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Background
Circular RNAs (circRNAs) are a category of noncoding RNAs with covalent closed 
structures and no polyadenylated tails [1]. These RNAs are formed by a back-splicing 
process in which the downstream 5′ splice donor is reverse-spliced to the upstream 
splice acceptor, a process regulated by cis elements and trans protein factors [2]. For a 
long time, circRNAs were thought to be splicing errors expressed at low levels [3]; now, 
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benefitting from the advent of high-throughput sequencing experimental technology, 
they have been demonstrated to be a class of abundant, stable and conserved RNAs 
across species [4]. Some circRNAs have tissue-specific, cell-specific expression pat-
terns [5] and participate in various human disorders [6–8]. Still, little is known about 
the formation and function of circRNAs, while recent studies have shown that circR-
NAs could serve as “sponges” of miRNAs, playing key roles in the posttranscriptional 
regulation of RNAs [9–11]. Increasingly, studies have revealed that some circRNAs may 
“sponge” RBPs (RNA-binding proteins) [12–15], thereby modulating protein–protein 
interactions.

RBPs are a class of proteins that can interact with RNA molecules and are associ-
ated with the metabolic processing of RNAs. Recent studies have shown that RBPs are 
involved in almost all phases of the circRNA lifecycle [16]. Zhang et al. [17] found that 
overexpression of QKI-5 notably increased circ-MTO1 (hsa_circ_0007874) expression 
in lung adenocarcinoma, suggesting that QKI-5 promotes the production of circ-MTO1. 
Wang et al. [18] found that eukaryotic initiation factor 4A3 (EIF4A3) induced circMMP9 
(hsa_circ_0001162) cyclization and increased circMMP9 expression in glioblastoma 
multiforme (GBM). He et al. [19] demonstrated that FUS binds to and promotes the pro-
duction of hsa_circ_0000005 to regulate glioma angiogenesis. Moreover, the binding of 
circRNAs and RBPs may have bidirectional effects, and circRNAs could act as dynamic 
scaffolding molecules that modulate proteins. For example, Du et al. [20] showed that 
ectopic circ-Dnmt1 (hsa_circRNA_102439) could bind to AUF1 and promote AUF1 
nuclear translocation. In addition, there are research reports that MOV10 binding circ-
DICER1 (hsa_circ_0033079) regulates the cell viability, migration, and tube formation of 
glioma-exposed endothelial cells (GECs) [21]. Hong et al. [22] inferred that circFNDC3B 
(hsa_circ_0006156) promoted CD44 expression via IGF2BP3 and that IGF2BP3 could 
affect the function of circFNDC3B to a certain extent. Due to the tertiary structure of 
circRNAs, the protein-binding capacity of circRNAs is likely to be greater and more 
complex than that of linear RNAs [23], and RBPs bound to circRNAs are not replaced 
by ribosomes. Therefore, to understand the formation and function of circRNAs, it is 
essential to study the interaction mechanism between circRNAs and RBPs.

To date, these interactions have been analysed mainly through biological experimen-
tal methods, such as RNA immunoprecipitation (RIP) [24] or RNA pull-down assays 
[25]. In the RNA pull-down assay, the probe pulls down the RNA to analyse the associ-
ated proteins. A protein is immunoprecipitated to analyse associated RNA in the RIP 
assay. Recently, CLIP-seq [26] has become a useful experimental strategy that can detect 
potential binding sites on unreported sequences. CLIP-seq contains several variants, 
including HITS-CLIP [26], PAR-CLIP [27], and iCLIP [28]. Benefiting from these high-
throughput biological experiments, several databases of circRNAs have been built to 
study the interactions between circRNAs and RBPs. For example, circBase collects and 
unifies datasets of circRNAs and provides scripts to identify circRNAs in sequencing 
data [29]. The RBP binding sites, miRNA target sites and ORFs (potential open reading 
frames) on cancer-specific circRNAs are provided in the CSCD database [30]. CircRic 
[31] analysed the association between circRNAs and proteins in 935 cancer cell lines 
across 22 cancer lineages from Cancer Cell Line Encyclopedia (CCLE). starBase [32] 
is mainly focused on miRNA-target and RBP-target interactions. CircInteractome [33] 
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provides potential binding sites on junctions and junctions flanking RBPs and miRNAs 
within circRNAs.

