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Abstract

Background: A key use of high throughput sequencing technology is the sequencing and assembly of full genome
sequences. These genome assemblies are commonly assessed using statistics relating to contiguity of the assembly.
Measures of contiguity are not strongly correlated with information about the biological completion or correctness of
the assembly, and a commonly reported metric, N50, can be misleading. Over the years, multiple research groups
have rejected the overuse of N50 and sought to develop more informative metrics.

Results: This paper presents a review of problems that arise from relying solely on contiguity as a measure of
genome assembly quality as well as current alternative methods. Alternative methods are compared on the basis of
how informative they are about the biological quality of the assembly and how easy they are to use. A comprehensive
method for using multiple metrics of measuring assembly quality is presented.

Conclusions: This study aims to report on the status of assembly assessment methods and compare them, as well as
to offer a comprehensive method that incorporates multiple facets of quality assessment. Weaknesses and strengths

friendliness.

of varying methods are presented and explained, with recommendations based on speed of analysis and user
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Background

Genome assembly is the process of assembling biologi-
cal reads from sequencing into larger sequences called
contigs. A common method of quantifying the quality of
genome assemblies is to compute statistics about conti-
guity. For example, the assembly for M. musculus at the
National Center for Biotechnology Information (NCBI)
website reports features like N50 (a number which rep-
resents the smallest contig such that half the genome is
represented by contigs of size N50 or larger [1, 2]), total
sequence length, gaps between scaffolds, and number of
contigs [3]. However, there is no obvious relationship
between these numbers and whether a genome contains
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any useful information. Indeed, many papers published in
the past ten years have cited this lack of a relationship,
in addition to N50’s own issues, as a reason to replace or
supplement N50.

The final output of the assembly process may contain
errors; these errors may arise as a result of problems that
occurred in the sequencing or problems that occurred
during the assembly process. These errors can be dis-
cussed in terms of contiguity, completeness, and correct-
ness. These three features, sometimes called the three
Cs, are defined below. An ideal genome is contiguous,
complete, and correct.

Contiguity is related to the size and number of contigs.
If a goal of assembly is to reflect the contiguity of the
genome in vivo, then the assembly process seeks to max-
imize the size of the contigs and to minimize the number
of contigs to reflect the true number and size of the chro-
mosomes in the organism. Contiguity errors may arise due
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to assembler parameters that allow unrelated contigs to be
joined or that prevent related contigs from being joined.

Completeness is determined by the content of con-
tigs, especially with regard to gene content. A contiguous
genome that contains no gene content is not useful for
downstream analysis. Completeness errors can arise in
sequencing (important genes may not be sequenced) or
they may arise in the assembly process (genes may end up
in discarded contigs).

Correctness is concerned with the ordering and location
of contigs. A correct genome assembly has the same order
as the true genome. If contigs are incorrect, they may have
inversions, relocations, or translocations with respect to
the true genome [1].

A discussion of types of assembly errors is not a dis-
cussion of three separate facets of assembly assessment.
Contiguity errors can be discussed in terms of how those
errors are misjoins in relation to the true genome. Some
measures of completeness are related to contiguity. For
example, fragmentation of the genome (a measure of con-
tiguity) is related to fragmentation of the genes [4]. An
incorrectly collapsed heterozygous allele in an assembly
contributes to inaccurate contiguity statistics.

In the last decade, multiple papers have discussed
genome assembly assessment. Many of these papers begin
with an assertion that contiguity or N50 specifically is not
well-correlated with genome correctness or completeness.
Alternatives to N50 are then presented; these alternatives
are either meant to supplement or replace N50.

Salzberg et al. discuss comparisons of assemblies and
assemblers in their paper. They present genome assem-
blies from many assemblers and discuss which genome
assemblies are better. In their paper, they compare
genomes using measures of contiguity like N50 and num-
ber of contigs, in addition to a metric called e-size that
they developed. They note that genome correctness is not
well-correlated with statistics about contiguity. They also
note that N50 can be misleading; in the case of misjoins,
contigs are larger than they should be, which inflates the
N50 score. To address this issue, Salzberg et al. developed
e-size, which measures the size of a contig containing a
randomly selected base on the genome. The paper states
that this metric can help answer questions about how
many genes are completely contained in contigs or scaf-
folds rather than fragmented. While e-size is more robust
than N50, e-size is still affected by misjoins. Because it is
a continuous measure rather than a discrete measure, the
effect is less noticeable [1].

