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Abstract

Background: Epigenetic regulation is essential in regulating gene expression across a variety of biological
processes. Many high-throughput sequencing technologies have been widely used to generate epigenetic data,
such as histone modification, transcription factor binding sites, DNA modifications, chromatin accessibility, and etc.
A large scale of epigenetic data is stored in NCBI Gene Expression Omnibus (GEO). However, it is a great challenge
to reanalyze these large scale and complex data, especially for researchers who do not specialize in bioinformatics
skills or do not have access to expensive computational infrastructure.

Results: GsmPlot can simply accept GSM IDs to automatically download NCBI data or can accept user’s private
bigwig files as input to plot the concerned data on promoters, exons or any other user-defined genome locations
and generate UCSC visualization tracks. By linking public data repository and private data, GsmPlot can spark data-
driven ideas and hence promote the epigenetic research.

Conclusions: GsmPlot web server allows convenient visualization and efficient exploration of any NCBI epigenetic
data in any genomic region without need of any bioinformatics skills or special computing resources. GsmPlot is
freely available at https://gsmplot.deqiangsun.org/.
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Key points

� The public epigenetic data stored in NCBI is
essential for biomedical research but an easy-to-use
tool with the quick visualization function is missing.

� We present GsmPlot, a user-friendly web server to
allow scientists without any bioinformatics expertise,
or any high-performance computational resources to
easily visualize public epigenetic data in NCBI.

� GsmPlot can be used to study the crosstalk between
histones, DNA modifications, co-binding of TFs, and
other epigenetic factors at any functional genomic
regions or user defined regions.

� GsmPlot supports user-server interactions which
allow users to choose their concerned regions to

further explore different epigenetic factor interac-
tions among multiple samples

Background
Epigenetic mechanisms alter phenotypes by regulating gene
expression patterns without altering the DNA sequences in
response to physiological or pathological signals [1]. Due to
the technology advances of high-throughput sequencing,
such as chromatin immunoprecipitation sequencing (ChIP-
seq), whole genome-wide sodium bisulfite sequencing
(WGBS) [2], anti-CMS immunoprecipitation (CMS-IP)-seq
[3], and ATAC-seq [4], an extremely large amount of epige-
nomic data has been generated and published. Epigenetic
factors including histone modifications, TFs bindings, DNA
modifications and chromatin accessibilities, are always dy-
namically interact with each other to shape the epigenomic
landscape specifically to certain biological process [5–8].
Therefore, it is important to compare different epigenetic
factors visually from different studies (public data) to ensure
a properly comprehensively interpretation. NCBI Gene Ex-
pression Omnibus [9, 10] is a primary data source for high-
throughput sequencing data repository, which includes
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epigenetic data generated from various species, cell types,
diseases and experimental conditions. In GEO, every dataset
has multiple GSM IDs, each of which corresponds to one
raw sequencing file in Fastq format and processed file in for-
mats such as Wig, BigWig and BedGraph. BigWig files are
binary and indexed files containing genome wide data signals
at various resolutions [11], and are easier to manipulate com-
pared with Wig and BedGraph.
Although DaVIE [12], Octopus-toolkit [13] and EpiMINE

[14] provide visualization of public data, they require instal-
lation of some necessary software to user’s computer, re-
quire extensive knowledge of the pipeline from researchers
to run the software and analyze the epigenetic data, and re-
quire a good computation capacity. Both WashU epige-
nome browser [15] and UCSC genome browser [16] are
excellent epigenome data browsers, which allow users to
upload bigwig files to visualize. However, users are required
to set up public URLs for their data which requires bio-
informatic expertise and usually a webserver owned by the
user. Many researchers in the biomedical field do not have
bioinformatics expertise or high-performance computer re-
sources to analyze, reform and visualize the public data.
Currently, there is no user-friendly tool with convenient
visualization function that do not require any complicated
installation step or any computational skills or infrastruc-
ture for next-generation sequencing data in NCBI.
To alleviate these limitations, we developed GsmPlot, a

user-friendly web server to easily generate customized vi-
sualizations for the public data in GEO and additionally
provide interactive explorations. GsmPlot is convenient to
use as it need only GSM IDs or the bigwig files provided
by user. GsmPlot can conveniently generate profile plots
on functional genome elements (gene, promoter, exon, in-
tron, or any regions defined by user) or visualization on
one specifically concerned region through UCSC genome
browser integration. Moreover, GsmPlot allows interactive
selection of regions with specific epigenetic patterns in the
heatmap for further explorative study.

