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Abstract

Background: Biomedical named-entity recognition (BioNER) is widely modeled with conditional random fields (CRF)
by regarding it as a sequence labeling problem. The CRF-based methods yield structured outputs of labels by
imposing connectivity between the labels. Recent studies for BioNER have reported state-of-the-art performance by
combining deep learning-based models (e.g., bidirectional Long Short-Term Memory) and CRF. The deep
learning-based models in the CRF-based methods are dedicated to estimating individual labels, whereas the
relationships between connected labels are described as static numbers; thereby, it is not allowed to timely reflect the
context in generating the most plausible label-label transitions for a given input sentence. Regardless, correctly
segmenting entity mentions in biomedical texts is challenging because the biomedical terms are often descriptive
and long compared with general terms. Therefore, limiting the label-label transitions as static numbers is a bottleneck
in the performance improvement of BioNER.

Results: We introduce DTranNER, a novel CRF-based framework incorporating a deep learning-based label-label
transition model into BioNER. DTranNER uses two separate deep learning-based networks: Unary-Network and
Pairwise-Network. The former is to model the input for determining individual labels, and the latter is to explore the
context of the input for describing the label-label transitions. We performed experiments on five benchmark BioNER
corpora. Compared with current state-of-the-art methods, DTranNER achieves the best F1-score of 84.56% beyond
84.40% on the BioCreative II gene mention (BC2GM) corpus, the best F1-score of 91.99% beyond 91.41% on the
BioCreative IV chemical and drug (BC4CHEMD) corpus, the best F1-score of 94.16% beyond 93.44% on the chemical
NER, the best F1-score of 87.22% beyond 86.56% on the disease NER of the BioCreative V chemical disease relation
(BC5CDR) corpus, and a near-best F1-score of 88.62% on the NCBI-Disease corpus.

Conclusions: Our results indicate that the incorporation of the deep learning-based label-label transition model
provides distinctive contextual clues to enhance BioNER over the static transition model. We demonstrate that the
proposed framework enables the dynamic transition model to adaptively explore the contextual relations between
adjacent labels in a fine-grained way. We expect that our study can be a stepping stone for further prosperity of
biomedical literature mining.
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Introduction
Biomedical named-entity recognition (BioNER) automat-
ically identifies specificmentions of interest such as chem-
icals, diseases, drugs, genes, DNAs, proteins, viruses etc.
in biomedical literature. As the fundamental step for
various downstream linguistic tasks, e.g., adverse drug
event extraction [1], bacteria biotope task [2], drug-drug
interaction [3], and protein-protein interaction detection
[4], the performance of BioNER is crucial in the overall
biomedical knowledge discovery process [2].
BioNER operates by predicting a class label for each

token across biomedical literature. It is typically consid-
ered as a sequence labeling problem and is thus widely
modeled by a first-order linear-chain conditional ran-
dom field (CRF) [5, 6]. CRF yields chain-structured label
sequences by collectively assessing possible label-label
transition relations between words over the entire input
sequence.
In recent years, deep learning (briefly, DL) has become

prevalent across various machine learning-based natural
language processing (NLP) tasks since neural network-
based learning systems can effectively identify promi-
nent features in a data-driven way, replacing task-specific
feature engineering based on high-level domain knowl-
edge [7, 8]. For NER tasks, recent methods [9–14] have
reported state-of-the-art performance by introducing a
bidirectional long short-term memory (BiLSTM) into
CRF. Accordingly, the combination of BiLSTM and CRF
has been widely considered as a standard architecture for
various sequence labeling problems.
The combined models (i.e., BiLSTM-CRFs) for NER

typically consist of two major components: a token-level
BiLSTM and a real-valued transition matrix. The BiL-
STM is dedicated to estimate the best-suited label on each
token, while the transition matrix is solely responsible for
describing the transition compatibility between all pos-
sible pairs of labels on neighboring tokens; in detail, the
numerical score at the ith row and jth column of a tran-
sition matrix represents the transition compatibility from
the ith label to the jth label. Note that the transitionmatrix
is once established by being suited to the statistics of given
training data via its parameter learning and is frozen after-
ward. As a result, the transition matrix cannot provide
the contextualized compatibility for the relationship of
neighboring labels in a fine-grained way.
Accordingly, we contend that solely relying on the

static transition matrix is not enough to explain the
ever-changing label-label transition relations in BioNER,
since biomedical entities are frequently descriptive, long
or even contain conjunctions [15], e.g., “normal thymic
epithelial cells,” “peripheral sensor neuropathy,” and “cen-
tral nervous system and cardiac toxicity.” As a result,
the boundaries of entity-mentions in biomedical texts
are often too ambiguous to accurately segment them.

