing that problem is computationally a 
hard problem. Protein dimers with a huge number of conserved residue pairs are not quali-
fied for co-evolutionary analysis like ours but a corpus of residue columns with co-mutating 
patterns are required.

Since our filtration pipeline for dataset generation can find and select high percentage of 
orthologues, this screening procedure could also be promising for orthologous selection in 
future. Meanwhile, as mentioned earlier, GO term matching procedure would appear to 
be a promising way for coupling paralogous proteins in pairs of alignments. In this case, 
instead of coupling by simple GO term identities, matching GO term semantic similarities 
could be considered in future. But of course other efficient paralogous matching methods 
including IPA [23, 24] and Ouroboros [55] exist which could also be taken into account, 
even though constrained by computational cost. Prediction of physical PPI based on res-
idue coevolution is an ongoing field. Although there are a handful of methods including 
ours to address the problem, but accurate methods for the prediction of proteome-wide 
physical interactome especially for eukaryotic proteins are still demanding.

Conclusions
In this paper, a hybrid co-evolutionary approach is introduced. The goal of this study is 
to exploit inter-protein residue coevolution to accurately decipher physical interaction 
at higher scales between pairs of protein families in sets of protein dimers. The covaria-
tion between residues in those dimers are calculated by CCMpred and three MI-based 
approaches for ten ASA threshold groups. Here, whole residue contact map between pro-
teins of each dimer are summarized into a single norm value. We train SVM with norm 
values of residue contact matrices of all dimers at different ASA thresholds as single or mul-
tiple feature models. The results demonstrate that training SVM with multiple norm fea-
tures leads to a considerable improvement of prediction performance, but classifiers trained 
by single features show no apparent different accuracies in distinct methods at different 
ASA thresholds. Nevertheless, in the case of single feature models, MIp roughly achieves 
an overall better performance than three other methods. The findings also indicate that an 
overall performance of CCMpred is higher than other three approaches in the context of 
multiple feature SVM models.

Finally, we demonstrate that even small number of proteins in pairs of MSAs could allow 
to accurately discriminate between positive and negative dimers. The results should be gen-
eralized to higher proteome scales. Prediction of physical PPI based on residue coevolution 
is an ongoing field and developing accurate methods for the prediction of proteome-wide 
physical interactome especially for eukaryotic proteins are still demanding.

Methods
The goal of this study is employing interaction at residue level for accurately inferring 
physical PPI at protein level. To achieve this goal, we perform several steps consecutively 
including dataset construction, calculation and unification of whole inter-protein resi-
due coevolution and discrimination of positive and negative heterodimers.
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The workflow is illustrated in Fig. 4.

Dataset construction

Couples of non-identical interacting proteins (heterodimers reported in [42, 49]) are 
selected from Protein Data Bank (PDB) verified complexes to construct a positive gold 
standard dataset. Furthermore, pairs of non-identical proteins are randomly picked from 
different positive complexes to generate a negative control dataset.

We defined the length of each heterodimer (L) as the square root of the product of 
l1 and l2, where l1 is the length of protein1 and l2 is the length of protein2. Positive and 
negative heterodimers with length > 550 and < 90 are removed from the analysis. We 
discarded some of differently distributed negative heterodimers in order to equally 

Fig. 4  Overview of our workflow. a Sequence of each protein has been searched against reference proteome 
for finding homologous sequences. MSA is built for both protein chains of each pair. Then, ASA thresholds are 
determined to select exposed residues. Finally, inter-protein residue interaction matrix is built for each pair of 
interacting site. b Each coevolution matrix is unified into a single "norm" quantity. Norm values are calculated 
for 166 dimers (83 positive and 83 negative putative pairs of proteins) in each ASA threshold which are fed 
into SVM as input features for further prediction. comp: protein complex (Heterodimers in our analysis)
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distribute the length of positive and negative heterodimers. Length distributions of posi-
tive and negative dimers are compared in Additional file 2: Fig. S8.

Sequences of interacting pairs of proteins are downloaded from UniProtKB [56]. 
Then PSI-search SOAP service is run for 3 iterations against reference proteome to find 
homologous sequences for each query protein sequence. In each iterative step, a group 
of eligible homologous protein sequences are selected by applying a set of filtration cri-
teria (see Table 1) to build PSSM matrix which are further searched against reference 
proteome [57]. Those criteria include sequence length, identity, bit score, e-value and 
overlap length (see Additional file 2: Section 1.2 for more details).

For addressing paralogous problem, our strategy is selecting orthologous sequences 
among homologous proteins while still eliminating paralogous ones. There are four cri-
teria for designating orthologous sequences [58] that often one of them are applied for 
tackling paralogous problem. Those criteria include "sequence similarity" like Reciprocal 
Best Hit (RBH) procedure in [33], "synteny" like genomic co-localization in [32, 42, 49], 
"phylogenetic tree matching" like [59], and "functional complementarity" [58].