Meader et al. developed a method of genome assem-
bly assessment that relies on alignments to genomes of
closely related species. In their paper, they assert that N50
measures the assembler’s ability to combine reads in large
seamless blocks but does not reflect fine-scale inaccu-
racies like substitutions, insertions, or deletions. While
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their method is rooted in biology, its requirement of a
reference genome makes it much less useful for those
who are assembling genomes of species without good
references [5].

Utturkar et al., in their study of hybrid assembly tech-
niques, write that N50 and the number of contigs are
widely used but don’t always correlate with assembly qual-
ity. Instead, they relied on CGAL and REAPR, two tools
that will be discussed later [6].

Seemann et al. use many features for their comparison
of animal genomes: nucleic acid conservation of highly
conserved protein-coding and ultraconserved elements
(UCs), amino acid homology of universal single-copy
orthologs, structure conservation of housekeeping RNAs,
assembly sequence quality, and assembly contiguity. They
calculate the Euclidean distance of the first three principle
components of each species and human, which they use
as a gold standard of assembly [7].

Hunter et al. developed a tool called REAPR [8] to
address their issues with N50. Notably, they assert that
N50 only indicates contiguity of the genome, not accuracy,
and that it is often boosted by improperly joined con-
tigs. Their approach is to correct N50 by using data from
the reads used in assembly to discover misjoins and break
them apart to produce a more correct assembly with a
lower N50. While this tool performs and important func-
tion, its output still reflects a desire to use contiguity as a
measure of genome assembly quality.

Rahman and Pachter developed a method that com-
putes the likelihood of an assembly given the reads that
were used to create the assembly [9]. Rahman and Pachter
created a generative model for sequencing that requires an
alignment of the reads to the assembly, which they then
use to determine the likelihood of those reads being from
the assembly according to their model. CGAL provides
no explicit information about gene content or correctness
to its users. CGAL does not require a reference genome,
which is helpful for researchers that don’t have a reference
for their species.

Siméo et al. describe N50 as a technical measure that
does not reflect gene content, and developed a tool
called BUSCO, which searches for benchmarking uni-
versal single-copy orthologs (BUSCOs) in an assembly.
BUSCO measures these orthologs by counting complete
single-copy BUSCOs, fragmented BUSCOs, missing BUS-
COs, and duplicate BUSCOs. The authors of BUSCO
note that duplicate BUSCOs may represent misassem-
blies where a heterozygous allele failed to collapse into the
assembly properly and was retained as a contig [10].

Gurevich et al. developed a tool for comparing assem-
blers and assemblies called QUAST. QUAST works with
or without a reference genome and introduces metrics
related to an assembly’s alignment to a reference in order
to counter the possibility of an artificially inflated N50.
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QUAST measures several factors related to contiguity,
structural elements, and functional elements and pro-
vides the most information about an assembly when used
with an annotated reference genome. Without a refer-
ence genome, QUAST uses gene prediction to report the
number of predicted genes [11].

Thomas and Hahn developed a tool called Referee.
While they make no claims about N50 in their paper,
they stress the importance of correct bases in a genome
assembly because those errors effect downstream analysis.
Referee uses the quality information from the reads used
in an assembly to determine the likelihood of having a spe-
cific base at every position in the genome and can correct
the genome if another base is more likely. Referee does not
address correctness directly in terms of misjoins, translo-
cations, or relocations, nor does it report a single metric
to the user (it reports the likelihoods of every base in the
genome instead). However, Referee serves an important
function in ensuring that the best base from all reads that
overlap a position is selected [12].

Most of these papers found that contiguity, specifically
N50 alone, was insufficient as the sole metric of genome
assembly quality. These papers provide supplemental met-
rics, corrective metrics, or entirely alternative metrics
to supplement what they saw as a deficient metric for
assessing assembly quality.