Therefore, we argue that exploiting contextual informa-
tion to describe label-label transition relations is impor-
tant to facilitate the accurate identification of biomedical
entities. Recently, Lin et al. [16] studied that explicitly
modeling relations between parts in a structured model is
applicable to semantic image segmentation, whereas it has
been rarely studied in recent DL-based NLP methods.
To this end, we propose a novel framework, called

Dynamic Transition for NER (DTranNER), to incorpo-
rate a DL-based model, which adaptively identify label-
label transition relations to further improve the accuracy
of BioNER. Overall, DTranNER makes use of two sep-
arate DL-based models: Unary-Network and Pairwise-
Network. The addition of Pairwise-Networkmakes it pos-
sible to assess the transition compatibility between adja-
cent labels by exploring the context of an input sentence.
Meanwhile, as another DL-based model, Unary-Network
is used for individual labeling as in previous works. After
all, Unary-Network and Pairwise-Network are arranged to
yield agreed label sequences via this novel framework.
Because DTranNER is orthogonal to a DL-based model,

any type of DL-based models such as attention [17] or
transformer [18] can be employed to play the role of
Unary-Network or Pairwise-Network. In this study, we
conduct experiments using a BiLSTM as the underlying
DL networks since it has been widely adopted in various
sequence labeling problems so far.
We evaluated DTranNER by comparing with current

state-of-the-art NERmethods on five benchmark BioNER
corpora to investigate the effectiveness of the DL-based
label-label transition model. The results show that DTran-
NER outperformed the existing best performer on four
out of five corpora and showed comparable accuracy
to the existing best performer on one remaining cor-
pus, thereby demonstrating the excellent performance of
DTranNER.

Background
Problem definition: biomedical named entity recognition
(BioNER)
An instance of a BioNER corpus consists of an input
token sequence x = x1, . . . , xN and its associated output
label sequence y = y1, . . . , yN . We use the IOBES tagging
scheme by which tokens are annotated with one of “I,” “O,”
“B,” “E,” or “S” labels. In the case of an entity spanning
over multiple tokens, “B” is tagged to the token to indi-
cate the beginning of the entity, “I” stands for “Inside,” and
“E” indicates the ending token of the entity. For the case
of an entity of a single token, the “S” label is tagged to it.
The “O” label stands for “Outside,” which means that the
token is not part of any named entity. To indicate the type
of entities, one of the type tags, such as “Chemical,” “Dis-
ease,” “Gene,” or “Protein,” is additionally concatenated to
each IOBES tag.
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Linear-chain conditional random field (CRF)
As a class of discriminative probabilistic graphical models,
a linear-chain conditional random field (CRF) describes
the joint probability P(y|x) of the entire structured labels y
with respect to the structure of an undirected graph, given
a set of inputs x. CRF is widely used in various sequence
labeling problems as well as BioNER by imposing the first-
order Markov property on the output sequence labeling.
There are two types—unary and pairwise—of elementary
feature functions to organize an output label sequence.
The unary feature functions are dedicated to estimating
the suitability of candidate labels at each individual posi-
tion, whereas the pairwise feature functions are designed
to assess possible pairwise labels on two connected posi-
tions. Summing up, when an input sequence x of length N
is given, the conditional distribution P(y|x) is represented
as a product of position-dependent unary and pairwise
feature functions; thus, it is formulated as in the following
equation:

P(y|x) = 1
Z(x)

exp(
N∑

i=1

J∑

j
λsj sj(yi, x, i)

+
N∑

i=2

K∑

k
λtktk(yi−1, yi, x, i)), (1)

where sk(yi, x, i) denotes a member of the unary feature
functions (i.e., s ∈ S) at the position i, and t(yi−1, yi, x, i)
indicates a member of the pairwise feature functions (i.e.,
t ∈ T) at two consecutive positions i-1 and i. Tradition-
ally, the unary and pairwise feature functions are manu-
ally designed to facilitate accurate sequence labeling, and
they are usually real-valued binary indicators representing
either true or false. The weights (i.e., λs ∈ θs and λt ∈ θt)
associated to the feature functions are trainable param-
eters. Z(x) is the partition function as a normalization
constant over all possible label assignments.

Bidirectional long short-termmemory (BiLSTM)
Long short-termmemory (LSTM) [19] is a specific variant
of recurrent neural networks to mitigate the problem of
vanishing and exploding gradients in modeling long-term
dependencies of a sequence. LSTM is suited for model-
ing sequential data with recurrent connections of hidden
states H = {h1, h2, . . . , hN } and have become ubiquitous
in a wide range of NLP tasks. At every time step, LSTM
yields a current hidden state

−→
ht and internally updates a

current cell state −→ct based on
−−→
ht−1 and −−→ct−1 calculated in

the previous time step.
Given that LSTM is limited to using past context in

the forward direction, a bidirectional LSTM (BiLSTM) is
employed to exploit future context as well as past context.
BiLSTM processes an input sequence in both forward

and backward directions with two separate LSTMs. That
is, the hidden states from both directional LSTMs are
concatenated to make final output vectors ht = {−→ht ⊕←−

ht }.