Several significant discoveries have been made through these biological experimen-
tal technologies; however, they are expensive, labour-intensive and time-consuming. In 
contrast, high-throughput biological experimental methods could provide a large num-
ber of available data sources for computation-based methods [34, 35]. For example, Ali-
panahi et al. [36] proposed a classification method to identify the RNA-binding sites in 
proteins based on RNA high-throughput sequencing data. Recently, based on circRNA 
biological experimental data, a computational framework was constructed by employing 
positive unlabelled learning (P-U learning) to predict unknown circRNA-RBP interac-
tion pairs with the kernel model MFNN (matrix factorization with neural networks) in 
our previous work [37]. CRIP [38] and CSCRSites [39] employed different deep learning 
frameworks to identify the binding sites within circRNAs. CircSLNN [40] treats the pre-
diction task of RBP binding sites as a sequence labelling problem to identify RBP bind-
ing sites on circRNAs. CRIP and CSCRsites accept a fixed-length circRNA segment, and 
noisy nucleotides may be generated that affect the outcome of the prediction. CircSLNN 
avoids the problem of fixed-length binding sites, but it also provides a new problem of 
sample imbalance.

In this study, we design a prediction model named circRB (Fig.  1) to identify the 
sequence specificities of circRNA-binding proteins. The model allows for various lengths 
of circRNA fragments as input. The convolution operation is employed to extract the 
original sequence features of circRNA fragments. The sequence features are fed to 
a capsule network, discriminating the binding sites on circRNAs. We test circRB on 
seven datasets and compared it with other existing methods. The experimental results 
show that our method is 0.03 on average higher than the other best methods regarding 

Fig. 1  Schematic diagram of circRB model construction. The sequence features of circRNAs are extracted by 
convolution operation, and then two dynamic routing algorithms in the capsule network are employed to 
discriminate between different binding sites by analysing the convolution features of binding sites
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AUC. In addition, we compare the binding motif detected by this model to the existing 
RNA motif database, and some motifs on circular RNAs overlap with those on linear 
RNAs, especially in the QKI dataset. Finally, we apply this model to full-length circRNA 
sequences to predict binding sites and find potential binding sites with high scores in 
most known binding relationships. In conclusion, circRB is an effective prediction 
model for identifying RBP binding sites on circRNAs. We hope that our model will con-
tribute to a better understanding of the mechanisms of the interactions between RBPs 
and circRNAs.

Results
In this section, we first evaluate the performance of the circRB method. Then, circRB 
is compared with the existing deep learning-based methods for predicting RBP binding 
sites on the same dataset. Finally, we discuss the performance of circRB in the sequence 
specificities of circRNA-binding protein discovery.

Training circRB and experimental settings

In the training phase, the optimization algorithm Adam is used to minimize the loss 
function. The batch size is set to 64. To accelerate operation and shorten the training 
time, the batch size can be modified to 512 on large datasets, such as EIF4A3. The mod-
els are trained and validated after each epoch until the losses are no longer reduced, 
which is selected as the best model. Generally, 30 epochs are sufficient, and we found 
that only 10–15 epochs are needed to obtain the optimal model in large datasets. In the 
training and testing phase, each dataset is divided into two groups with random sam-
pling, namely, 20% for testing and 80% for training the model, and 5-fold cross validation 
is adopted to assess the model.

The parameters of a deep learning model often have a significant impact on its perfor-
mance, such as the number of dynamic routing layers, the number of convolution layers, 
the number of convolution kernels, the size of the convolution window and other param-
eters in our model. We analysed the model parameters on the AUF1 dataset employ-
ing 5-fold cross validation. The results are shown in Fig. 2. The median values of AUCs 
convoluted by one convolution layer (1-layer, 0.9377) are higher than those of 2-layers 
(0.9354). Simultaneously, we also tested different convolution kernel window sizes, rang-
ing from 5 to 11 (5…11-kernel_size). Figure 2 shows that both 7-kernel_size (0.9388) and 
9-kernel_size (0.9377) achieve better results. The kernel size is set to 9, and the results 
of the model are relatively more stable. In addition, we also tested the effect of different 
numbers of convolution kernels on the performance of the model. When the number of 
convolution kernels reaches 128, the model obtains more ideal results (0.9377). Of note, 
the 256 convolution kernels are at risk of overfitting on some small data sets. There-
fore, 256 convolution kernels are more suitable for datasets with a large amount of data. 
Overall, the model is insensitive to the parameters.