Before any discussion of these metrics and their alter-
natives, an exploration of the goal of genome assembly
is helpful. As stated in the introduction, an ideal genome
scores well in all three categories of contiguity, com-
pleteness, and correctness. For some projects, the goal of
genome assembly is improving the assembly for others to
use. For others, genome assembly is a means to an end,
such as analysis of RNA-seq data. In both cases, there is
an expectation that a genome assembly will be used for
some downstream analysis. In order to best perform this
downstream analysis, researchers need to be certain of the
quality of their assembly.

Methods

To explore genome assembly assessment methods with
real data, 800 vertebrate genomes were downloaded from
NCBI and assessed with abyss-fac (included with ABySS
v2.0.1)[13] and BUSCO (v3) [10, 14]. These genomes rep-
resent all of the vertebrate genomes that were available
from NCBI at the time in mid-2018. Of these, 797 were
successfully assessed. Abyss-fac and BUSCO are pub-
licly available and do not require the reads used to make
the assemblies as input (unlike REAPR and CGAL, for
example). Seven features were selected and computed to
describe each genome. N50, e-size, and number of contigs
were selected for contiguity; complete single-copy BUS-
COs, fragmented BUSCOs, and missing BUSCOs were
selected to describe completeness; and duplicate BUSCOs
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were selected to describe correctness, since duplicate
BUSCOs may arise from the failure of an assembler to cor-
rectly assemble heterozygous alleles. These features and
the scripts used in this analysis are available in the GitHub
repository provided at the end of this paper.

Correlation testing using Spearman’s rank-order corre-
lation was performed to validate the claims that mea-
sures of contiguity and measures of completeness are
not well-correlated. Statistically insignificant correlations
(p > 0.05) were removed and correlations among the
same facet (contiguity/contiguity, for example) were also
removed. The resulting image (Fig. 1) shows the correla-
tions discovered, the direction of the correlation, and the
strength of the correlation.

In an attempt to make genome assembly quality assess-
ment quick, simple, and intuitive, a metric was developed
using information from the vertebrate data set. The num-
ber of contigs was selected to present contiguity for two
reasons. First, it has a slightly better correlation to the
BUSCO features as shown in Fig. 1. Second, the number of
contigs has a roughly known target in vertebrates. The red
king crab (Paralithodes camtschaticus) has the maximum
number of chromosomes in animals at 208 chromosomes,
so we can use this number as an upper bound on the
number of desired contigs in our assemblies.

In order to select representative features of complete-
ness from BUSCO, the correlation between BUSCO’s
features was calculated and plotted as shown in Fig. 2.
The percentage of complete single-copy BUSCOs was
selected to represent completeness. Both the percentage
of fragmented single-copy BUSCOs and the percentage of
missing single-copy BUSCOs are strongly correlated with
the percentage of complete single-copy BUSCOs; there-
fore, the percentage of complete single-copy BUSCOs was
selected to represent all three features.

The percentage of duplicate BUSCOs was not well-
correlated with any other BUSCO features or any features
representing contiguity (Spearman’s p = —0.009, p =
0.808). It was selected as the representative of correctness.

The metric computed involves a determination of an
“ideal” genome for the particular assembly in question.
In this definition of an ideal genome, all or nearly all
single-copy BUSCOs are captured completely, duplicate
BUSCOs are low or non-existent, and the number of con-
tigs is equal to the expected number in the species or a
closely related species. These three factors allow the com-
putation of a Euclidian distance from the current genome
to the ideal genome. This metric does assume that a
researcher has some knowledge of the expected number of
chromosomes. Eq. 1 shows how this metric is computed,
where i is the ideal number of complete single-copy BUS-
COs, b, is the predicted number of single-copy BUSCOs,
ig is the the ideal number of duplicate BUSCOs, b is the
predicted number of duplicate BUSCOs, 7, is the number
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of chromosomes, and # is the number of contigs. The
comparison between number of contigs versus number of
chromosomes is converted to a percent, since the number
of contigs can be very high. By converting the relationship
between number of chromosomes and number of contigs
to a percentage, all three comparisons are on the same
scale of 0-100.

di = \/(ic = be)? + (ig — ba)* + (100 — (%) *100)% (1)

Results and discussion

Some of the features of contiguity appeared to be mod-
erately correlated with features of completeness, while
others were less strongly correlated. The percentage of
fragmented BUSCOs has a moderate correlation to the
three factors of contiguity in the comparison. This rela-
tionship can be explained by considering the the relation-
ship between contiguity and fragmented BUSCOs — as
the number of contigs decreases, any BUSCOs that might

be fragmented across contigs are instead now joined.
Some relationship between contiguity and fragmented
genes is expected and therefore not surprising when fully
considered [4].