Merger of BiLSTM and CRF: BiLSTM-CRF
BiLSTM-CRF has been widely employed in recent neural
network-based NER studies [9–14, 20, 21] for sequence
labeling. The architecture of BiLSTM-CRF is typically
comprised of four layers: a token-embedding layer, a
token-level BiLSTM layer, a binding layer, and a CRF
layer. We denote an input token sequence of length N
by x = {x1, · · · , xN } and the corresponding output label
sequence by y = {y1, · · · , yN }. First, the token-embedding
layer encodes input tokens into its fixed-dimensional vec-
tors as e1, e2, . . . , eN . Next, the BiLSTM layer takes the
token-embedding vectors as the inputs to generate the
hidden-state vectors h1, h2, . . . , hN . Before being fed to
the CRF layer, the hidden-state vectors are transformed
to the score vectorsU1,U2, . . . ,UN with L-dimensionality,
where L denotes the number of labels, via the binding
layer so as to match the number of labels. The score vec-
tor contains the confidence values for possible labels on
its corresponding token position. Namely, the stack from
the token-embedding layer to the binding layer can be
considered to play the role of the unary feature functions
(i.e., s ∈ S) in Eq. 1. Besides, a real-valued transition
matrix, denoted as A, accounts for all the label-label tran-
sition relations; it is likewise regarded to play the role
of the pairwise feature functions (i.e., t ∈ T) in Eq. 1.
Eventually, BiLSTM-CRF calculates the likelihood for a
label sequence y given an input token sequence x via the
following equation:

Pu(y|x) = 1
Z
exp (

N∑

i=1
Ui(yi) +

N∑

i=2
Ai−1,i), (2)

where Ui(yi) denotes the unary score for assigning the
label yi on the ith token, Ai,j corresponds to the real-
valued pairwise transition compatibility from ith label to
jth label, and Z=∑

y exp (
∑N

i=1 Ui(yi) + ∑N
i=2 Ai−1,i).

Related work
Recent state-of-the-art CRF-based NER studies [9–14,
20–22] have demonstrated the effectiveness of data-
driven representation learning (i.e., DL) under CRF. We
discuss several CRF-based methods for NER in terms of
two kinds of feature functions: unary and pairwise feature
functions. We also introduce BioBERT that showed the
state-of-the-art performance in BioNER.

• Lample et al. [9] proposed to bring BiLSTM into CRF
for NER in general news domain. The model uses two
BiLSTMs: one for token-level representation learning
and the another for character-level representation
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learning. The BiLSTMs work as unary feature
functions, whereas a static transition matrix comes in
for pairwise feature functions. Afterward, Habibi et
al. [10] adopted the model of Lample et al. [9] for
BioNER.

• Luo et al. [22] adopted BiLSTM-CRF for NER in
chemistry domain and applied an attention
mechanism to leverage document-level context
information. They employ abbreviation embeddings
using a specific external library to handle
abbreviations that frequently appear in chemical
entities’ naming. Their model also relies on a static
matrix to retrieve all the label-label transition
relations in CRF.

• Dang et al. [12] developed D3NER to utilize various
linguistic information under BiLSTM-CRF. D3NER
creates a token embedding by aggregating several
embeddings: a pre-trained word embedding, an
abbreviation embedding, a POS embedding, and a
character-level token embedding. Similarly, a
transition matrix solely plays the role of pairwise
feature functions.

• Wang et al. [11] introduced a multi-task learning
framework for BioNER. They trained a model using
several biomedical corpora together to overcome a
limited amount of annotated biomedical corpora.
Their model also adopts BiLSTM-CRF with a
transition matrix.

• Yoon et al. [14] proposed aggregation of multiple
expert models. They named it CollaboNet, where
each expert model is mapped to a BiLSTM-CRF and
is trained with each distinct corpus. Likewise, each
BiLSTM-CRF has a transition matrix, corresponding
to pairwise feature functions.

• Peters et al. [13] introduced ELMo as a pre-trained
model. ELMo provides contextualized word
embeddings for various downstream tasks. They also
trained the ELMo-enhanced BiLSTM-CRF for NER.

• Lee et al. [23] released BioBERT by training BERT
[24] for the use in the Bioinformatics domain.
Similarly to ELMo, as a pre-trained model, BioBERT
provides contextualized word embeddings and thus
can be applied to downstream tasks. BioBERT
achieved the state-of-the-art performance in several
BioNER corpora.

DTranNER: architecture andmethod
In this section, we present the proposed framework
DTranNER as shown in Fig. 1. For parameter learning, the
components (i.e., Unary-Network and Pairwise-Network)
of DTranNER are systematically trained via two separate
CRFs (i.e., Unary-CRF and Pairwise-CRF). Once trained,
Unary-Network and Pairwise-Network are combined into
a CRF for BioNER label sequence prediction. First of all,

we describe how to build the token embeddings in our
models. Although DTranNER is not limited to a specific
DL architecture in the places of the underlying networks,
from now on, we evaluate our framework using BiLSTM,
which has been typically adopted in a majority of NER
studies.