Results
GsmPlot provides two flexible methods for the user to
query the data: GSM IDs or bigwig files on user computer.
GsmPlot automatically downloads the bigwig/wig/bedgraph
file from GEO or from the user computer to the web ser-
ver. Users can profile the data along user-defined genome
intervals by providing BED files or along user-defined gene
sets by providing gene names (Additional file 1: Figure S1).
There is no limit on the number of GSM IDs or number of
BigWig files, meaning GsmPlot can easily draw RNA-Seq,
ChIP-Seq, ATAC-Seq, Bis-Seq or any other type of sequen-
cing data altogether in one plot. We found that more than
65% of ChIP-seq, ATAC-seq and Bisulfite-seq datasets
stored in GEO have bigwig, wig or bedgraph files available
(Additional file 6: Table S1), making GsmPlot a significant

tool to revisit these large number of datasets in NCBI.
Moreover, GsmPlot can automatically perform refer-
ence genome sanity check, and lift over genome ver-
sions whenever necessary to correctly utilize all the
data stored in NCBI for the past decades with different
genome versions. With the same datasets and same plot
setting, GsmPlot is relatively fast in our tests for typical
datasets in GEO (Additional file 6: Table S2, S3).
Furthermore, GsmPlot embedded the public DNA

methylation (5mC) and hydroxymethylation (5hmC) data
for human and mouse ES cells [17–19] . Therefore, re-
searchers can visualize the 5mC or 5hmC distribution on
concerned transcription factor (TF) binding regions, his-
tone modification regions, or any other concerned regions,
looking for clues about how DNA modification interacts
with TFs, histones, and so on. In addition, co-binding of
TFs is an important gene regulatory mechanism [20].
GsmPlot can also be used to study the co-binding of two or
more TFs by integrating the public ChIP-seq data (such as
Cistrome [21] and ENCODE database) and the user-
provided ChIP-seq data. Such integration of DNA methyla-
tion, hydroxymethylation, and TF binding data is extremely
useful in terms of interpreting the regulation functions of
epigenetic factors. Most importantly, GsmPlot integrated
the UCSC genome browser visualization at the end of the
analysis pipeline so users can browse to specific genomic
locations to visualize these data signals.
Figure 1a shows an example using GsmPlot to investi-

gate the crosstalk between histone modification and
DNA methylation. We entered GSM1273669 (H3K4me3
ChIP-Seq) and GSM1273670 (H3K27ac ChIP-Seq) in
the “Data information” box and selected “Human ESC”
for 5hmC information. We optionally plot the 1000
bases upstream and downstream of the selected regions,
and scale all target regions to be 1000 bases. We also set
the bin size to be 50 bases to get high-resolution curves.
In the result, the blue and green curves in Fig. 1b indi-
cated that the average signal of H3K4me3 and H3K27ac
are highly enriched around promoter regions with
double peaks, consistent with a previous study [22] and
the 5hmC signal is enriched in genebody regions. In an
example region shown in the UCSC genome browser in
Additional file 2: Figure S2, the H3K4me3 and H3K27Ac
peaks are well aligned with gene promoters. This example
confirmed that our program is correct and efficient.
GsmPlot also can be used to investigate the relation-

ship between TFs and DNA methylation or hydroxy-
methylation. Figure 1c shows that the CTCF binding
regions in hESC downloaded from GSM803419 generally
have a depletion of 5mC but accompanied with complex
DNA 5hmC distribution (Additional file 3: Figure S3A).
In the center of the CTCF peak regions, we could ob-
serve depletion of 5mC signal (Additional file 3: Figure
S3B). This result is also consistent with a previous study
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[23], proving again that GsmPlot can process and plot
multiple signals correctly.
Epigenetic data from different sources are usually gener-

ated and normalized differently, preventing such data to be
compared directly. To circumvent this problem, we can use
z-score to replace raw wig signal to allow direct compari-
son. For each sample, we calculate the average bigwig signal
in bins of user-defined size along concerned regions. Then,
we calculate z-scores of the corresponding wig values for
each bin in each region (Additional file 4: Figure S4). In the
example illustrated by Fig. 2a and Additional file 5: Figure
S5, we plotted the aggregated profiles on the upper panel
and the z-score boxplots on the lower panel for H3K4me3,
H3K27ac and H3K27me3 (GSM3444436, GSM3444438
and GSM3444439) in glioblastoma tissue. From both the
average wig profiles and the z-score boxplots, we could
clearly see the enrichment of H3K4me3 and H3K27Ac but
not H3K27me3 on the selected TSS and CGI regions, and
no enrichment on the genebody regions. Furthermore, as a
unique feature of GsmPlot, we developed an interactive
heatmap to aid users to explore the potentially interesting
regions enriched with epigenetic factors. We choose the
top 5 k (by default) most variable regions among all samples
to plot heatmap (Fig. 2b). Cluster 1 represents active genes

