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Abstract
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Background: DNA-stable isotope probing (DNA-SIP) links microorganisms to their in-situ function in diverse
environmental samples. Combining DNA-SIP and metagenomics (metagenomic-SIP) allows us to link genomes from
complex communities to their specific functions and improves the assembly and binning of these targeted
genomes. However, empirical development of metagenomic-SIP methods is hindered by the complexity and cost
of these studies. We developed a toolkit, ‘MetaSIPSim," to simulate sequencing read libraries for metagenomic-SIP
experiments. MetaSIPSim is intended to generate datasets for method development and testing. To this end, we
used MetaSIPSim generated data to demonstrate the advantages of metagenomic-SIP over a conventional shotgun

Results: Through simulation we show that metagenomic-SIP improves the assembly and binning of isotopically
labeled genomes relative to a conventional metagenomic approach. Improvements were dependent on
experimental parameters and on sequencing depth. Community level G+ C content impacted the assembly of
labeled genomes and subsequent binning, where high community G + C generally reduced the benefits of
metagenomic-SIP. Furthermore, when a high proportion of the community is isotopically labeled, the benefits of
metagenomic-SIP decline. Finally, the choice of gradient fractions to sequence greatly influences method

Conclusions: Metagenomic-SIP is a valuable method for recovering isotopically labeled genomes from complex
communities. We show that metagenomic-SIP performance depends on optimization of experimental parameters.
MetaSIPSim allows for simulation of metagenomic-SIP datasets which facilitates the optimization and development
of metagenomic-SIP experiments and analytical approaches for dealing with these data.
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Background

DNA-Stable isotope probing (DNA-SIP) is a powerful
tool for linking uncultured microorganisms to their
function within environmental samples [1]. DNA-SIP
has applications in a wide range of areas including bio-
geochemistry [2-9], biodegradation [10-14], and eco-
logical interactions [15, 16]. In the past few vyears,
methods such as high-resolution SIP (HR-SIP) [2] and
quantitative SIP (qSIP) [17], have been developed to
analyze amplicon sequencing data from DNA-SIP exper-
iments. DNA-SIP has also been combined with metage-
nomic sequencing (metagenomic-SIP) to link in situ
metabolic activity to genome composition [13, 18, 19].
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Metagenomic-SIP is believed to improve the recovery of
metagenome-assembled genomes (MAGs) from '*C-la-
beled organisms [20, 21]. Unfortunately, validation and
improvement of metagenomic-SIP methods and analyt-
ical tools have largely been hindered by the difficulty
and cost of these experiments [14, 20].

A recently developed open-source toolkit, SIPSim [22],
enables in-silico simulation of amplicon sequencing data
from DNA-SIP experiments (i.e. species abundance ta-
bles). SIPSim has been used to compare various DNA-
SIP analysis methods [22] and is useful for testing the
design of DNA-SIP experiments, but does not simulate
sequencing read libraries and therefore is of limited use
for development and testing of metagenomic-SIP
methods. From here on, we will use metagenomic-SIP to
refer to shotgun metagenomic sequencing from a DNA-
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SIP experiment. Here, we present a newly developed
toolkit, MetaSIPSim, to simulate metagenomic-SIP data-
sets. MetaSIPSim generates sequencing read libraries in
FASTA or FASTQ format such as those generated in a
metagenomic-SIP experiment. MetaSIPSim is freely
available on Github (https://github.com/seb369/Meta-
SIPSim). While the same basic principles of DNA-SIP
simulation are used by both MetaSIPSim and SIPSim,
the implementation of the simulations are significantly
different. SIPSim uses kernel density estimates to deter-
mine the distribution of the reference genomes across a
buoyant density (BD) gradient, without maintaining
identifiable information of genome fragments that would
be needed to generate sequencing reads. MetaSIPSim on
the other hand simulates the abundance of individual gen-
ome fragments within a recovered BD fraction and adjusts
this abundance based on isotope incorporation. By main-
taining genome fragment identity, MetaSIPSim can simu-
late next generation sequencing reads from the individual
fragments. At this time, there are no other tools publicly
available that generate simulated metagenomic-SIP read li-
braries. Our tool will allow researchers to rapidly and inex-
pensively test experimental parameters and develop
analytical tools which will advance the sophistication and
accuracy of metagenomic-SIP experiments. SIP approaches
are increasingly popular in environmental microbiology.
We demonstrated the utility of MetaSIPSim by assessing
whether the coverage, assembly, and MAG binning of tar-
get >C-labeled genomes were improved by metagenomic-
SIP relative to a conventional shotgun metagenomic
approach. We hypothesized that the enhanced performance
of metagenomic-SIP relative to shotgun metagenomics de-
pends on sequencing depth (i.e. number of reads recov-
ered). To test this hypothesis, we ran all simulations at both
5,000,000 reads (5M) and 10,000,000 reads (10 M). We
predicted that the benefits of metagenomic-SIP for assem-
bly and binning would be greatest when sequencing depth
is lower (i.e. in 5M). Furthermore, we hypothesized that
the performance of metagenomic-SIP varies with the guan-
ine and cytosine (G+C) content of whole community
DNA. G+ C content determines where a DNA fragment
localizes in a buoyant density (BD) gradient [23, 24]. Vari-
ation in individual genome G + C in complex communities
has been shown to affect measurements of isotope incorp-
oration in DNA-SIP experiments, such that unlabeled high
G + C DNA can potentially co-migrate with labeled DNA
of low G + C content [22, 25]. In addition, genomic G + C
content is not uniform within individual genomes and the
average G + C content of a genome fragment will differ from
the average G + C content of its source genome with variance
a function of fragment length. It is unclear the extent to which
variation in community level G+ C content, and intra-
genomic variation in G + C content, affects metagenome-SIP
analyses. To test the hypothesis that community-level genomic
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G+ C content affects metagenomics-SIP performance, we
simulated metagenomic-SIP experiments using communities
that differ in G + C distribution (low, medium, and high). We
predicted that read coverage, metagenome assembly and
MAG bin quality would vary with community G + C content
resulting in lower performance for high G + C communities.

Implementation

MetaSIPSim has been tested on Ubuntu 16.04.4 and
Mac OSX 10.12.6 operating systems running python 2.7.
All dependencies and their development versions are
provided in Additional file 1: Table S1. MetaSIPSim can
run with parallel processes to reduce running time.
MetaSIPSim can be memory intensive, depending mostly
on the number of reference sequences, reference se-
quence size, and number of reads generated. It is recom-
mended to do a test run to make sure that the local
system has enough RAM to handle a desired simulation.