Finally, we adopted different numbers of kernels in the convolution layer for each data-
set. It is usually set to 128 to achieve a better effect. If the data volume is large, it can be 
improved to 256. The kernel size of long sequence segments is 11, and that of shorter 
segments is 9. The activation function is ReLU (rectified linear unit) in the convolution 
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layer. Sixteen or 32 capsules with 8-dimensional vectors are used in the primary capsule 
layer. Two capsules are constructed in the digital capsule layer.

The effect of dynamic routing times

Generally, 2 dynamic routing cycles can achieve better performance in the capsule net-
work framework, and more routing cycles may lead to worse results. We evaluated the 
effect of different dynamic routing times on the performance of the model on the AUF1 
dataset employing 5-fold cross validation. The results are shown in Fig. 2. The 1-T, 2-T, 
and 3-T represent 1, 2, and 3 implementations of the dynamic routing algorithm, respec-
tively. The AUC median values of 1-T and 2-T are 0.9378 and 0.9377, respectively. How-
ever, when the dynamic routing algorithm is executed twice, the results of the model are 
relatively more stable. This finding indicates that the generalization ability of the model 
is better when the dynamic routing algorithm is executed twice. In addition, the perfor-
mance of the model decreases (0.9368) when the dynamic routing algorithm is executed 
three times. Simultaneously, the performance of the model is insensitive to dynamic 
routing times T. Finally, we set the dynamic routing times T as 2.

Max pooling improves the prediction performance

In the standard capsule network proposed by Sabour et al. [41], for the pooling layer to 
be deleted, some feature information may be lost due to the pooling operation. However, 
the pooling layer can significantly improve the prediction performance of the model, as 
shown in Fig. 3.

On the seven datasets, the model with the pooling layer obtained the highest AUC 
values, and the AUC value of each fold fluctuated slightly. In addition, the pooling opera-
tion can also greatly save computing hardware resources and speed up the calculation. 
Therefore, the pooling layer was still adopted in this study.

Fig. 2  The distribution of AUCs across various parameters and structures
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Performance evaluation of circRB

In this study, the area under the receiver operating characteristic curve (ROC_AUC) 
was used as a metric for model evaluation and comparison [42]. We performed 
experiments on seven RBPs datasets. For each dataset, 5-fold cross-validation was 
employed to evaluate the prediction model [43]. The training set was divided into two 
groups with random sampling (80% for training and 20% for testing). The ROC curves 
were obtained, and the AUC values of each fold for circRB with 5-fold cross valida-
tion on seven RBP datasets are shown in Fig. 4.

As shown in Fig.  4, circRB achieves the highest AUC values for most RBPs. The 
AUC values are higher than 0.8 on 4 out of the 7 datasets. The highest AUC value of 
0.93 was obtained on the AUF1 dataset. However, the model obtained a lower AUC 
value on the QKI dataset. During the model training, we also found that more epochs 
are needed for model convergence on the QKI dataset. This fact may be caused by 
the small size of the QKI dataset. In addition, Fig. 4 shows that the AUC value of our 
model varies little in each fold, with an amplitude of 0.005, indicating the robustness 
of our model. These results indicate that circRB is an effective model for predicting 
circRNA-binding sites.

Fig. 3  The max pooling improves the prediction performance. The blue line represents the result with the 
max pooling layer, and the orange line represents the result without the max pooling layer

Fig. 4  The ROC curves obtained and the AUC values of each fold for circRB with 5-fold changes in seven RBP 
datasets
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Comparing circRB with the existing deep learning methods

In recent years, several studies have analysed circRNA-binding sites using different 
methods. CRIP [38] predicts the RBP binding sites on circRNA by combining a convolu-
tion neural network (CNN) and a recurrent neural network (RNN). Different from CRIP, 
circSLNN [40] converts the prediction of binding sites on RNAs to a sequence labelling 
problem and classifies using a conditional random field (CRF) layer instead of a fully 
connected layer (FC). In this study, we compared our model with CRIP and circSLNN 
on seven RBP datasets with 5-fold cross validation. In addition, we also applied the con-
volution neural network applied on the same dataset. The results are shown in Fig. 5.