Complete single-copy BUSCOs were somewhat corre-
lated with measures of contiguity. In order to explain this
correlation, N50 and the percentage of complete single-
copy BUSCOs were plotted against each other. N50 was
selected because it is the metric that the authors of the
reviewed papers critiqued. The initial plot had two out-
liers with N50 > 2e8 that heavily affected the scale of the
plot; these outliers were dropped for the sake of a clearer
visualization as seen in Fig. 3.

Deciphering a relationship between N50 and the per-
centage of complete single-copy BUSCOs is difficult based
on the information provided in this plot. There are many
genomes with high completeness plotted for a large range
of N50 values from high to low. There are also many
genomes with low N50 that have a percentage of complete
single-copy BUSCOs ranging from 0 - 100.
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In other words, given a low N50, no prediction about
the percentage of complete single-copy BUSCOs can be
made. Given a high N50, a high percentage of complete
single-copy BUSCOs seems more likely but is not guaran-
teed. The inverse is also true — given a low percentage of
complete single-copy BUSCOs, the N50 is likely to also be
low. Given a high percent complete, N50 can range from
0 to 2e8. The quality of the genomes uploaded to NCBI
becomes apparent as well.

The percentage of missing BUSCOs and the percentage
of complete single-copy BUSCOs is similar, although the
correlation is a negative correlation for the percentage of
missing BUSCOs. While this relationship to N50 was plot-
ted, the plot was roughly similar to the plot in Fig. 3 after
an inversion along the y-axis and thus is not presented.
This result is expected; in most cases, when the per-
centage of complete single-copy BUSCOs increases, the
percentage of fragmented single-copy BUSCOs decreases
(Spearman’s p = —0.8906630).

Duplicate BUSCOs were not well correlated with any
measure of contiguity.

Of all the alternative methods of measuring genome
assembly quality presented, few of them present infor-
mation about all three facets of genome assessment in
a clear, concise manner. Some alternatives provide met-
rics that still do not provide information about all facets;
other alternatives present so many metrics that gaining a
clear understanding of all three facets of a genome assem-
bly can be difficult. Still other methods use some sort of
gold-standard.

With the presented distance metric, genome researchers
encode their domain knowledge into the formulation of
an ideal genome. If they have some knowledge that their
species’s genome has a high percent of duplicated genes,
they can encode this knowledge into their ideal genome.
In this way, the metric encodes human subject expert
knowledge and is a comparison to an ideal version of itself
rather than to another species’s genome. A perfect score is
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Fig. 3 N50 (a number which represents the smallest contig such that half the genome is represented by contigs of size N50 or larger [1, 2]) vs
Percentage of Complete Single-Copy BUSCOs (benchmarking universal single-copy orthologs)

zero or close to zero, and high scores represent genomes
with a flaw in one or more of the facets. Additionally,
this metric is extensible; new terms can be added to the
equation so long as those terms can be scaled to run from
0 - 100. For example, CGALSs likelihood scores could be
added to this distance metric.

In Table 1, the distances were computed to the ideal
genome for a selection of genomes from the vertebrate
dataset. In each case, the number of desired chromosomes
was taken from the Animal Genome Size Database [15].
Not all of the genomes in this database reported number
of chromosomes, but the distance metric was calculated
for 316 of the 797 genomes in the vertebrate dataset. The
ideal percent of complete single-copy BUSCOs was set to
100%, and the ideal percent of duplicate BUSCOs was set
to 0%. However, these distances inherently reflect the bias
of the author in how the ideal genome for each of these
assemblies should be represented. Additionally, these dis-
tances are presented as an example of the types of features

one might expect to see associated with particular dis-
tances, rather than any attempt to assign a ranking to these
genomes.