Simulation procedure

The input to MetaSIPSim is a configuration file with all
parameters discussed below as well as input and output
paths. One input is the directory containing the reference
sequences. All reference sequences must be in FASTA
format. A reference can be a whole genome, scaffolds, or
contigs, but each reference must be in a separate FASTA
file. If a reference is composed of multiple scaffolds, chro-
mosomes, or plasmids, its file should be in multi-FASTA
format. All scaffolds within this file will be processed as a
single reference. A diagram of the simulation procedure is
found in Fig. 1. The first step of the simulation is to frag-
ment each reference into discrete sequence segments
termed ‘fragments.” Fragment size is based on a user pro-
vided distribution. The fragmentation process simulates
DNA fragmentation patterns occurring during DNA ex-
traction, such as from bead beating. Fragment size distri-
butions can be of uniform, normal, truncated-normal, or
skewed-normal distribution, which should be chosen
based on empirical evidence from a user’s own extraction
methods. The fragmentation process is repeated several
times such that each reference has a fragment coverage
designated by the user to get a diverse sample of frag-
ments for each reference.

MetaSIPSim has the capacity to perform two simulation
modes. The first simulation mode is the ‘single BD window
method,” similar to heavy-SIP [22], sequencing a single gradi-
ent window using BD boundaries (p,;,.x Prax) defined by the
user. Most published metagenomic-SIP studies to date have
employed this ‘heavy-SIP method.” The second simulation
mode treats each density gradient fraction independently,
similar to HR-SIP [2], in which multiple fractions spanning
the gradient are sequenced individually. For this fraction-
based simulation mode, the simulation is performed inde-
pendently for each fraction, with the individual fraction BD
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Fig. 1 Diagram of the simulation procedure

J

boundaries defining the gradient window (p,uux Prmax)- The
fraction-based simulation mode uses the same reference
fragments in all individual simulations. All variables used in
the following equations are summarized in Table 1.
Following reference sequence fragmentation, the abun-
dance of each fragment within the gradient window is
estimated. The initial fragment abundance («) is equal to
the relative abundance of the parent reference, provided
in a user supplied community composition table. The
abundance of each fragment in the gradient window is
then determined as a function of fragment BD character-
istics. The theoretical BD for the fragment (p,) is calcu-
lated from the G + C of the fragment (Eq. 1) [26]:
p, =0.098 (G+ C) +1.66 (1)
The theoretical BD is then adjusted for isotopic label-
ing based on the atom % excess (A) assigned to parent

reference. The atom % excess for an isotopically labeled
fragment is randomly generated from a normal distribu-
tion, with the mean and standard deviation for each par-
ent reference supplied in a user supplied incorporator
identification table. With this setup, users can set differ-
ent incorporators to varying levels of isotope labeling. If
the fragment is from an unlabeled reference, the atom %
excess is 0. The mean BD (p) of each fragment is calcu-
lated as such (Eq. 2) [22]:
p=p;+ (Axd) (2)
Here, § is the increase in BD of DNA if the atom % ex-
cess is 100% (i.e. if the DNA was fully isotopically la-
beled). § differs by isotope where 8 = 0.036 for *C and
8 = 0.016 for '°N [24].
Next, it is necessary to calculate ‘DNA smearing’ due to
diffusive boundary layer effects during the deceleration
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Table 1 Descriptions of variables used in simulation equations

Variable Description

G+C Proportion of DNA that is guanine or cytosine

o}t Theoretical BD of a fragment based on fragment G+ C

o) BD of fragment after accounting for isotopic labeling

o Standard deviation of fragment BD (p)

Omin Minimum BD of window to be sequenced

Ormax Maximum BD of window to be sequenced

OpaLmin Minimum BD of the DBL for a fragment

PosLmin Maximum BD of the DBL for a fragment

A Atom % excess of the fragment

5 Increase in DNA BD if atom % excess is 100% ('>C: 0.036, '°N: 0.016)

Posi Proportion of DNA found in the diffusive boundary layer. 1 —ppg, is the
proportion of DNA found in the lumen of the tube

Pir Proportion of the fragment lumen population recovered in the BD window

Iy Radius of the ultracentrifuge tube

I'min Minimum distance from the axis of rotation to the tube

I'max Maximum distance from the axis of rotation to the tube

X Fragment distance from the axis of rotation at equilibrium

Xmin Minimum position on tube of the DBL range for a fragment

Xmax Maximum position on tube of the DBL range for a fragment

a Abundance of the genome/fragment in the sample

o} Abundance of the fragment in the lumen of the tube within the BD

Qpat Abundance of a fragment in the DBL within the BD window

af Abundance of the fragment in the BD window

a, Abundance of reads from the fragment

/ Length of the fragment in base pairs

Ir Read length in base pairs

R Universal gas constant (8314 J/molK)

T Temperature in kelvin

B Proportionality constant of aqueous cesium chloride (1.14 x 10°)

G Buoyancy factor (7.87 x 107'°)

Me Mean molar weight of standard nucleotide base pair in cesium chloride solution (882)

D Average density of the gradient solution

w Angular velocity of centrifugation

/ Isoconcentration point

S Angle of the tube relative to the axis of rotation in radians

stage of ultracentrifugation when gradient reorientation
occurs (Additional file 1: Figure S1) [22]. Most DNA is
present in the ‘lumen’ of the centrifuge tube, which is
defined as all DNA distant from and not interacting with
the ultracentrifuge tube walls (Additional file 1: Figure
S1). When the gradient reorients during deceleration,
interactions with tube walls causes a thin layer of gradient
solution containing DNA to be trapped within the diffusive
boundary layer (DBL) along the tube walls [22]. The DBL
does not move with the lumen-DNA during reorientation

and, during fractionation, this unequilibrated ‘DBL-DNA’
will contaminate fractions with which it intersects (Add-
itional file 1: Figure S1). The proportion of DNA in the DBL
is minor compared to the lumen DNA, but is readily de-
tected with high throughput sequencing approaches [22].
For simplicity in the simulation, the proportion of DNA
found in the DBL (ppg;) relative to the total DNA concen-
tration is provided by the user. Empirical studies are needed
to determine the equations and experimental properties
governing the ratio of DBL-DNA to lumen DNA.
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Within the tube lumen, due to diffusion, a fragment will be
normally distributed around the isotope adjusted BD (p) and
standard deviation (o; Eq. 3; Additional file 1: Figure S1) [27]:

RT
77 [32PGMCI )

Where R is the universal gas constant (8.314 J/molK), 7 is
the temperature in Kelvin, p is the proportionality constant
of aqueous cesium chloride (1.14 x 10°) [28], G is a buoyancy
factor (7.87 x 10~ ') [29], M, is the mean molecular weight
of a standard nucleotide base pair in cesium chloride solu-
tion (882 g/mol) [29], and / is the length of the fragment in
base pairs. The proportion of the fragment lumen-
population recovered in the BD window (p;z) is then calcu-
lated from the cumulative density function of the normal dis-
tribution with mean p and standard deviation o and
bounded by the maximum and minimum buoyant densities
of the gradient window (p,;..0 Praxs Additional file 1: Figure
S1). Thus, the abundance of the lumen-fragment (o) in the
window is the total lumen abundance multiplied by this pro-
portion recovered in the window (Eq. 4).

or = a(1-ppp) X prr (4)

To calculate the abundance of the DBL-fragment recov-
ered in the gradient window, the range of buoyant densities
that the DBL-fragment is contaminating is determined. First,
the distance from the axis of rotation that the fragment will
be found (x) at equilibrium is calculated (Eq. 5) [24]:

x= <M) + 17 (5)

w2

2 2
I = \/rmin + Ymin'max + Vmax

. (©)

Here, D is the average density of the gradient in g/ml,
w is the angular velocity of centrifugation in rad/s, and
is the isoconcentration point (Eq. 6 [24]). 7,,;, and 7,,,.
are the minimum and maximum distances from the axis
of rotation to the tube (Additional file 1: Figure S1).
From this, the minimum position (x,,;) of the DBL
range along the ultracentrifuge tube can be calculated
both if found in the middle, cylindrical section (Eq. 7) or
the bottom, rounded section (Eq. 8) of the ultracentri-
fuge tube (Additional file 1: Figure S1) [22].