Figure 5 shows that the AUC values obtained by our model are all higher than those 
of the other existing methods (on seven datasets, the P values of circRB compared with 
other methods are all less than 0.05, as shown in Table 1). This is most evident on the 
QKI dataset. The average AUC value achieved by circRB (0.8107) on the seven RBP 
datasets was also significantly higher than that of CRIP (0.7824), circSLNN (0.7538) 
and CNN (0.7677). The AUC value is 0.7146, which is very close to CRIP (0.7120) and 
CNN (0.7116) on the AGO2 dataset. Of note, circSLNN achieves low AUC values on all 
datasets, which may be because circSLNN has obtained unbalanced positive and nega-
tive instances during model training after considering the problem of site prediction as 
a sequence labelling task. In addition, Fig.  5 shows that circRB performs significantly 
better than other methods on the QKI dataset. This finding validates the advantage of 
the capsule network in small-sample learning. The equivariance feature representation 
capacity makes the capsule network learn from a small-sample data, so it does not need 
as many samples as other neural networks [44].

Performance of circRB in motif discovery

In this section, the motifs learned by circRB on the positive instances of seven RBP 
datasets are aligned to the existing motifs using the web tool Tomtom with an E value 
≤ 0.05. Ray2013 Homo sapiens was selected as the desired motif database containing 

Fig. 5  The AUC values obtained for each model with 5-fold cross validation

Table 1  P values of circRB compared with other methods on the seven datasets

α = 0.05, P values CRIP circSLNN CNN

circRB 0.032810 0.000319 0.020249
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102 RNA-binding motifs. We found that some motifs on circular RNAs overlap with 
those on linear RNAs, and the different RBPs have similar binding patterns on circu-
lar RNAs and linear RNAs.

As shown in Fig. 6, the binding motif ‘ACU​AAC​’ is on the circRNA binding to QKI, 
and it also appears on linear RNA. Indeed, more than one-third of human circRNAs 
are strictly controlled by QKI and can promote the formation of circRNAs by binding 
to canonical motifs (ACU​AAC​N1_20UAAC motif ) on the flanking introns of circR-
NAs [17].

The motifs learned by circRB contain relevant features to distinguish the positive 
and negative instances of RBP binding sites. Therefore, we also detected the motifs for 
the negative instances and compared them with those of positive instances with an E 
value ≤ 0.001. Excitedly, we found that some motifs listed in Fig. 7 were only present 
in positive instances, although most motifs were also present in negative instances. 
As shown in Fig.  7, motif_49 of QKI contains the binding motif ‘UAAC’, which has 
been reported. Unfortunately, no significant positive motif was found in the other 
three RBP datasets. This is most likely due to the large size of the three datasets. Of 

Fig. 6  Sequence logos of matched motifs. For each plot, the motifs learned by circRB (bottom) are aligned 
with the known motif (top) from the Homo sapiens database by Tomtom

Fig. 7  Motifs specifically found in the positive instances
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the three datasets, IGF2BP3, which contains the lowest number of positive instances, 
also has more than 50,000 positive instances.

Identification of RBP binding sites on full circRNAs

An attempt was also made to assist current studies. We collected the reported full-length 
sequences of circRNAs combined with RBPs. These sequences are fed to the correspond-
ing trained model. Finally, the possible binding positions and scores are obtained. We 
list the highest scoring fragments as possible binding sites for each circRNA sequence 
in Table 2. In Table 2, the first column is RBP, the second column is circRNA, the third 
column is the predicted potential binding site, and the fourth column is the probability 
that the location is a binding site. Except for AUF1(0.5640), most of the potential binding 
sites obtained high scores. This may be because all of the datasets used in the training of 
the model are from the standard circRNA sequences included in the circBase database, 
while hsa_circRNA_102439 is identified by the authors of the paper. Therefore, the fea-
tures of this binding site are unprecedented in our model. Furthermore, because hsa_
circ_0007874 could combine with QKI and AGO2, by further analysing the positions of 
binding sites on circRNA, we found that they are distributed on exon 1 and exon 2. As 
shown in Fig. 8, they are all close to the junction flanking.