Token-embedding layer
Given a sequence ofN tokens (x1, x2, ..., xN ), they are con-
verted token-by-token into a series of fixed-dimensional
vectors (e1, e2, ..., eN ) via the token-embedding layer. Each
token embedding is designed to encode several linguistic
information of the corresponding token in the sentence.
Each token embedding is thus built up by concatenat-
ing the traditional context-independent token embedding
and its contextualized token embedding. These token
embeddings are subsequently fed to Unary-Network and
Pairwise-Network as the inputs. We do not consider addi-
tional character-level token embeddings unlike several
models [9–12, 14, 20, 21], because ELMo [13] as our con-
textualized token embedding provider basically includes a
character-level CNN model.

Context-independent token embedding
We use the pre-trained token vectors, Wiki-PubMed-
PMC, created by Pyysalo et al. [25] to initialize the tra-
ditional token-embedding vectors. The pre-trained token
vectors were made up by being trained on three different
datasets: the abstracts of the PubMed database, the full-
text articles of the PubMed Central (PMC) database, and
the texts of a recentWikipedia dump. It is available at [26].
We replace every out-of-vocabulary (OOV) token with a
special <UNK> vector.

Contextualized token embedding
We employ ELMo [13] for the contextualized token
embeddings. Unlike context-independent token embed-
dings based on GloVe [27] or Word2Vec [28], ELMo
creates context-dependent token embeddings by recon-
sidering the syntax and semantics of each token under
its sentence-level context. In particular, we adopt the in-
domain ELMo model pre-trained on the PubMed corpus,
which is available at [29].

Unary-Network
As shown in Fig. 1b, Unary-Network takes token embed-
dings as inputs, put them into its own BiLSTM layer
to extract task-specific contextual information in an
ordered token-level sequence, and finally produces the
L-dimensional score vectors as many as the number of
tokens via its binding layer. The binding layer consists
of two linear transformations with an activation function
and a skip connection between them. That is, the binding
layer is formulated as follows:
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Fig. 1 The overall architectures of the proposed framework DTranNER. a As a CRF-based framework, DTranNER is comprised of two separate,
underlying deep learning-based networks: Unary-Network and Pairwise-Network are arranged to yield agreed label sequences in the prediction
stage. The underlying DL-based networks of DTranNER are trained via two separate CRFs: Unary-CRF and Pairwise-CRF. b The architecture of
Unary-CRF. It is dedicated to train Unary-Network. c The architecture of Pairwise-CRF. It is also committed to train Pairwise-Network. A token
embedding layer is shared by Unary-Network and Pairwise-Network. A token-embedding is built upon by concatenating its traditional word
embedding (denoted as “W2V”) and its contextualized token embedding (denoted as “ELMo”)

Ui = Wu
2 (σ (Wu

1 h
u
i + bu1) + hui ) + bu2 , (3)

where Ui denotes the L-dimensional score vector exhibit-
ing the suitability over all possible labels on the ith token,
hui is the i-th hidden state from the BiLSTM layer, Wu

1 ∈
R
d×d and Wu

2 ∈ R
L×d are trainable weight matrices, and

bu1 and bu2 are the bias vectors. Here, Wu
2 projects the

d-dimensional vector obtained by both the feed-forward
network and the skip connection to the L-dimensional
output vector. We use an ELU as the activation func-
tion σ(·). As will be explained in the following section,
Unary-Network is trained via the purpose-built CRF (i.e.,
Unary-CRF) for the parameter learning.

Pairwise-Network
Pairwise-Network aims to extract contextual information
related to pairwise labeling. This design explains why
two consecutive hidden state vectors of the BiLSTM are
involved in describing an edge connection in the CRF
layer as shown in Fig. 1c. Pairwise-Network therefore gen-
erates L2-dimensional score vectors to match the num-
ber of possible label pairs on two tokens. We employ a
bilinear model-based method [30] to exploit interactive
features of two neighboring hidden state vectors. This
method approximates a classical three-dimensional tensor
with three two-dimensional tensors, significantly reduc-
ing the number of parameters. It is shown in the following
equation:

fi−1,i = H(Q1h
p
i−1 ◦ Q2h

p
i ), (4)

where fi−1,i denotes the m-dimensional vector via the
bilinear model of two neighboring hidden state vectors
(i.e., hpi−1 and hpi ) of the underlying BiLSTM layer; Q1 ∈

R
c×d , Q2 ∈ R

c×d , and H ∈ R
m×c are trainable matri-

ces; and ◦ denotes Hadamard product (i.e., element-wise
product of two vectors). The binding layer has a skip con-
nection as in Unary-Network. It is thus formulated as the
following equation:

Vi−1,i = Wp
2 (σ (Wp

1 fi−1,i + bp1) + fi−1,i) + bp2, (5)

where Vi−1,i ∈ R
L2 denotes the score vector indicating

the confidence values over all label combinations on the
neighboring (i − 1)th and ith tokens, Wp

1 ∈ R
m×m and

Wp
2 ∈ R

L2×m are trainable weight matrices, bp1 and bp2 are
the bias terms, and σ(·) is an ELU activation. Similarly to
Unary-Network, Pairwise-Network is also trained via the
purpose-built CRF (i.e., Pairwise-CRF) for the parameter
learning.