Vimax—T¢ COSO—r;—x

7
sinf 7)
KXypin = T't—T; COS (6— sin! <M>> (8)

Kmin = 't +

rt

Here, 0 is the angle of the tube relative to the axis of
rotation in radians, r; is the radius of the ultracentrifuge
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tube. Similarly, the maximum positions (x,,,,) of the
DBL range is calculated whether in the middle, cylin-
drical section (Eq. 9) or the bottom, rounded section
(Eq. 10) of the ultracentrifuge tube [22].

Vypax + s COSO—T;—x

©)

Xmax = Tt + -
sinf

. - x_rmax+rt
Xmax — V't—1¢ COS (9—]’[ + sin 1<—

(10)

Then the maximum and minimum positions are con-
verted into BD limits (ppprmin and Ppprmasx) from a table
generated with a model gradient. Model gradients are
generated as in SIPSim [22].

The abundance of the DBL-fragment (app;) recovered
in the gradient window is the proportion of the DBL BD
range covered by the window then multiplied by the total
abundance of the fragment DBL-population (Eq. 11).

Pmax—Pmin (11)

OpBL = (o X pppr)

PDBLmax™PDBLmin

From the previous calculations, the abundance of a
fragment recovered in the sequenced BD window (ay is
simply the sum of the abundances of lumen and DBL
fragments (Eq. 12).

of = oy + appy, (12)

Next, sequencing reads are generated from the frag-
ments. To do this, the estimated relative abundance of
each potential read (a,) derived from the fragment is de-
termined (Eq. 13) based on the lengths of the fragment
(Ip and of the reads (/).

*/
o = s

2, (13)

Common read lengths for Illumina sequencing chem-
istry include 125, 150, 250, and 300 bp. The initial read
abundance is transformed into a relative abundance by
dividing by the sum of all read abundances across the
fragment. Then the number of reads to be recovered
from each fragment is assigned randomly, weighted by
the relative abundance of reads within each fragment.
Each paired end read from each fragment is then gener-
ated by randomly selecting forward and reverse read
starting points based on the read length and insert size.
Insert size is randomly generated for each read based on
a normal distribution with mean and standard deviation
provided by the user. Forward or reverse assignment is
random. Finally, read sequences are retrieved from the
original reference sequence based on coordinates which
have been propagated from fragment to sequencing read.
Reverse reads are converted to the reverse compliment.
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All final forward and reverse read sequences are written
out to two multi-FASTA files with paired unique
identifiers.

To compare metagenomic-SIP data to a standard shot-
gun metagenomic dataset, MetaSIPSim includes a script
for generating bulk community metagenomes with the
same references and parameters as the metagenomic-SIP
simulation. This script functions similarly to the
metagenomic-SIP simulator, using the same input config-
uration file. However, in this case the abundance of each
simulated fragment (ap is equal to the reference abun-
dance (a), without adjustments for gradient fractionation.
The FASTA output generated by MetaSIPSim has no se-
quencing errors or quality score information associated
with high throughput sequencing datasets. We have in-
cluded a script that includes modified functions from InSi-
licoSeq [30] to convert the FASTA file output into
FASTQ format by simulating sequencing errors and qual-
ity scores. The conversion uses an error model included in
the InSilicoSeq installation or created by the user. The
error models are sequencing platform specific, with op-
tions for Illumina MiSeq, HiSeq, or NovaSeq. Unlike the
original InSilicoSeq implementation, the MetaSIPSim
script does not add gaps to sequences.

While most previous metagenomic-SIP studies have used
Illumina high-throughput sequencing technologies, other se-
quencing methods may be of interest to researchers. Long
read sequencing from Pacific Biosciences (PacBio) single-
molecule real-time sequencing or Oxford Nanopore Tech-
nologies, often in conjunction with high throughput
technologies, can improve metagenome assembly [31, 32].
PacBio specifically has been used in conjunction with Illu-
mina HiSeq sequencing for metagenomic-SIP [33]. Meta-
SIPSim does not explicitly simulate read generation from
these alternative sequencing methods, however modifica-
tions or additions to this toolkit can allow sequencing read
simulations across a large variety of sequencing technolo-
gies. A roadmap for these extensions can be found in the
supplementary materials.

Validation

We validated the ability of MetaSIPSim to simulate the
distribution of both isotopically labeled and unlabeled
genomic DNA across a CsCl gradient against three pub-
lished DNA-SIP studies [25, 34, 35]. These studies used
bacterial isolates grown on '*C-labeled, **N-labeled, or
unlabeled substrates (Table 2). For each study, we simu-
lated fragments across multiple CsCl gradient fractions.
Fraction BD boundaries were estimated based on the re-
ported average fraction BD. Gradient parameters were
taken from those reported (Additional file 1: Table S2).
We used a uniform atom % excess of 100% as these
studies used pure cultures and fully labeled substrates.
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The code for validation simulations available at https://
github.com/seb369/MetaSIPSim/validation/.

All three studies measured the amount of genomic
DNA of an isolate recovered across fractions, normalized
to the fraction with the highest DNA concentration. To
approximate this value, within each fraction, we multi-
plied the abundance of each fragment by its length, then
summed this base pair count across all fragments get a
quantity of genomic DNA. We then normalized to the
fraction with the greatest quantity of DNA to get the
gradient profile. Empirical distributions were estimated
from the published figures using Engage Digitizer ver-
sion 6.0 [36]. We ran simulations with SIPSim [22] using
the same parameters as an additional comparison.