Table 2  Sequence specificities binding RBPs on  the  reported full-length circRNA 
sequences

RBPs circRNAs Predicted positions Binding scores

AGO2 hsa_circ_0001346 104–175 0.7812

hsa_circ_0001946 458–529 0.8719

hsa_circ_0006101 77–148 0.8536

hsa_circ_0006117 173–244 0.8442

hsa_circ_0007874 209–280 0.8182

AUF1 hsa_circRNA_102439 36–87 0.5640

EIF4A3 hsa_circ_0001162 70–235 0.6946

FUS hsa_circ_0000005 41,833–41,888 0.8935

IGF2BP3 hsa_circ_0006156 330–471 0.8772

MOV10 hsa_circ_0033079 6120–6191 0.7526

QKI hsa_circ_0007874 87–128 0.7430

Fig. 8  Binding positions of AGO2 and QKI on hsa_circ_0007874
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Discussion
Recent studies have demonstrated that circRNAs can interact with RNA-binding pro-
teins (RBPs), which is also considered an important aspect for investigating the function 
of circRNAs. In this study, we design a capsule network-based model called circRB to 
identify the sequence specificities of circRNA-binding proteins. The sequence features 
of circRNA fragments are extracted through a convolution operation in the first layer 
of the circRB. The capsule network is employed to discriminate whether the fragments 
are the binding sites or not, by analysing the convolution features. circRB is trained and 
tested on the seven datasets, and it is also compared with other existing methods.

The experimental results show that the average AUC value of our model is 0.03 higher 
than other best methods. Furthermore, the binding motif detected by the circRB model 
is aligned to the existing RNA motif database, and we found that some motifs on circu-
lar RNAs overlap with that on linear RNAs, especially in the QKI data set. Finally, the 
circRB model was applied to the full-length circRNA sequences to predict binding sites, 
and excitingly, the potential binding sites with high scores were detected in most known 
binding relationships.

The circRB model has excellent performance and is comparable with other state-of-
the-art methods on seven RBP datasets. The main highlights and the better performance 
of our model is mainly attributed to the following aspects: (1) the circRB model allows 
unequal circRNA fragments to be used as model inputs, and the learning bias caused 
by off-target nucleic acid sequence is avoided. (2) The capsule network could seize the 
characteristic that the binding direction of the binding sites is equivalent on circRNAs, 
thus improving the ability of site recognition. (3) The max pooling is still adopted, which 
improved the prediction performance of the circRB model. Despite the enhanced perfor-
mance, circRB continues to underperform with data it has never seen before. In future 
research, we will collect more binding site information on circRNAs to improve the per-
formance of circRB. We believe that circRB will make contributions to better understand 
regulatory functions of circRNAs.

Conclusion
Because sequence specificities of circRNA-binding proteins are poorly studied, we 
designed a classification framework named circRB based on the capsule network. The 
results showed that circRB achieves higher prediction accuracy, and it is an effective 
classification method. In the future, we will attempt to build a web tool for binding site 
prediction, and we hope our model will contribute to better understanding mechanisms 
of the interactions between RBPs and circRNAs.

Methods

Datasets and encoding

To identify the sequence specificities of circRNA-binding proteins, we constructed 
seven datasets of RBP-binding sites on circRNAs. These RBPs are involved in human 
disease processes by interacting with circRNAs, and they are included in the CircInter-
actome (circRNA interactome database) database. As shown in Table 3, information on 
the binding sites was extracted from the CircInteractome database. The spliced circRNA 
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sequences were downloaded from the circBase database. There is overlap of binding sites 
in the CircInteractome database, especially highly overlapping sites. This fact may cause 
classification bias in the classification model. Hence, we removed the highly overlapping 
redundant binding sites. The negative instances were generated by dinucleotide-shuf-
fling the binding site sequences. The bound sequences are shuffled in this way so that 
dinucleotide frequencies (AA, AC, …, GT, TT) from the original sequences are exactly 
preserved. For a classifier model, dinucleotide-shuffle could prevent the model from dis-
criminating the foreground from the background depending only on the low-level statis-
tics of genomic regions, such as CG dinucleotides [36]. This is a potential advantage over 
standard nucleotide shuffling. In general, parallel operation batch instances are used in 
deep learning models, and fixed-length sequences are required as inputs. However, the 
binding sites collected vary in length. To calculate the data dispersion of binding site 
length, we used the boxplot statistical method to determine the threshold of binding site 
length in the dataset and removed a few "abnormal" binding sites in the dataset. Accord-
ing to statistics (Fig. 9) and previous research work, we set the different threshold lengths 
for each dataset in this study, and sequences of diverse threshold lengths were adopted 
as input to the model. Binding sites shorter than the threshold length were extended to 
the threshold length by centring at the point of each binding site, and the upstream and 