The N50 values alone might suggest that some of the
H. sapiens assemblies are the best (N50s = 149,700,000
and 142,200,000), but even comparing these two N50s, the
distances are 10.89 and 99.9 respectively. Upon investiga-
tion, the more distant assembly has 6,505 contigs, while
the less distant assembly has only 24. The full name and
descriptions of these assemblies is available in the GitHub
repository.

Conclusions

In conclusion, measures of contiguity are not reliable as
the sole measure of genome assessment. Additional met-
rics can be added, but these measures may not be simple
to obtain or may require a reference that does not exist for
the species in question. An additional metric is presented
that incorporates metrics obtained from publicly available
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Table 1 The top 5 genome assemblies with the smallest distance, 20 randomly selected genome assemblies, and the bottom 5

genome assemblies with the largest distance

Species N50 num_contigs complete duplicate distance
Oryzias latipes 31200000 24 95.70 1.00 441
Oryzias latipes 32840000 24 94.50 1.00 559
Oryzias latipes 28850000 24 92.00 1.10 8.08
Macaca fascicularis 133600000 21 89.90 1.00 10.15
Homo sapiens 149700000 24 90.00 1.10 10.89
Falco peregrinus 88200000 34 94.00 0.30 27.14
Seriola quinqueradiata 5609355 384 95.90 1.00 93.84
Dromaius novaehollandiae 3317187 2777 97.50 0.40 98.59
Homo sapiens 30940000 2416 93.50 1.40 99.27
Homo sapiens 8420670 3103 92.80 1.40 99.53
Mus caroli 111200000 3162 93.50 1.80 99.60
Falco peregrinus 3918221 7020 97.30 0.30 99.68
Equus asinus 15030000 9021 95.60 0.60 99.76
Phascolarctos cinereus 11590000 1906 91.90 1.40 99.92
Homo sapiens 142200000 6505 92.00 1.20 99.97
Camelus bactrianus 8738935 35454 95.20 0.90 100.01
Mus musculus 6370149 9129 93.30 1.60 100.02
Homo sapiens 19360000 11138 93.20 1.40 100.03
Homo sapiens 5550336 10430 92.80 1.40 100.05
Serinus canaria 19890000 304399 96.50 0.40 100.05
Desmodus rotundus 26190000 29800 94.30 0.90 100.12
Sarcophilus harrisii 1770155 35974 89.60 1.40 100.53
Homo sapiens 195564 858918 86.10 1.30 100.97
Gadus morhua 258723 427427 60.60 0.90 107.48
Ovis aries 43840000 1217 38.10 0.30 115.73
Homo sapiens 16130000 43100 11.40 79.70 155.54
Homo sapiens 18070000 47409 11.10 80.00 155.86
Acinonyx jubatus 48410000 6438 8.70 85.90 160.17
Salvelinus alpinus 41440000 10 29.40 1.70 308.20
Xiphophorus hellerii 27850000 4 18.50 0.70 506.60

Duplicate species in the table represent various genome assemblies uploaded to NCBI

tools and human subject matter expert knowledge and
presents the user with a single score.

For researchers who are assembling new genomes, there
are a variety of methods to ensure that their genome
assembly is high quality. Tools like BUSCO and abyss-
fac can give estimates of the contiguity and completeness
of the assembly, similar to the statistics presented in this
paper. Researchers can also use the estimated size of the
genome as compared to the sum of the assembly as pre-
sented in abyss-fac. The quality of the assembly can also
be checked with the reads used to make the assembly
using CGAL and REAPR. REAPR can make corrections

based on this information. A newly published tool, Ref-
eree [12], can use the per-base accuracy information in the
reads to correct unlikely bases in the genome assembly.

Current work is underway to collect information from
human subject matter experts about these assemblies
in order to use machine learning to model the collec-
tive knowledge of experts. A website was developed that
allows users to drag and drop genomes into a desired order
and rank them from 1-10. These rankings can then be
used to train a supervised machine learning algorithm and
used to label unknown genomes based on metrics of the
contiguity, completeness, and correctness.
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