Case study: assessment of improved metagenomes using
metagenomic-SIP

We used MetaSIPSim to assess whether metagenomic-
SIP improves coverage, assembly, and binning of labeled
bacterial genomes compared to conventional shotgun
metagenome sequencing. The simulated SIP experiment
was based on a '*C, heavy window metagenomic-SIP ex-
periment. A diagram of the experimental design is found
in Additional file 1: Figure S2. A total of 1542 reference
genomes were downloaded from the NCBI RefSeq data-
base [37] on January 25, 2019. Genomes that were re-
lated at the species level, based on reported taxonomy,
were pruned such that a single genome was present per
species. The remaining 1491 reference genomes had a
bimodal distribution of G + C, with peaks around 40 and
65% (Additional file 1: Figure S3). To get a representative
set of reference genomes with a relatively uniform G+ C
distribution for sampling, we sampled 20 genomes from
each integer between 20 and 75% G + C after rounding
G + C values to the nearest integer. If 20 or fewer genomes
were present at a given G + C integer, then all genomes
with that G + C value were selected. From this subset of
genomes, we then randomly subsetted 500 genomes to
meet G + C content criteria for the reference sets: lowGC
(40%), medGC (50%), and highGC (60%). Genome selec-
tion was weighted by the absolute value of the distance of
each genome’s G+ C to the target community G+C
(Additional file 1: Figure S4).

From each reference set, we generated six replicate
synthetic communities with randomized species abun-
dance distributions (Additional file 1: Figure S5). These
replicate communities represent the variation one would
expect from a SIP experiment with biological replicates,
such as independent microcosms. The compositions of
each replicate community was generated using the com-
munities function from SIPSim [22] with all genomes
present (richness = 1) in each replicate, with a lognormal
distribution, a mean relative abundance of 2.0%, and
standard deviation of 0.8. All genomes from the
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Table 2 Studies used for validation of fragment abundance distributions including the isolates reported in the study, NCBI
accessions used to download the genomes, and the stable isotopes simulated

Study Isolates (NCBI accession) Isotope(s) Original publication figure
Lueders et al. 2004 Methanosarcina barkeri MS (CP009528.1) 12C 1A
Methylobacterium extorquens AM1 (NC_012808.1) 3¢
Buckley et al. 2007 Escherichia coli K12 (NC_000913.3) "N, N 2
Pseudomonas aeruginosa PAO1 (NC_002516.2) N
Wawrik et al. 2009 Synechococcus sp. WH7803 (NC_009481.1) N, PN 3B

reference set were found in each community but 10% of
abundance ranks were permuted, to provide more realistic
variation between communities. Overall, we simulated a
total of 18 communities. The first replicate community
from each reference set was designated as the control, in
which no genomes were isotopically labeled.

We randomly selected 20% of each reference set (ie.
100 genomes) to be isotopically enriched ‘incorporators.’
To avoid a reference set with incorporators dispropor-
tionality weighted to either high or low abundance com-
pared to the other sets, genomes were selected such that
the mean abundance ranks of incorporators were similar
across all three reference sets (Additional file 1: Figure
S5). For each treatment community, 50 genomes from
the incorporator set were randomly chosen to be labeled.
This process was reiterated until all 100 incorporators
were assigned to at least one treatment community. All
incorporators had a mean atom % excess of ">C of 90%
and standard deviation of 5. This experimental design,
with five treatment and one control sample, where la-
beled genomes may vary between treatment samples
represents a metagenomic-SIP experiment where differ-
ent labeled substrates were supplied to enrich different
populations within a community [2, 38]. In this type of
experiment organisms can be labeled under more than
one treatment and one unlabeled replicate community
can act as a control for multiple treatments. CsCl gradi-
ents were simulated for each sample using the gradient_
fractions function from SIPSim [22] with minimum and
maximum buoyant densities of 1.675 and 1.771 g/ml.

We simulated both metagenomic-SIP and conventional
shotgun metagenome reads from the synthetic communi-
ties using MetaSIPSim. SIP gradient parameters were de-
rived from Pepe-Ranney et al. [2] (Additional file 1: Table
S2). These parameters were used as they represent a
standard DNA-SIP experiment used in a number of stud-
ies. For both types of simulations, we generated 5,000,000
(5M) and 10,000,000 (10 M) paired end, 151 bp reads with
an average insert size of 1000 bp and standard deviation of
5. Sequencing errors and quality scores were added using
the NovaSeq error model from InSilicoSeq [30]. We per-
formed the following metagenome processing pipeline to
assemble and bin contigs separately for each reference set,
read depth, and metagenome simulation type: (i) co-

assembly was performed with the six read libraries, one
per replicate community, using MEGAHIT version 1.1.3
[39] with default parameters, and (ii) contigs were binned
with MetaBAT2 version 2.12.1 [40, 41] using default pa-
rameters. MetaBAT2 was chosen as it incorporates differ-
ential abundance binning, which takes advantage of the
differential labeling of genomes across treatments [21]. All
code for these simulations including metagenome data
processing are available at https://github.com/seb369/
MetaSIPSim/tree/master/case_study.

We assessed how well each reference genome was re-
covered in raw reads by separately mapping libraries to
the references using BBMap version 37.10 [42]. Specific-
ally, we used the genome coverage and the proportion of
the genome completely mapped by reads as indicators.
We assessed assembly quality through alignment of con-
tigs to the reference genomes using MetaQUAST version
5.0.2 [43]. The metrics used to gauge the assembly quality
were the proportion of each reference genome aligned to
contigs and the NGA50 for each reference. Successful
MAG binning was assessed by first determining which
genome was most aligned to each MAG. The proportion
of the reference recovered as a MAG was calculated as
length of the genome aligned to the binned contigs di-
vided by genome length. Sections of the reference genome
where multiple contigs aligned were only counted once
(ie. contig overlaps). Bin contamination was calculated as
the summed length of contig regions not aligned to the
assigned reference divided by the total bin size. In all ana-
lyses, we compared assessment metrics between the
metagenomic-SIP and the shotgun metagenomic datasets.
All statistical analyses were performed in R version 3.4.4
[44] using the Wilcoxon signed rank tests.

We ran two follow up analyses based on trends observed
with initial simulations. First, we tested whether the num-
ber of isotopically labeled genomes within each sample in-
fluenced metagenomic-SIP performance. This simulation
was done using the lowGC reference set. Incorporators
were randomly selected as before, however we selected 25
incorporators per treatment (from 50 total incorporators
in the reference set) or 100 incorporators per treatment
(from 200 in the reference set). All other community and
simulation parameters were identical to the original simu-
lations. Secondly, we tested whether the selection of the
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BD window to sequence influences metagenomic-SIP im-
provement. These simulations were done using the
highGC reference set. All community and simulation pa-
rameters were identical as before except that the BD win-
dow to be sequenced was 1.70-1.75 g/ml, 1.72-1.77 g/ml,
or 1.75-1.79 g/ml. The BD range for the model gradients
were also slightly extended to 1.67-1.80 g/ml to account
for the new window ranges. We simulated 5,000,000 reads
for all follow up simulations. All metagenome processing
and analyses were performed as previously described.

Results

Implementation

Simulations for the metagenomic-SIP case study took on
average 98 min and 121 min for six replicate communities
at 5,000,000 and 10,000,000 reads respectively, using 10
processors. The corresponding simulations for conven-
tional shotgun sequencing took approximately 38 min and
56 min respectively. Fragment generation took up to 10
min of those runs, with all additional time required for
generating reads for each of the six replicate communities
(Additional file 1: Table S3). These processing times do
not include generation of input files, conversion from
FASTA to FASTQ formats, or any read processing or ana-
lysis. Overall the simulations used less than 20 GB of
RAM on an Ubuntu 16.04.4 operating system.