Table 3  Seven RBPs involved in human disease by interacting with circRNAs

Datasets Positive Negative Literature

RBPs circRNAs Disease Name PMID

DS_AGO2 111,783 111,783 AGO2 hsa_circ_0001346 Lung adenocarcinoma 29704631

hsa_circ_0001946 Non-small cell lung cancer 31249811

hsa_circ_0006101 Osteosarcoma 31103262

hsa_circ_0006117 Non-small cell lung cancer 31160270

hsa_circ_0007874 Chronic hepatitis B 31148365

DS_AUF1 2906 2906 AUF1 hsa_circRNA_102439 Breast cancer 29973691

DS_EIF4A3 251,183 251,183 EIF4A3 hsa_circ_0001162 Glioblastoma 30470262

DS_FUS 40,918 40,918 FUS hsa_circ_0000005 Glioma 30736838

DS_IGF2BP3 54,786 54,786 IGF2BP3 hsa_circ_0006156 Gastric cancer 30963578

DS_MOV10 6,003 6,003 MOV10 hsa_circ_0033079 Glioma 30621721

DS_QKI 979 979 QKI hsa_circ_0007874 Lung adenocarcinoma 30975029

Fig. 9  Statistical results of binding site length for seven RBPs



Page 12 of 16Wang and Lei ﻿BMC Bioinformatics           (2021) 22:19 

downstream sites were expanded by half of the threshold length each. To avoid noise, 
the excess sequences were padded with ‘N’ rather than a spliced circRNA sequence. 
For binding sites longer than the threshold length, because of the small proportion, we 
temporarily regarded it as the abnormal point and discarded it. Finally, we constructed 
seven binding site datasets on circRNAs according to the seven RBPs listed in Table 3.

In sequence numerical encoding, each DNA/RNA sequence is represented by a 4k

-dimensional vector called k-mer compositional features, in which each feature indi-
cates the normalized frequency of the corresponding k-mer appearing in the sequence 
[45]. This coding method has difficulty capturing sequence order information, espe-
cially in detecting motifs. In this study, each binding site sequence is converted to a 
padded one-hot vector matrix, which is an order-preserving transformation. Specifi-
cally, given a sequence s =′ s1s2 · · · s

′
L , where L is the length of a binding site sequence 

fragment, Si ∈ {A,T ,C ,G,N }, i = 1, 2, · · · , L , which are represented as vectors 
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0] , respectively. Here, the padded char-
acter ‘N’ is indicated [0, 0, 0, 0] . Our model employs the convolution neural network as 
the first layer, and padding 0 has no effect on the convolution result. Finally, the binding 
site sequence is stored as an L× 4 matrix M in the obvious way:

For example, if s =′ NGACAN ′ , then the representation is shown as follows:

Model construction

In recent years, a convolutional neural network (CNN) has been employed to extract the 
abstract features of genomic sequences; however, the equivariance of these features is 
not considered in the classification task. In particular, the binding direction of the bind-
ing sites is equivalent to that of circRNAs. The capsule network solves this problem by 
replacing the neurons with capsules, and its output is a vector [44, 46]. The norm of the 
vector indicates whether a certain type of pattern exists, and the content of the vector 
represents the equivariance of the features. In this study, we attempted to identify the 
sequence specificities of circRNA-binding proteins by employing a slight variant of the 
capsule network. A schematic diagram of our model is shown in Fig. 1. The original fea-
tures of the sequence are extracted by the convolution operation, and the max-pooling 
layer is added to downsample the convolution features in our model. Then, the equivari-
ance of the convolution features is obtained by two dynamic routing algorithms. Finally, 
the norm of the two output vectors indicates the confidence that the sequence is a bind-
ing site. Different from the typical capsule network, we removed the reconstruction net-
work and added the max-pooling layer.