with both H3K4me3 and H3K27ac enriched in promoter
and cluster 2 represents repressed genes with H3K27me3
enriched in promoter. Users can slide the side bar of heat-
map to select the regions with specific patterns. The z-
score boxplot for these selected regions will be re-plotted.
And the genomic locations of these selected regions can be
downloaded as text file for further study. For example, users
can upload this file to GsmPlot as concerned regions to in-
vestigate how epigenetic factors distribute on this specific
set of regions.
As an example, to illustrate that GsmPlot has the poten-

tial to shape novel biological hypothesis or discoveries, we
explored the potential roles of DNA hydroxymethylation
(5hmC) around CGI regions in heart development. We
used mouse heart DNA hydroxymethylation data (CMS-
IP) from wildtype (GSM3466904) and Tet2/3 knockout
(GSM3466906) mice [24]. We also included mouse heart
ChIP-seq (GSM3597759) data for Isl1, which is a cardiac
progenitor marker gene, and is important for heart devel-
opment [25, 26]. Our GsmPlot results showed that around
CGIs with single transcriptional direction, 5hmC exhibits
unbalanced and directional distribution pattern (Fig. 3a).
On the contrary, 5hmC level is symmetric on upstream
and downstream of CGIs with dual transcriptional

Fig. 1 a GsmPlot website interface. b Average H3K27Ac (blue curve), H3K4me3 (red curve), and 5hmC (green curve) ChIP-Seq signals along
genes. c Average CTCF ChIP-Seq signal and DNA methylation Bis-Seq signal along CTCF binding sites

Li et al. BMC Bioinformatics           (2020) 21:55 Page 3 of 7



Fig. 2 a GsmPlot default figures for the average signal curve (upper) and the z-score boxplots (lower) along TSS (left) and CpG Island (right)
regions. Blue: H3K4me3; Green: H3K27ac; Red: H3K27me3. b GsmPlot interactive heatmap allowing users to choose specific regions to
dynamically plot column z-score boxplot and download the selections

Fig. 3 a 5hmC signal distribution around CGIs with single transcriptional direction; b 5hmC signal distribution around CGIs with dual
transcriptional directions. Blue: 5hmC signal from WT mouse heart; red: 5hmC from Tet2/3 knockout mouse heart; black: mouse heart Isl1
ChIP-seq signal
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directions. Dramatically decreased 5hmC level in Tet2/3
KO mouse hearts are observed in both CGIs with single
and dual transcriptional directions (Fig. 3b). Moreover,
Isl1 binding intensity is higher at CGIs with single tran-
scriptional direction than dual directional transcriptions
(dash green line). These results indicate that 5hmC may
play different roles in terms of how heart related TFs bind
to CGIs with single or dual transcriptional directions.

Discussion
Biomedical data stored in NCBI is valuable for biomedical
researchers. However, most researchers and physicians do
not have computation skills or infrastructure, and hence
this “treasure” could not be used immediately. Even for
bioinformaticians, complicated procedures including
download, computation, aggregation, hosting of data are
required to visualize NCBI data. We developed a web ser-
ver, GsmPlot, which can download, compute, visualize
and compare data. The most important feature of
GsmPlot is the ability of performing multiple omics inte-
gration studies, such as RNA-seq, Bis-seq, ChIP-seq,
ATAC-seq with simply GSM IDs from NCBI. Private data
sequenced by users in proper visualization format can be
fed into GsmPlot to compare with public data. Compared
with other good epigenome analysis platforms, such as
EpiMINE, GsmPlot have many advantages. GsmPlot does
not need users to download public data manually.
GsmPlot do not depend on users’ computer capacity espe-
cially for computation intensive bis-seq data, which can-
not be handled on a desktop computer. In addition,
installation problems, such as software compatibility, soft-
ware version, could be a big headache for many re-
searchers, but can be completely avoided using GsmPlot.
Moreover, interesting regions with certain epigenetic fea-
tures can be extracted using interactive heatmap, which
can be fed into GsmPlot again to explore if there are new
epigenetic factors in these interesting regions. Importantly,
we have successfully proved GsmPlot’s reliability and its
potential ability of making novel biological ideas from
three case studies. Above all, GsmPlot is a user-friendly
and reliable tool to investigate public epigenetic data, es-
pecially for those biomedical researchers who do not have
any computation skills.
Although GsmPlot has an email alert for those large

data tasks, GsmPlot will add more CPUs to further im-
prove the speed of calculation in the future depending on
the demand. The figure’s format, label sizes and other fea-
tures will be added as user options which will allow users
to generate publication quality figures using GsmPlot.