Validation

We simulated the distribution of fragmented genomic DNA
across CsCl gradients based on experimental procedures
from three published studies (Table 2). We found that the
peak genomic DNA density recovery from the MetaSIPSim
and SIPSim simulations roughly matched the empirical re-
sults from Buckley et al. 2007 [25] and Wawrik et al. 2009
[35] (Fig. 2b and c) and the general distributions were similar
across datasets for these studies. Variations in overall distri-
butions are likely due in part to variability from experimental
conditions and variations in genome composition between
isolate and reference sequence strains. For the Lueders et al.
2004 [34] study, the peak genomic DNA density matched
between MetaSIPSim and SIPSim, however these peaks were
in adjacent BD fractions compared to the empirical data
(Fig. 2a). This small difference may be due to variation in ex-
perimental parameters or methodology that were not
simulated.

Future studies can examine the predictive power of
MetaSIPSim across a wide variety of microbial community
designs by utilizing synthetic microbial communities with
known genomes, abundance profiles, and isotope incorp-
oration patterns. In such a study, the known community
information would allow MetaSIPSim to predict the se-
quencing output of a metagenomic-SIP experiment. These
predictions can then be directly compared to empirical se-
quencing data from the synthetic community experiment.
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The variation between simulated and empirical data can
be quantified by measuring differences in genome cover-
age between the two datasets.

Metagenomic-SIP improves recovery of isotopically
labeled genomes in raw reads
We used MetaSIPSim to assess the ability of metagenomic-
SIP to improve genome assembly and binning relative to
shotgun metagenomics. Metagenomic-SIP should enrich for
reads from isotopically labeled genomes (i.e. incorporators),
so we first examined coverage and recovery of incorporator
genomes in our raw simulated reads. As expected, we found
that incorporators had greater coverage and were recovered
more completely in the metagenomic-SIP simulation com-
pared to paired conventional metagenomic libraries (Fig. 3a
and ¢, Table 3). The difference in incorporator coverage and
genome recovery between metagenomic-SIP and shotgun
metagenomes were significantly greater than zero across all
simulations (all p-values <0.001; Table 3). The increased
coverage achieved by metagenomic-SIP was negatively corre-
lated with community G + C. The increase in genome recov-
ery in raw reads with metagenomic-SIP was highest for the
medGC reference set. The increase in coverage with
metagenomic-SIP for each incorporator was also strongly af-
fected by the G + C content of the target genome, where low
G + C genomes had the least fold difference in coverage with
metagenomic-SIP  compared to shotgun metagenomics
(Additional file 1: Figure S6). The improvement that
metagenomic-SIP provides in the recovery of labeled ge-
nomes within raw reads was also somewhat affected by gen-
ome G+ C but was more strongly driven by the relative
abundance of target genomes in the community, with
metagenomic-SIP providing the greatest benefit in recover-
ing low abundance genomes (Additional file 1: Figure S7).
The number of incorporators had a minor impact on both
labeled genome coverage and recovery within raw reads. The
benefits of metagenomic-SIP relative to shotgun metage-
nomics were greatest when the number of incorporator ge-
nomes was low (Fig. 3b and d; Table 4). BD window position
strongly influenced the coverage and recovery of targeted ge-
nomes within raw reads. Metagenomic-SIP analysis of a
lighter BD window (1.70-1.75 g/ml) showed little improve-
ment relative to standard metagenomics sequencing. In con-
trast, metagenomic-SIP analysis of a heavier windows
improved significantly the coverage and recovery of target
genomes within raw reads (1.72-1.77 g/ml and 1.74-1.79 g/
ml; Fig. 3b and d; Table 4). For both measures, there was a
strong relationship between the incorporator G + C and the
BD of sequenced fractions. Metagenomic-SIP did not signifi-
cantly improve coverage or recovery of raw reads from high
G + C genomes in the light BD window over shotgun meta-
genomics (Additional file 1: Figure S8). Conversely,
metagenomic-SIP did little to improve read coverage or re-
covery of low G+ C genomes in the heavier BD window
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compared to the conventional approach (Additional file 1:
Figure S9).

Metagenomic-SIP improves assembly of isotopically
labeled genomes

We found that metagenomic-SIP improved assembly of
isotopically labeled genomes over conventional shotgun
metagenomics. When sequenced at relatively low depth,
metagenomic-SIP allowed for a significantly greater pro-
portion of each labeled genome to be assembled com-
pared to the shotgun metagenomes in all three reference
sets (Fig. 4a, Table 2). At high sequencing depth
metagenomic-SIP improved target genome assembly in
the low and medium G + C reference sets but not in the
high G + C set. In all simulations, metagenomic-SIP im-
proved quality of assembled contigs from labeled ge-
nomes, as measured by NGA50 (Fig. 4c, Table 3), and
more incorporators were assembled at >50% complete-
ness compared to the shotgun method (Additional file 1:
Table S4). Considering the need to have at least 50% of
the genome recovered to calculate the NGA50 from both

metagenomic-SIP and shotgun metagenomic assemblies,
our NGAS50 analysis was limited to a subset of relatively
well assembled references. In all cases, but most notably
with the high G+ C reference set, incorporators with
higher G + C were recovered to a higher proportion by as-
sembled contigs with metagenomic-SIP over shotgun
metagenomics (Additional file 1: Figure S10). Similarly, as-
sembly improvement with metagenomic-SIP was greatest
for low abundance incorporators, a trend most prominent
with the lower G + C genome set (Additional file 1: Fig-
ures S10 and S11).

The number of incorporators per sample influenced
how metagenomic-SIP improved assembly of labeled ge-
nomes over shotgun metagenomics. Overall, both gen-
ome recovery in assembled contigs and NGA50 showed
greater improvement with metagenomic-SIP when fewer
genomes were labeled per sample. Metagenomic-SIP did
not significantly increase the proportion of incorporator
genomes recovered in contigs when we labeled 100 ge-
nomes per sample (Fig. 4b and d, Table 4). The BD ana-
lysis window greatly impacted recovery and quality of
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Fig. 3 Improvement of metagenomic-SIP relative to conventional metagenomics with respect to coverage and recovery of '*C-labeled genomes
with raw reads. Values greater than zero indicate improvement of metagenomic-SIP relative to conventional metagenomics (Bonferroni
correction, n=6; *** p-values < 0.001). a and ¢ The difference in labeled genome (n = 100) coverage and the difference in proportion of the
genome recovered (i.e. mapped to reads), respectively, varies between communities that differ in G+ C content when sequenced at different
depths. b and d The difference in labeled genome coverage and the difference in proportion of the genome recovered (i.e. mapped to reads,
n =50, 100, 200), respectively, for low G+ C communities with respect to the number of labeled genomes per sample and for high G+ C
communities with respect to the position of the BD window