(1)mi,j =

{

1, if si = jth base in (A,T ,C ,G)

0, if si = N or others

(2)M =















0 0 0 0

0 0 0 1

1 0 0 0

0 0 1 0

1 0 0 0

0 0 0 0














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Specifically, for a circRNA bound sequence that has been coded as a L× 4 matrix 
M, a convolution operation is used to extract abstract features from matrix M. A new 
abstract convolution feature confi can be obtained as follows:

where f  is a nonlinear activation function ReLU. xj is the j-th nucleotide coding, and 
wj is the corresponding weight. h is the size of the convolution filter, and b is the bias 
term. Then, a feature map [conf1, conf2, · · · , confL−h+1] is obtained by employing the con-
volution operation. To downsample the convolution features and acquire the maximum 
response on each feature map, the final convolution feature is obtained using a max-
pooling operation.

To extract the equivariance of the convolution features, the convolution outputs 
are fed to the primary capsule layer. The function of the primary capsule layer is to 
convert convolution features into capsule vectors; in our case, the dimension of cap-
sule vector v is set to 8, as in the original capsule network [41]. Because the norm of 
a capsule vector indicates the probability that the entity presented [41], a new non-
linear activation function is needed for the capsule vector v . The norm of vector v 
is squashed to between 0 and 1 by a squashing function [41] in each capsule. The 
squashing function does not change the direction of the vector but only changes the 
magnitude of the vector. The larger the vector is, the closer it is to 1, and the smaller 
the vector is, the closer it is to 0. The squashing function is shown as follows:

vout is the output of the primary capsule layer. Suppose that there are n cap-
sules in the primary capsule layer, and the outputs of the primary capsule layer are 
viout ∈

(

v1out , v
2
out , · · · , v

n
out

)

 as the input vectors for the next layer. Then, the affine trans-
formation of the output vector viout in the previous layer is performed as follows:

where wi is the weight matrix. Afterwards, the T  times dynamic routing algorithm is 
applied to uii ∈ (1, 2, · · · n) in the digital capsule layer. T  is a hyper-parameter. In this 
study, we set T  to be 2. Details of the dynamic routing algorithm are shown in Table 4. 
cit is the coupling coefficient that is determined by the dynamic routing process in the 
algorithm, and Squash(*) is the squashing function in Formula 4. Finally, the norm of 
the vector vt indicates the confidence that the sequence is a binding site or not. Because 
the prediction of binding sites is a binary classification problem, two 16-dimensional 
capsules are constructed in the digital capsule layer to represent two states of the input 
sequences: positive and negative, which represent whether the input is a binding site or 
not.

(3)confi = f





h
�

j=1

wj ∗ xj + b





(4)vout =

∥

∥v2
∥

∥

1+
∥

∥v2
∥

∥

v

�v�

(5)ui = wi ∗ viout
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Except for the coupling coefficient updated by routing, all other parameters in the net-
work need to be updated according to the loss function. We also adopt the Marginloss 
[41] function in the training stage.

where c is category, Tc  = 1 if category c is present, m+  = 0.9, m−  = 0.1 and �  = 0.5. The 
total loss is the sum of the losses of all categories.

Motif discovery

As described in a previous study [39], the convolution layers are akin to motif detectors. 
For each motif detector Mk , we only consider some position i if confi > 0 in sequence 
fragment s . The position j = argmax

(

confi
)

 is selected as a possible motif site, and the 
subsequence sj...j+h−1 is, extracted, where h is the size of the motif detector. We extract 
all subsequences by feeding all positive sequences from the test set, and these subse-
quences are stacked to compute a PFM (position frequency matrix). If the subsequences 
have a set of special characters ‘N’ in the same position, these special characters are 
aborted, which does not contribute to the PFM counts. Finally, the PFM is transformed 
into a sequence logo in the standard way.
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Table 4  Dynamic routing algorithm

Dynamic routing algorithm

Input: ui is the output of the affine transformation

Output: vt is the output of the t  times dynamic routing

Initialize: bi0 = 0, i ∈ (1, 2, · · · n) ; T = 2

1: for t = 1 to T

2 : cit = softmax(bi0) 

3 : at =
n
∑

i=1

cit · u
i

4 : vt = Squash
(

at
)

5 : bit = bit−1 + vt · ui
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