Conclusions
We have presented GsmPlot, a user-friendly web server for
quick visualization and exploration of public NCBI data. To
our best knowledge, this is the first webserver that can

automatically download data from GEO, transform data,
generate images, and support user interaction. Users can
easily and quickly visualize and explore any public epigen-
etic data without requiring of any special training or com-
puting resources, and hence can study the epigenetic
mechanism efficiently. The three applications presented
above confirmed that GsmPlot can be a huge driver to ac-
celerate the research process by providing convenient
visualization of both public and private data, and hence
promoting data driven ideas. GsmPlot will dramatically im-
prove the efficiency of utilization of public epigenetic data
and further promote the research in epigenetic community.

Implementation and methods
Components of GsmPlot
GsmPlot server is composed of three parts: web crawler,
data process and web interface. (1). Web crawler was coded
in Python 3.5 and specifically designed for NCBI to auto-
matically detect the URLs and download files with bigwig,
wig and BedGraph format. We also include genome refer-
ence version check in web crawler. Data process include
two parts: calculation and visualizations. (2). For data calcu-
lation, we wrapped deepTools [27] to calculate the average
bigwig signal in bins of user-defined size along concerned
regions. A matrix of average bigwig signal with rows as re-
gions and columns as bins are generated, and the column
mean values are plotted as aggregated profile. By transform-
ing the wig signal to z-score, we also plot all the z-scores in
one bin as a boxplot and so for all bins, as illustrated by the
Additional file 4: Figure S4. For the z-score matrix, based
on each row’s z-score standard deviation, the top 5 k most
variable regions among all samples were chosen to plot
heatmap. Users can choose regions based on the heatmap
patterns to replot and download the selected regions to do
further study. For data visualization, we use in-house scripts
coded by Python 3.5 (Matplotlib, https://matplotlib.org/)
and R (https://www.r-project.org/). (3). GsmPlot web inter-
face is implemented using HTML, CSS (bootstrap, http://
getbootstrap.com/2.3.2/), and JavaScript. The backend of
GsmPlot is based on Django web framework (https://www.
djangoproject.com/). The interactive functions between
users and GsmPlot web server are implemented using jQu-
ery (https://jquery.com). For large data which takes long
time to finish the calculation, we include an email alert
function by using django.cor.mail function. Due to the lim-
ited computing resources, we currently only allow one task
for each user at a time. GsmPlot has been tested in Firefox,
Chrome, Safari, and Edge.

Flowchart of GsmPlot
The flowchart of GsmPlot is in Additional file 1: Figure
S1. GsmPlot web server friendly accepts GSM IDs or user
uploaded bigwig files as input. If the input is a GSM ID,
web crawler will search NCBI web sites to locate bigwig
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files and automatically download the files. At the same
time, web crawler will also try to collect the genome refer-
ence version information to double check user input in-
formation. If the file format is Wig or BedGraph, GsmPlot
will automatically transform them to BigWig format. After
downloading the files, wrapped deepTools will calculate
the average signals on user provided genome regions ac-
cording to user provided bin size. The downloaded files
will be stored in GsmPlot server for 72 h from last access,
which will save the downloading time when users reuse
this data frequently. If the input files are uploaded by
users, GsmPlot will directly proceed to calculation and
visualization. “Reference check” function will aid users to
choose the right reference version by collecting the refer-
ence information from NCBI website. Users can select re-
gions with specific epigenetic patterns in the heatmap.
Genomic coordinates of these selected regions can be
downloaded in text format which could be further
studied.

Availability and requirements Project name: GsmPlot.
Project home page: https://gsmplot.deqiangsun.org/
Operating System: Platform independent.
Programming language: Python.
License: GNU GPL.
Other requirements: Internet Explorer 10 or later.
Discussion Group: https://groups.google.com/d/forum/

moabs_msuite
Support email: moabs_msuite@googlegroups.com.
Any restrictions to use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3386-0.

Additional file 1: Figure S1. Scheme for the structure of GsmPlot web
server.

Additional file 2: Figure S2. Illustration of the data matrix for the
profile curve and the z-score boxplots (left), and illustration of the data
matrix for the heatmap (right).

Additional file 3: Figure S3. UCSC genome browser visualization for
RNA-Seq, H3K27Ac, H3K4me3 on an example region for human H1 ESC.

Additional file 4: Figure S4. A, the average ChIP-Seq signal along the
CTCF binding sites with red curve for the CTCF signal and blue curve for
the 5hmc signal. B, The UCSC genome browser visualization for CTCF
peak, DNA methylation and DNA hydroxymethylation on an example re-
gion. The yellow highlight areas showed the depletion of 5mC at the
center of the CTCF peak.

Additional file 5: Figure S5. GsmPlot default figures for the average
signal curve along the gene body regions. Blue: H3K4me3; Green:
H3K27ac; Red: H3K27me3.

Additional file 6: Table S1. Statistics for datasets with bigwig/wig/
bedgraph format available in GEO. Table S2. Processing time for variable
files sizes. Table S3. Processing time of GsmPlot and EpiMINE.
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