Table 3 Median difference (4) in metagenome quality for labeled genomes between simulations of metagenomic-SIP and
conventional shotgun metagenomic data. For all measures, except bin contamination, a difference greater than zero indicates that
metagenomic-SIP improved metagenome quality relative to the conventional metagenomics approach. For bin contamination, a
difference less than zero indicates improved metagenome quality with metagenomic-SIP. All statistical analyses were single sided,
Wilcoxon signed rank tests with an alternate hypothesis of greater than zero, except for bin contamination which used an alternate
hypothesis of less than zero. All p-values are adjusted for multiple comparisons (Bonferroni, n = 6)

Community  Seq. A Read A Proportion of genome 4 Proportion of genome A NGA50 4 Proportion of genome A Proportion bin

G+C depth coverage X  recovered in reads (p- recovered in contigs (p-  bp (p- recovered in best bin (p-  contaminated (p-
(p-value) value) value) value) value) value)

Low 5M 1769 (< 0391 (< 0.001) 0.052 (< 0.001) 19,672 (< 0.567 (< 0.001) —0.038 (< 0.001)
0.001) 0.001)

Medium 1.002 (< 0315 (< 0.001) 0.053 (< 0.001) 9251 (< 0.353 (< 0.001) -0.022 (< 0.001)
0.001) 0.001)

High 0.59 (< 0.240 (< 0.001) 0.026 (NS) 3511 (< 0.366 (< 0.001) —0.010 (0.001)
0.001) 0.001)

Low 10M 3561 (< 0.237 (< 0.001) 0.004 (0.007) 11,636 (< 0.144 (< 0.001) —-0.017 (< 0.001)
0.001) 0.001)

Medium 1.992 (< 0.306 (< 0.001) 0.007 (< 0.001) 7554 (< 0.092 (< 0.001) -0.011 (< 0.001)
0.001) 0.001)

High 1174 (< 0.222 (< 0.001) 0.001 (NS) 7718 (< 0.134 (< 0.001) —0.009 (< 0.001)
0.001) 0.001)
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Table 4 Median difference (4) in metagenome quality measures for labeled genomes between simulations of metagenomic-SIP and
conventional metagenomics. For all measures, except bin contamination, a difference greater than zero indicates that metagenomic-
SIP improved metagenome quality relative to conventional metagenomics. For bin contamination, a difference less than zero
indicates improved metagenome quality with metagenomic-SIP. All statistical analyses were single sided, Wilcoxon signed rank tests
with an alternate hypothesis of greater than zero, except for bin contamination which used an alternate hypothesis of less than

zero. All p-values are adjusted for multiple comparisons (Bonferroni, n = 6)

Comm. #labeled Buoyant A Read A Proportion of A Proportion of ANGAS50 bp (p- A Proportion of A Proportion
G+C genomes  Density coverage X (p- genome recovered genome recovered value) genome recovered  bin
per sample window value) in reads (p-value)  in contigs (p-value) in best bin (p-value) contaminated
g/ml (p-value)
Low 25 1.72-1.77 2202 (< 0.001) 0445 (< 0.001) 0.058 (0.027) 18409 (< 0.001) 0.675 (< 0.001) —0.007 (NS)
50 1.769 (< 0.001) 0391 (< 0.001) 0.052 (< 0.001) 19,672 (< 0.001) 0.567 (< 0.001) —0.038 (<
0.001)
100 1.188 (< 0.001) 0.324 (< 0.001) 0.006 (NS) 7779 (< 0.001) 0337 (< 0.001) -0.010 (<
0.001)

High 50 1.70-1.75 0018 (NS) 0.013 (NS) —0.032 (NS) - 212 (NS) 0.019 (NS) —0.001 (NS)
1.72-177  0.589 (< 0.001) 0.241 (< 0.001) 0.026 (NS) 3824 (< 0.001) 0330 (< 0.001) —0.017 (0.006)
1.75-1.79 3935 (< 0.001) 0.388 (< 0.001) 0.102 (0.013) 47,027 (< 0.001) 0825 (< 0.0071) —0.012 (NS)

contigs in metagenomic-SIP. Metagenomic-SIP im-  originating from the same reference genome. This multiple

proved assembly the most for the heaviest BD window
(1.74-1.79 g/ml; Fig. 4b and d, Table 4). The benefit of
metagenomic-SIP  over shotgun metagenomics was
strongly influenced by the G + C of the labeled genome
interacting with the BD window. For high G + C incor-
porators, using a light BD window (1.70-1.75 g/ml) did
little to improve assembly over shotgun metagenomics
while for the low G + C incorporators we saw little as-
sembly improvement when using a heavy window (1.74—
1.79 g/ml; Additional file 1: Figures S12 and S13).

Metagenomic-SIP improves MAG binning of isotopically
labeled genomes

Finally, we found that metagenomic-SIP improved the
binning of labeled genomes over conventional shotgun
metagenomics. Across all simulations, more labeled ge-
nomes were recovered as MAGs with metagenomic-SIP
compared to the conventional approach (Additional file 1:
Table S4). We observed a high accuracy in MAG bin-
ning for both metagenomic-SIP and shotgun metage-
nomic datasets, with a minority of genomes divided or
overlapping among multiple bins. Since some genomes
were found in multiple bins, we examined binning qual-
ity in two ways. First, we used the single “best” bin for
each labeled genome (i.e. the bin that covered the high-
est proportion of the reference genome). We found that
a greater proportion of each labeled genome was recov-
ered in the best bin when using metagenomic-SIP com-
pared to shotgun metagenomics (Fig. 5a, Table 3). We
further found that, for genomes that were successfully
binned in both simulation types, metagenomic-SIP bins had
less contamination from other genomes compared to the
corresponding shotgun metagenomic bins (Fig. 5¢c, Table 2).
Second, we combined the multiple bins identified as

bin approach also showed improved labeled genome recov-
ery and contamination relative to conventional shotgun
metagenomics approaches (Additional file 1: Figure S14).
Metagenomic-SIP improved binning the most at lower levels
of sequencing depth.

We further found that both the number of incorporators
per sample and the choice of the BD window to sequence
influenced metagenomic-SIP binning improvement. We
tested this using the single best bin approach. With more
incorporators per sample, metagenomic-SIP did not im-
prove labeled genome recovery within a bin as much as in
simulations with fewer incorporators per sample.
Metagenomic-SIP improved bin recovery the most when
sequencing a heavier BD window (Fig. 5b, Table 4). Inter-
estingly, moderate values for both number of incorporators
per sample (50) and sequenced BD window (1.72-1.77 g/
ml) showed the greatest improvement in bin contamination
(Fig. 5d, Table 4).