Model training
Here, we explain how to train DTranNER. In order to
facilitate the parameter learning of the two underlying
networks (i.e., Unary-Network and Pairwise-Network),
we establish two separate linear-chain CRFs, which
are referred as Unary-CRF (Fig. 1b) and Pairwise-CRF
(Fig. 1c), by allocating the two types of DL-based net-
works (i.e., BiLSTMs in our case) to the two purpose-built
CRFs, respectively. The reason is that, when both Unary-
Network and Pairwise-Network coexist in a single CRF,
as Smith et al. [31] and Sutton et al. [32] claimed that
the existence of a few indicative features can swamp the
parameter learning of other weaker features, either one
of the two networks starts to hold a dominant position,
causing the other network to deviate from its optimal
parameter learning. Our solution enables each network to
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notice own prediction error during the parameter learn-
ing. We explain in detail the effect of our training strategy
in the Additional file 1.
In this study, note that each of Unary- and Pairwise-

CRFs is a sufficient label sequence predictor or learner; in
the sense, the conditional likelihood Pu of Unary-CRF is
formulated as in Eq. 2, and the conditional likelihood Pp of
Pairwise-CRF given the input sequence x with the length
N is formulated as the following equation:

Pp(y|x) = 1
Z
exp (

N∑

i=2
Vi−1,i(yi−1, yi)), (6)

where Z= ∑
y exp (

∑N
i=2 Vi−1,i(yi−1, yi) is the normaliza-

tion constant.
Rather than individually training multiple CRFs offline

as in [31, 32], Unary-CRF and Pairwise-CRF are jointly
trained in our training strategy by maximizing their
product—i.e.,

∏
Pv∈{u,p}(yv|x)—of the two likelihoods of

Unary-CRF and Pairwise-CRF. By equivalently converting
the objective function into the negative log likelihood, the
optimization problem is written as the following equation:

min
θu,θp

∑

e
− log(Pu(ye|xe; θu)) − log(Pp(ye|xe; θp)), (7)

where xe and ye denote the eth training sentence example
and its ground-truth label sequence, and θu and θp denote
the model parameters of Unary-CRF and Pairwise-CRF
respectively.

Prediction
We explain the detail on how to infer label sequences
with the trained DTranNER. Once trained via the two
separate CRFs, Unary-Network and Pairwise-Network are
arranged into a CRF to yield an agreed label sequence
in the prediction stage. Note that Unary-Network and
Pairwise-Network have distinct focuses derived by differ-
ent roles, leading to learn their own specific representa-
tions. We combine them by multiplying them as a product
of models [33]. More specifically, all the components
obtained through the aforementioned training process—
Unary-Network, Pairwise-Network, and the transition
matrix—are organized in a CRF, as shown in Fig. 1a. The
combined model is formulated in terms of the probability
for a label sequence y given an input sequence x via the

following equation:

P(y|x) = Pu(y|x) · Pp(y|x)

∝ exp (

N∑

i=1
Ui(yi) +

N∑

i=2
Ai−1,i) · exp (

N∑

i=2
Vi−1,i(yi−1, yi))

= exp (

N∑

i=1
Ui(yi) +

N∑

i=2
Vi−1,i(yi−1, yi) +

N∑

i=2
Ai−1,i).

(8)

As a result, we obtain the most likely label sequence using
the Viterbi decoding.

Experimental setup
Datasets
We conducted our experiments with five BioNER
benchmark corpora: BC2GM, BC4CHEMD, BC5CDR-
chemical, BC5CDR-disease, and NCBI-Disease, which are
commonly used in the existing literature [11, 12, 14, 23].
Table 1 shows the overall description of the five bench-

mark BioNER corpora. They are publicly available and
can be downloaded from [34]. The BioCreative II Gene
Mention (BC2GM) task corpus [35] consists of 20,128
sentences from biomedical publication abstracts and is
annotated for mentions of the names of proteins, genes,
and related entities. The BioCreative IV Chemical and
Drug (BC4CHEMD) task corpus [36] contains the anno-
tations for chemical and drug mentions in 10,000 biomed-
ical abstracts. The BioCreative V Chemical Disease Rela-
tion (BC5CDR) corpus [37] is composed of mentions of
chemicals and diseases that appeared in 1,500 PubMed
articles. The NCBI-Disease corpus (NCBI-Disease) [38]
is composed of 793 PubMed abstracts annotated for dis-
ease mentions. The aforementioned corpora cover four
major biomedical entity types: gene, protein, chemical,
and disease.