We applied both sequence and functional similarity criteria in order to select orthol-
ogous and eliminate paralogous sequences. Detailed pipeline of orthologous selec-
tion is demonstrated in Additional file 2: Section 1.1 and Fig. S9. Orthologous protein 
sequences are acquired for each query protein of each heterodimer. Those sequences 
consisting of common species between two protein families of each dimer are retained 
and arranged in the same organism order for further alignment while others are 
removed.

Homologous sequences already arranged in the specific order are aligned using Mafft 
G-ins-i [60–62] version 7.312 (mafft—maxiterate 1000—globalpair—clustalout). After 
constructing first MSA, outlier sequences (possibly paralogous sequences) and their 
counterparts from other protein family are removed (see Additional file 2: Section 1.1 
and Section 1.3 and Fig. S10 respectively for outlier definition, detection algorithm and 
examples of outliers). There are large numbers of outliers in some alignments and these 
outliers can also deviate MSA from ideal case. Hence, multiple alignment is done again 
with remaining sequences. At the second multiple alignment, those columns of MSA in 
which query sequence contains gaps, are removed.

To ensure that the final MSA datasets are made of orthologous sequences, the rela-
tive frequency of one or more common identical GO term annotations between pro-
teins in each MSA and the query protein is measured. Furthermore, to certify that pairs 
of putative orthologous proteins within each pair of MSAs are correctly matched, we 

Table 1  Filtration criteria to sieve homologous sequences in each PSI-search iteration

Homolog filtration criteria

Sequence length At least 80% of the query length but 78% in special cases

Sequence identity Sequence identity of at least 40% [70] but 25%, 30% or 35% in special cases

Bit score Bit score threshold of 0.5 × monomer sequence length [42] and 0.45 × mono-
mer sequence length in special cases

E-value E-value smaller than 0.0001

Overlap length Overlap length threshold of at least 90% but 70%, 80% or 85% in special cases
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obtain the relative frequency of GO term commonalities between those partners. Single 
MSAs or pairs of protein families consisting of more than 15% unknown organisms are 
not included in final statistics of orthologous sequences. All aforementioned processes 
finally leave pairs of MSAs consisting of potentially interacting orthologous partners 
arranged in the same species order.

Pairs of MSAs (dimers) consisting of less than 50 sequences are removed from the 
analysis. The final numbers of sequences in pairs of MSAs (N) ranges between ∼ 50 and 
∼ 950.

We describe the final MSAs by N/L ratio. This ratio varies between ∼0.2 and ∼6 in 
our datasets.

While the preliminary datasets contain more than 280 dimers, the final remaining 
numbers of samples after refinement process (filtration criteria, restrictions on L and N, 
outlier removal and, so forth) are 166 dimers in total, 83 in each dataset. Lists of positive 
and negative pairs of proteins are respectively available in Additional file 2: Table S1 and 
Table S2.

Only exposed residues on a protein surface potentially interact with their surface 
accessible partners on other proteins to form a heterodimer. Thus, binding interfaces 
of interacting pairs exist on surface accessible sites of each protein [53]. Accordingly, 
we entered additional information about Accessible surface area (ASA) into our MSA 
datasets for further covariation analysis. We hypothesized ten ASA thresholds whereby 
extracted ten pairs of Exposed-Residue MSAs (ER-MSA) from each preliminary con-
structed couple of MSAs. For that purpose, first an ASA is assigned to each residue posi-
tion in primary sequence of each protein by the use of NetsurfP version 1.1 [63] and 
RaptorX property prediction webservers [64]. For ASA assignment to each residue com-
ponent of protein molecules, those webservers only rely on protein sequences instead of 
having either known or unknown structures. ASA values for NetsurfP and RaptorX web-
servers are averaged for each amino acid position and a final ASA is reported for each 
residue column of the protein family. Ten ASA threshold of 0.0, 0.05, 0.15, 0.2, 0.25, 0.35, 
0.45, 0.55, 0.65 and 0.75 are presumed. For each ASA threshold, amino acids exceeding 
the cut-off are postulated as exposed residues and thereby assumed as a part of hypo-
thetical interacting site while residues falling behind the threshold are presumed as bur-
ied ones.

We constructed final pairs of MSAs for each of ten ASA thresholds which only consist 
of exposed residue columns (ER-MSAs). Thus, ER-MSAs contain all columns excluding 
those bound up with buried amino acids.

It should be noted, that in MI analysis, we do not concatenate MSAs of two interact-
ing proteins. Since CCMpred was implemented using the package [37] which demands 
single paired MSAs, we concatenated ER-MSAs for this specific case.

Both final concatenated and non-concatenated ER-MSA datasets are available in Addi-
tional file 5 [65].

Calculation and unification of whole inter‑protein residue coevolution

Covariation between all residue columns of each pair of ER-MSAs is calculated using 
CCMpred [37] and three MI-based methods, i.e., MI [34], MIp [54] and Context Like-
lihood of Relatedness (CLR) [66]. Buried amino acids are indeed excluded and only 
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coevolution between columns of surface accessible residues is calculated on pairs of 
MSAs in different ASA thresholds.