Discussion

We developed the toolkit MetaSIPSim to simulate se-
quencing read datasets for metagenomic-SIP experi-
ments. This is the first publicly available toolkit with this
function and we believe it will be an important aid for
development and testing of metagenomic-SIP experi-
mental designs and analysis tools. As we presented here,
MetaSIPSim can simulate an entire high-complexity
metagenomic-SIP experiment. The toolkit employs many
user-defined parameters that correspond to aspects of
metagenomic-SIP experimental designs. By adjusting
these parameters, researchers can use MetaSIPSim to
optimize their methodologies prior to running their
metagenomic-SIP experiments. Important methodo-
logical parameters that can be optimized in this way
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Fig. 4 Improvement of metagenomic-SIP relative to conventional metagenomics with respect to co-assembly quality of "*C-labeled genomes.
Values greater than zero indicate improvement of metagenomic-SIP relative to conventional metagenomics (Bonferroni correction, n=6; *, p-
values < 0.05; **, p-values < 0.01; ***; p-values < 0.001). a and ¢ The difference in proportion of each labeled genome (n = 100) recovered (i.e.
aligned to contigs) and the difference in their NGA50 (in base pairs; where > 50% of the genome is aligned to contigs in both metagenomic
simulation types), respectively, varies between communities that differ in G+ C content when sequenced at different depths. b and d The
difference in proportion of each labeled genome recovered (i.e. aligned to contigs, n =50, 100, 200) and the difference in their NGA50 (in base
pairs; where > 50% of the genome is aligned to contigs in both metagenomic simulation types), respectively, for low G+ C communities with
respect to the number of labeled genomes per sample and for high G + C communities with respect to the position of the BD window

# labeled/sample  BD range (g/ml)

include buoyant density window or fraction sizes, CsCl
densities, centrifugation velocities, sequencing depths,
community complexities, and amounts of isotopic label-
ing. As MetaSIPSim runs quickly and has no reagent or
sequencing costs, optimization can be run multiple times
and in parallel for multiple different parameter values.
We demonstrated this by running our case study in par-
allel at two different sequencing depths.

MetaSIPSim can be wused in lieu of in vitro
metagenomic-SIP experiments with mock communities to
generate datasets for development of analytical pipelines,
saving time and money. Datasets generated in silico with
MetaSIPSim can be used to develop and test tools and
pipelines specialized for assembly and binning isotopically
labeled genomes. Most current metagenomic-SIP studies
utilize a heavy window methodology. While this method
may currently be the best option in most cases, with ad-
vancements to sequencing technologies and high-
throughput methodologies, other methods similar to HR-
SIP [2] may be practical, utilizing multiple sequenced gra-
dient fractions. HR-SIP-like methods may be useful for

overcoming some of the previously described factors that
interfere with metagenomic-SIP genome recovery such as
community or incorporator G + C but require new analyt-
ical tools. Simulated datasets are especially important for
development of methods used to identify isotopically la-
beled contigs or MAGs. By having known reference ge-
nomes, atom % excess values for each incorporator, and
community profiles, developers can measure sensitivity
and specificity of their tools. Further, simulations gener-
ated with MetaSIPSim are reproducible, allowing for com-
parisons between analysis tools.

MetaSIPSim can also be incorporated into a
metagenomic-SIP analysis pipeline to identify labeled con-
tigs, MAGs, or genomes. In such an approach, contigs as-
sembled from metagenomic-SIP might be identified as
either isotopically labeled or unlabeled by comparing their
empirical coverage distributions across a CsCl gradient to
simulated distributions produced with metaSIPSim. In-
corporating simulated and actual read distributions in
such analyses might provide an approach for identifying
isotopically labeled DNA directly from metagenomics-SIP
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Fig. 5 Improvement of metagenomic-SIP relative to conventional metagenomics with respect to MAG bin quality of "*C-labeled genomes. For
genome recovery in bins, values greater than zero indicate improvement of metagenomic-SIP relative to conventional metagenomics, while for
bin contamination values less than zero indicate improvement of metagenomic-SIP relative to conventional metagenomics (Bonferroni correction,
n=6; **, p-values < 0.01; ***, p-values < 0.001). a and c The difference in the proportion of each labeled genome (n=100) recovered in a bin and
the difference in their proportion bin contamination, respectively, varies between communities that differ in G+ C content when sequenced at
different depths. b and d The difference in the proportion of each labeled genome (n =50, 100, 200) recovered in a bin and the difference in
their proportion bin contamination, respectively, for low G+ C communities with respect to the number of target genomes per sample and for

# labeled/sample  BD range (g/ml)

experiments. Further, it may be possible to estimate BD
shifts of contigs or MAGs based on theoretical fragment
or read distributions generated with MetaSIPSim, thereby
enabling quantification of isotopic enrichment.

We used simulated datasets generated with MetaSIPSim
to evaluate the efficacy of metagenomic-SIP relative to con-
ventional shotgun metagenomics. In addition to demonstrat-
ing the utility of the MetaSIPSim toolkit, this analysis
established the power of metagenomic-SIP methodologies.
We found that metagenomic-SIP improved the ability to as-
semble and bin isotopically labeled target genomes with
higher quality, greater completeness, and less contamination
than could be achieved through the application of conven-
tional shotgun metagenomic sequencing. Examples of these
improvements for three individual genomes is shown in
Fig. 6. Our analyses confirmed that metagenomic-SIP is an
effective method for targeted assembly of genomes from
complex metagenomes and helped identify cases where the
benefits of this method were marginal. Using MetaSIPSim,
researchers can use preliminary knowledge of their system’s
community composition and the planned experimental

parameters to test how well metagenomic-SIP will benefit
them and adapt or optimize their sampling, methods, or se-
quencing regime accordingly.

Our analyses revealed how experimental design influ-
ences the power of metagenomic-SIP. We found that the
benefits of metagenomic-SIP relative to conventional
shotgun metagenomics declined as sequencing depth and
genome coverage increased. We believe that this is largely
due to the fact that, with deep sequencing, there is enough
read coverage to capture all or most of a community and
therefore enrichment with stable isotopes is unnecessary.
Our simulations were limited to 500 well characterized
bacterial genomes, while natural communities, such as
soil, contain orders of magnitude more diversity and com-
plexity [45]. Hence, the utility of metagenomic-SIP is
likely to be greater with natural communities relative to
the simulations we performed. Further, the ability to
achieve greater bin quality with less sequencing coverage
may make metagenomic-SIP more appealing for studies
that require many samples or replicates due to the trade-
off between sequencing depth and sample number [46].
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Fig. 6 Examples of MAG quality improvements achieved with metagenomic-SIP relative to conventional shotgun metagenomics for three target
genomes of low abundance in the community. These examples are taken from the 50% G + C skewed (medGC) reference set sequenced at
5,000,000 reads. Genomes presented here are Clostridium stercorarium, Prevotella denticola, and Altererythrobacter ishigakiensis. a Percentage of
each genome recovered in reads across 6 simulation trials in which community composition and "*C-labelling were varied randomly (T1 - T5);
‘con’” indicates the "?C-control, 'L" indicates a trail in which the organism was '*C-labeled. b Percentage of each genome recovered in contigs
from the co-assembly of all 6 trials. € The NGA50 of the contigs from the co-assembly mapped to each genome. d The percentage of each
genome recovered in a MAG bin. e The percentage each MAG bin that is contamination from other genomes. Note that we have no NGA50 for
the shotgun metagenomics assembly of P. denticola as less than 50% of this genome was recovered from the co-assembly. Similarly, we
recovered no bin mapping to P. denticola from the shotgun metagenome