Training setup
In model training, we added L2 regularization penalty to
the loss (i.e., Eq. 7) with the decay factor of 1 × 10−5.
The Glorot uniform initializer of Glorot and Bengio [39]
is used for initializing our weight matrices, and the biases
are initialized with 0. All the activation functions are ELU
(exponential linear unit). We set the minibatch size of
model training to ten examples across all experiments.
Our models are differentiable; thereby, the CRF and its

Table 1 BioNER corpora in experiments

Datasets Number of Sentences Entity Types Entity Counts Max Entity Length Average Entity Length

BC2GM [35] 20128 Gene/Protein 24583 26 tokens 2.44 tokens

BC4CHEMD [36] 87682 Chemical/Drug 84310 137 tokens 2.19 tokens

BC5CDR-Chemical [37] 13935 Chemical/Drug 15935 56 tokens 1.33 tokens

BC5CDR-Disease [37] 13935 Disease 12852 19 tokens 1.65 tokens

NCBI-Disease [38] 7284 Disease 6881 22 tokens 2.21 tokens
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Table 2 Performance values in terms of the precision (%), recall (%) and F1-score (%) for the state-of-the-art methods and the proposed
model DTranNER

Corpus BC2GM BC4CHEMD BC5CDR-Chemical BC5CDR-Disease NCBI-Disease

P R F1 P R F1 P R F1 P R F1 P R F1

Att-BiLSTM-CRF (2017) - - - 92.29 90.01 91.14 93.49 91.68 92.57 - - - - - -

D3NER (2018) - - - - - - 93.73 92.56 93.14 83.98 85.40 84.68 85.03 83.80 84.41

Collabonet (2018) 80.49 78.99 79.73 90.78 87.01 88.85 94.26 92.38 93.31 85.61 82.61 84.08 85.48 87.27 86.36

Wang et al. (2018) 82.10 79.42 80.74 91.30 87.53 89.37 93.56 92.48 93.03 84.14 85.76 84.95 85.86 86.42 86.14

BioBERT (2019) 85.16 83.65 84.40 92.23 90.61 91.41 93.27 93.61 93.44 85.86 87.27 86.56 89.04 89.69 89.36

DTranNER 84.21 84.84 84.56 91.94 92.04 91.99 94.28 94.04 94.16 86.75 87.70 87.22 88.21 89.04 88.62

Note: The highest performance in each corpus is highlighted in Bold. We quoted the published scores for the other models. For Wang et al. [11], we conducted additional
experiments to obtain the performance scores for two corpora (i.e., BC5CDR-Chemical and BC5CDR-Disease) using the software on their open source repository [45]

underlying neural networks can be jointly trained end-to-
end by backpropagation. We use the Adam optimizer of
[40] with the learning rate of 0.001. In the training pro-
cess, we renormalize all gradients whenever the L2 norm
of the gradients exceeds 5 in every minibatch update.
We applied layer normalization [41] to the outputs of
the token embedding layer, and also applied weight nor-
malization [42] to all the weight matrices of the binding
layers of Unary-Network and Pairwise-Network. We used
Dropout [43] with keep probability 0.5 in both the bind-
ing layers. We established our models within at most 50
epochs for all the corpora.

Evaluation metrics
We evaluated all the methods using the precision, recall,
and F1 score on the test sets of all corpora. We defined
each predicted entity as correct if and only if both the
entity type and the boundary were exactly matched to
the ground-truth annotation. We used the python ver-
sion of the evaluation script designed for CoNLL-2000
Benchmark Task, which can be downloaded from [44]. To
get reliable results, we repeated every test five times with
different random initialization and report the arithmetic
mean.

Results
Overall performance comparison
We compared DTranNER with five state-of-the-art
methods: (1) Att-BiLSTM-CRF [22], (2) D3NER [12], (3)

Collabonet [14], (4) the multi-task learning-based model
of Wang et al. [11], and (5) BioBERT [23]. Note that all the
models except BioBERT employ a CRF as their top layer
and rely on a static transition matrix. The performance
values in terms of the precision, recall, and F1-score
over all the corpora are presented in Table 2. DTranNER
outperformed the current state-of-the-art models on
four of five corpora—BC2GM, BC4CHEMD, BC5CDR-
Disease, and BC5CDR-Chemical—in terms of F1
scores.
DTranNER achieved amuch higher F1 score with higher

precision than the current best performer (94.16% vs.
93.44%) for BC5CDR-Chemical, where its NER process
was confused owing to many abbreviations despite its
shorter average entity length as shown in Table 1. Thus,
the pairwise transition network of DTranNER is shown
to be advantageous in discovering abbreviation-formed
entities.

Ablation studies
We investigated the effectiveness of main components
of our proposed method DTranNER through ablation
studies.