MI:
We calculate raw MI according to Martin et al. [34] through the following formulas:

where H(x) and H
(

x, y
)

 are marginal and joint entropy, respectively. f (xi) is the relative 
frequency of residue x at column i in first MSA, f

(

yj
)

 is the relative frequency of residue 
y at column j in the second MSA and f

(

xi, yj
)

 is the co-occurrence frequency of residue 
pair xy at column ij between a pair of MSAs. Since there are 21 characters for proteins 
(20 amino acids and one extra character for gap), we apply logarithm of the base 21 [34].

We finally normalize MI with joint entropy to obtain standardized entropy effect on 
MI [67]:

To deal with gaps, columns with ≥ 80% gaps are assumed to have zero MI.
CLR:
We compute CLR according to Faith et al. [66]. Zi is calculated as follows:

where µi and σi are mean and standard deviation over column i respectively. µj and σj 
are also measured the same as µi and σi , but over row j to calculate Zj . I

(

xi, xj
)

 is the ele-
ment of normalized MI matrix at column i and row j.

Final form of CLR at column i and row j is measured using the following formula:

MIp:
According to Dunn et al. [54] MIp(a, b) is calculated by the following formula:

APC is defined as follows [54]:
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(

y
)
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∑
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)
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(

0,
I
(

xi, xj
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)
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)

=

√

Z2
i + Z2

j

(7)MIp(a, b) = MI(a, b)− APC(a, b)
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where MI(a, x) and MI
(

b, y
)

 are denoted as the mean MI values of column a over 
x = 1 to x = n , and the mean MI values of row b over y = 1 to y = m , respectively. MI  
is the mean MI value of whole matrix.

In the original papers for MIp [54] and CLR [66], those covariations are calculated 
for single MSAs and thereby square matrices are constructed and the above men-
tioned mean values are calculated over off-diagonal entries. In the present study, 
we have not concatenated pairs of MSAs for assessing MI-based approaches which 
results in the formation of rectangular covariation matrices with no exclusions on 
diagonal entries for calculation of mean values.

CCMpred:
CCMpred is an optimized and fast Pseudo-Likelihood Maximization-based (PLM-

based) procedure, disentangling direct residue couplings from indirect ones [37]. A 
package is available for implementing the method which takes single MSAs as input. 
Therefore, we concatenate two MSAs for each dimer in order to implement this 
method. The final couplings between sequences is trimmed out of the whole available 
inter and intra-couplings.

Unification of covariation matrices:
We obtain "Frobenius norm" of each inter-protein residue interaction matrix to 

summarize and unify whole elements of each matrix into a single meaningful quan-
tity. To calculate Frobenius norm [68] of each residue coevolution m× n matrix which 
belongs to an interacting pair of proteins, we apply the following expression in which 
the aij ‘s are matrix entries:

Discrimination of positive and negative heterodimers

In order to make discrimination between pairs of positive and negative (control) data-
sets, we implement several SVM classifications. The input features of SVM models are 
the Frobenius norm values of covariation matrices (Fig. 4b). SVM takes single norm 
features of positive and negative heterodimers in each ASA threshold for building sin-
gle feature model (Fig. 1a). Multiple groups of norm values for a set of ASA thresh-
olds are also fed into SVM classifiers as multiple input features (Fig. 1b).

The radial kernel function [69] is applied in all of the SVM models as:

where σ is a free parameter. ai and aj also indicate norm values of proteins i and j of each 
dimer, respectively.

(8)APC(a, b) =
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We hold out 30% of whole datasets as a test set for the final evaluation and apply 
tenfold cross-validation on the remaining 70%. The cross validation subset of our data 
is randomly split into nine equal parts. To guarantee the thorough independence of 
training procedure from validation data, SVMs are trained on nine parts of the data 
and validated on the remaining one. The SVMs are performed using "e1071" R pack-
age. The model parameters are tuned by rotating the training and validation data for 
ten times, using "tune" function. The final tuned models are tested on the previously 
set aside test set.

Prediction performance are evaluated using a set of evaluation metrics, i.e., Accu-
racy, Sensitivity, Specificity, Precision, False Positive Rate (FPR), Negative Predictive 
Value (NPV), False Negative Rate (FNR) and Bookmaker Informedness (BM) defined 
as follows:

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false 
negative, respectively.

A non-routine evaluation metric, BM, is measured to assess the trade-off between 
sensitivity and specificity.
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Additional file 3. Prediction evaluation results for SVM models developed by single norm features for separate ASA 
thresholds in comparison with all norm features for all ASA thresholds on CCMpred and MI-based methods. Accu-
racy, sensitivity, specificity, precision, NPV, FPR, FNR and Informedness results of CCMpred, MI, MIp and CLR methods 
are compared in groups of tables for single norm features in separate ASA thresholds and all norm features in all ASA 
groups.

Additional file 4. SVM prediction evaluation results for multiple feature sets in groups of ASA thresholds. Accuracy, 
sensitivity, specificity, precision, NPV, FPR, FNR and Informedness results of CCMpred, MI, MIp and CLR methods are 
compared in groups of tables..

Additional file 5. Final ER-MSAs at different ASA thresholds. Available on Mendeley data (http://dx.doi.org/10.17632
/9bk2r55286.1).
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