The benefits of metagenomic-SIP varied across bacter-
ial communities that differed in G + C skew. Specifically,
we saw that metagenomic-SIP improved assembly and
binning of incorporators more in the high G + C skewed
communities than in the lower G + C skewed communi-
ties. This result is likely due to the incursion of reads
from high G + C unlabeled genomes, which are naturally
recovered in heavy BD windows. Due to this
phenomenon, we recommend a careful selection of the
BD window to be sequenced, based on the overall com-
munity G+ C for metagenomic-SIP studies employing
the heavy-SIP method. We confirmed this result by
simulating reads from a high G+ C genome set with
both a lighter and heavier BD window than originally
tested. We found that for a community with overall high

G + C skew, a heavier BD window resulted in the great-
est benefit from metagenomic-SIP.

Regardless of overall community, the benefits of
metagenomic-SIP in recovery of an isotopically labeled
genome depends on the individual incorporator’s G + C.
Specifically, metagenomic-SIP was less advantageous for
recovering with low G+ C incorporators than for
medium to high G+ C incorporators. Low G +C ge-
nomes are too light to sufficiently shift into the BD win-
dow that is sequenced, despite isotopic labeling. This
loss of low G+ C genomes may be more extreme if
heavier or narrower BD ranges are chosen. Indeed, we
observed this outcome with our follow-up simulation
when using a heavier BD window (Additional file 1: Fig-
ures S9 and S15). If a study is designed to specifically
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target low G + C genomes, such as some Firmicutes spe-
cies, a lighter BD window may be optimal for MAG
recovery.

Finally, the benefits of metagenomic-SIP were greatest
for incorporators present in low abundance in the com-
munity. Most highly abundant incorporators had high-
quality assemblies and bins with both metagenomic
methods, yet metagenomic-SIP greatly improved assem-
bly and binning over conventional shotgun metage-
nomics for lesser abundant incorporators. We conclude
that metagenomic-SIP shows great promise for metagen-
ome recovery of very low abundant genomes [21] and
have shown examples of this potential with three ge-
nomes simulated at low relative abundance (Fig. 6).

For our case study, we simulated a multi-substrate SIP
experiment. However, there are a number of other experi-
mental designs popularly used dependent on available re-
sources and study hypotheses. One commonly used
simple design is to add a single labeled substrate to single
or replicate environmental samples. The goal of this de-
sign is to use the isotopic labeling to selectively enrich for
labeled genomes and may be useful for identifying slow
growing, low abundant organisms that utilize a specific
substrate. We predict that this method will perform simi-
larly to the multi-substrate method that we simulated and
if sequenced to the same depth, may allow for recovery of
even more reads from the target genomes. However, with-
out the variation in coverage due to differential labeling
across multiple treatments, assembly and MAG binning
may produce poorer results than shown here. Another
common metagenomic-SIP experimental design is to use
a single isotopically labeled substrate in a time series. This
design aims to identify successive changes in active popu-
lations utilizing a given substrate and to identify trophic
networks. Simulations with this experimental design
would be very similar to our analyses. The primary differ-
ence being that the user may want to include additional
unlabeled control samples, one per timepoint. We have
not tested either of these designs here but we encourage
using MetaSIPSim to test the benefits of these methods
over conventional metagenomics for unique experimental
designs and parameters.

Conclusions

MetaSIPSim is a useful tool for simulation-based testing
of metagenomic-SIP methodologies. MetaSIPSim can be
used prior to a metagenomic-SIP experiment to optimize
experimental parameters, used to develop analytical tools,
or used as a component of analysis to identify isotopically
labeled genomes. Using MetaSIPSim, we demonstrated
that metagenomic-SIP experiments significantly improve
assembly and binning of targeted, isotopically labeled ge-
nomes. This analysis shows that experimental and com-
munity parameters including sequencing depth, BD
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window selection, community G + C content, and number
of labeled genomes all significantly influence the benefit of
metagenomic-SIP over conventional shotgun metage-
nomic sequencing.

Availability and requirements

Project name: MetaSIPSim
Project homepage: https://github.com/seb369/MetaSIPSim
Operating system: Linux and Mac OSX
Programming language: Python 2.7
Other requirements: See Additional file 1: Table S1
License: MIT license
Any restrictions to use by non-academics: None
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SIP and shotgun metagenomic libraries from the original simulations.
Values above zero indicate greater recovery in the metagenomic-SIP
compared to the shotgun metagenomic contigs. Figure S11. Difference
in NGAS50 of each labeled genome covered by co-assembled contigs be-
tween the metagenomic-SIP and shotgun metagenomic libraries from
the original simulations. Values above zero indicate greater NGA50 in the
metagenomic-SIP compared to the shotgun metagenomic contigs. Only
genomes with over 50% recovery in both SIP and shotgun metagenomes
were used in this analysis. Figure $12. Difference in proportion of each
labeled genome recovered in co-assembled contigs between the
metagenomic-SIP and shotgun metagenomic libraries from the follow-up
simulations. Values above zero indicate greater recovery in the
metagenomic-SIP compared to the shotgun metagenomic contigs. Simu-
lation with the lowGC reference set with varying number of labeled ge-
nomes per sample is in the top row while the simulation with the
highGC reference set with different sequencing window BD ranges is in
the bottom row. Figure S13. Difference in NGA50 of each labeled gen-
ome covered by co-assembled contigs between the metagenomic-SIP
and shotgun metagenomic libraries from the original simulations. Values
above zero indicate greater NGA50 in the metagenomic-SIP compared to
the shotgun metagenomic contigs. Only genomes with over 50% recov-
ery in both SIP and shotgun metagenomes were used in this analysis.
Simulation with the lowGC reference set with varying number of labeled
genomes per sample is in the top row while the simulation with the
highGC reference set with different sequencing window BD ranges is in
the bottom row. Figure S14. Difference in binning quality between the
SIP-metagenomes and shotgun metagenomes with the initial simulations
using multiple bins per labeled genome. A) Difference in proportion of
each labeled genome recovered in bins. B) Difference in the cumulative
contamination for each labeled genome bin set. Figure S15. Difference
in proportion of each labeled genome recovered in a single most
complete bin between the metagenomic-SIP and shotgun metagenomic
libraries from the follow-up simulations. Values above zero indicate
greater recovery in the metagenomic-SIP compared to the shotgun
metagenomic bins. Simulation with the lowGC reference set with varying
number of labeled genomes per sample is in the top row while the simu-
lation with the highGC reference set with different sequencing window
BD ranges is in the bottom row.
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