Impact of unary- and pairwise-Networks
To investigate the contribution of Unary- and Pairwise-
Networks to DTranNER, we trained experimental mod-
els by deactivating each component (i.e., either Unary-
Network or Pairwise-Network) in turn from DTranNER

Table 3 Impact of Unary-Network and Pairwise-Network in terms of the F1-score (%)

Settings BC5CDR-Chemical BC5CDR-Disease NCBI-Disease

Unary-CRF 93.01 86.14 86.94

Pairwise-CRF 93.27 86.05 86.71

Unary+Pairwise ensemble 93.25 86.78 87.09

DTranNER 94.16 87.22 88.62

Note: “Unary-CRF” denotes a variant model excluding Pairwise-Network from DTranNER, “Pairwise-CRF” denotes a variant model excluding Unary-Network from DTranNER,
and “Unary+Pairwise ensemble” is an ensemble model of “Unary-CRF” and “Pairwise-CRF.” In the ensemble model, “Unary-CRF” and “Pairwise-CRF” were independently
trained, and they voted over the sequence predictions by their prediction scores
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Table 4 Impact of separate BiLSTM layers in terms of the F1-score (%)

Settings BC2GM BC5CDR-Chemical BC5CDR-Disease NCBI-Disease

DTranNER-shared 83.69 93.57 86.75 88.01

DTranNER 84.56 94.16 87.22 88.62

Note: “DTranNER-shared” is a variant model that shares the BiLSTM layer in “Unary-Network” and “Pairwise-Network.”

and then measured the performance of the variant mod-
els on three benchmark corpora: BC5CDR-Chemical,
BC5CDR-Disease, and NCBI-Disease. The results are
shown in Table 3.
The removal of either Unary-Network or Pairwise-

Network fromDTranNER caused the overall performance
degradation in all the corpora by up to 1.91 percent points.
That is, this ablation study presents that the performance
achievement of DTranNER is attributed to not only an
individual component but also the mutual collaboration
of Unary-Network and Pairwise-Network. The relative
importance between the two networks was not very clear.
We also compared DTranNER with an ensemble

model of Unary-CRF and Pairwise-CRF, denoted as
“Unary+Pairwise ensemble,” which were separately
trained. The sequence prediction of the ensemble model
was decided by voting with their sequence output scores.
As shown in Table 3, the performance improvement of
the ensemble model was marginal in BC5CDR-Chemical
and NCBI-Disease. More important, the ensemble model
was much worse than DTranNER in all corpora. This
result indicates that yielding agreed label sequences
between the two networks, which have separate views, as
in DTranNER is more effective than their ensemble via
simple voting.
Impact of separate BiLSTM layers of Unary- and Pairwise
networks
Unary-Network and Pairwise-Network have an indepen-
dent underlying layer which learns its role-specific rep-
resentations. We investigate the impact of the separate
underlying layers in the peer networks. For this pur-
pose, we additionally built a variant model of DTran-
NER, denoted as “DTranNER-shared,” that forced Unary-
Network and Pairwise-Network to share the parameters
of their BiLSTM layers. As shown in Table 4 for the
comparison result, it turned out that Unary-Network and
Pairwise-Network benefit from the exclusive underlying
layer.

Embedding layer
We here investigate the impact of each element in the
token embedding layer of DTranNER. For this pur-
pose, we built two variants of DTranNER: (1) a model
(denoted as “W2V”) whose token embedding consists
of only 200-dimensional pre-trained token embedding
[26] and (2) another model (denoted as “ELMo”) whose
token embedding is solely comprised of 1024-dimensional
ELMo embedding, which is obtained from the ELMo
model [29] pre-trained on the PubMed corpus. The com-
parison results are presented in Table 5. The context-
dependent token embeddings via the ELMo model bring
significant performance improvement on the four bench-
mark corpora, especially on NCBI-Disease. Nevertheless,
the best performance is consistently achieved by the
combination of the context-dependent ELMo embedding
and the traditional context-independent embedding.

Case studies
To demonstrate the advantage of the DL-based label-label
transition model, which is the main feature of DTran-
NER, we compared several example outcomes yielded
by DTranNER and Unary-CRF as shown in Table 6.
Note that Unary-CRF is not equipped with this main
feature. In addition, the label sequence predictions of
DTranNER in Table 6 coincide with the ground-truth
annotations.
For Case 1, Unary-CRF failed to detect one of the

boundaries of the disease-type entity “ureteric stones or
obstruction” because of the intervention of the inner con-
junction “or,” while DTranNER precisely determined both
boundaries. For Case 2, Unary-CRF failed to identify
the chemical-type entities enumerated via the conjunc-
tions “/” and “and,” whereas DTranNER exactly identified
all the separate terms. For Case 3, Unary-CRF failed to
determine the left boundary of the single-token entity
“hepatitis” by mistakenly regarding “acute” and “cytolytic”
as its constituent elements, whereas DTranNER exactly

Table 5 Impact of each component in the token embedding composition in terms of the F1-score (%)

Settings BC2GM BC5CDR-Chemical BC5CDR-Disease NCBI-Disease

W2V 82.03 92.64 85.17 84.88

ELMo 83.41 93.78 86.76 88.27

ELMo + W2V(=DTranNER) 84.56 94.16 87.22 88.62

Note: “W2V” is a variant model of DTranNER whose embedding layer uses only traditional context-independent token vectors (i.e.,Wiki-PubMed-PMC [25]), “ELMo” is another
variant model of DTranNER whose embedding layer uses only ELMo, and “ELMo + W2V” is equivalent to DTranNER
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Table 6 Case study of the label sequence prediction performed by DTranNER and Unary-CRF

Diseases/Chemicals

Case 1 Unary-CRF to enable diagnosis of ureteric stones or obstruction in patients with HIV infection who receive indinavir theraphy

DTranNER to enable diagnosis of ureteric stones or obstruction in patients with HIV infection who receive indinavir theraphy

Case 2 Unary-CRF The present study was designed to investigate whether nociceptin / orphanin FQ and nocistatin could modulate

impairment of learning and memory induced by scopolamine

DTranNER The present study was designed to investigate whether nociceptin / orphanin FQ and nocistatin could modulate

impairment of learning and memory induced by scopolamine

Case 3 Unary-CRF We report the case of a female patient with rheumatoid arthritis who developed acute cytolytic hepatitis due to meloxicam

DTranNER We report the case of a female patient with rheumatoid arthritis who developed acute cytolytic hepatitis due to meloxicam

Case 4 Unary-CRF Reduced nicotinamide adenine dinucleotide phosphate - diaphorase ( NADPH - d ) histochemistry was also employed to

DTranNER Reduced nicotinamide adenine dinucleotide phosphate - diaphorase ( NADPH - d ) histochemistry was also employed to

Genes/Proteins

Case 5 Unary-CRF The MIC90 of ABK against coagulase type IV strains was rather high, 12.5 micrograms/ml

DTranNER The MIC90 of ABK against coagulase type IV strains was rather high, 12.5 micrograms/ml

Case 6 Unary-CRF subtle differences between individual subunits that lead to species - specific properties of RNA polymerase I transcription

DTranNER subtle differences between individual subunits that lead to species - specific properties of RNA polymerase I transcription

Case 7 Unary-CRF The S . typhimurium aspartyl / asparaginyl beta - hydroxylase homologue ( designated lpxO ) was cloned into

DTranNER The S . typhimurium aspartyl / asparaginyl beta - hydroxylase homologue ( designated lpxO ) was cloned into

Note: Unary-CRF is the purpose-built model excluding Pairwise-Network from DTranNER. The named entities inferred by each model are underlined in sentences

distinguished them from this entity by understanding
the contextual relations. For Case 4, DTranNER cor-
rectly identified the two entities, where the latter is the
abbreviation of the former, but Unary-CRF failed. For
Case 5, Unary-CRF ignored the gene-type entity “coag-
ulase type IV” by mistakenly regarding “type” and “IV”
as generic terms, whereas DTranNER correctly identi-
fied it by reflecting the contextual correlations between
its constituent elements. For Case 6, DTranNER correctly
identified both boundaries of the gene-type entity “RNA
polymerase I” by exploiting the contextual clues on the
consecutive pairs, 〈“polymerase” and “I”〉 and 〈“I” and
“transcription”〉, though “I” solely looks ambiguous; in
contrast, Unary-CRF failed to determine the right bound-
ary because it classified “I” as a generic term. For Case
7, DTranNER correctly extracted the lengthy entity by
grasping the correlation between the neighboring tokens
(i.e., “hydroxylase” and “homologue”), whereas Unary-
CRF failed to handle this lengthy entity.
Summing up, DTranNER successfully supports various

cases which would be very difficult without the contextual
information, and these cases indeed show the benefit of
DTranNER for BioNER.

Conclusion
In this paper, we proposed a novel framework for BioNER,
for which we call DTranNER. The main novelty lies in
that DTranNER learns the label-label transition relations
with deep learning in consideration of the context in an

input sequence. DTranNER possesses two separate DL-
based networks: Unary-Network and Pairwise-Network;
the former focuses on individual labeling, while the lat-
ter is dedicated to assess the transition suitability between
labels. Once established via our training strategy, these
networks are integrated into the CRF of DTranNER to
yield agreed label sequences in the prediction step. In
other words, DTranNER creates the synergy leverag-
ing different knowledge obtained from the two underly-
ing DL-based networks. As a result, DTranNER outper-
formed the best existingmodel in terms of the F1-score on
four of five popular benchmark corpora. We are extend-
ing DTranNER to utilize unlabeled biomedical data. This
extension is meaningful in several aspects: (1) building a
more-generalized model using a wide range of biomedical
literature, (2) rapidly incorporating up-to-date biomedical
literature by skipping time-consuming annotation, and (3)
reducing annotation cost.
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