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Abstract

Background: Cancer associated copy number variation (CNV) events provide important information for identifying
patient subgroups and suggesting treatment strategies. Technical and logistical issues, however, make it
challenging to accurately detect abnormal copy number events in a cost-effective manner in clinical studies.

Results: Here we present CNV Radar, a software tool that utilizes next-generation sequencing read depth
information and variant allele frequency patterns, to infer the true copy number status of genes and genomic
regions from whole exome sequencing data. Evaluation of CNV Radar in a public multiple myeloma dataset
demonstrated that CNV Radar was able to detect a variety of CNVs associated with risk of progression, and we
observed > 70% concordance with fluorescence in situ hybridization (FISH) results. Compared to other CNV callers,
CNV Radar showed high sensitivity and specificity. Similar results were observed when comparing CNV Radar calls
to single nucleotide polymorphism array results from acute myeloid leukemia and prostate cancer datasets available
on TCGA. More importantly, CNV Radar demonstrated its utility in the clinical trial setting: in POLLUX and CASTOR,
two phase 3 studies in patients with relapsed or refractory multiple myeloma, we observed a high concordance
rate with FISH for del17p, a risk defining CNV event (88% in POLLUX and 90% in CASTOR), therefore allowing for
efficacy assessments in clinically relevant disease subgroups. Our case studies also showed that CNV Radar is
capable of detecting abnormalities such as copy-neutral loss of heterozygosity that elude other approaches.

Conclusions: We demonstrated that CNV Radar is more sensitive than other CNV detection methods, accurately
detects clinically important cytogenetic events, and allows for further interrogation of novel disease biology. Overall,
CNV Radar exhibited high concordance with standard methods such as FISH, and its success in the POLLUX and
CASTOR clinical trials demonstrated its potential utility for informing clinical and therapeutic decisions.
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Background
Copy number alterations or variations (CNAs or CNVs)
play an important role in human disease and biology [1].
For example, germline CNAs are associated with large
scale alterations, such as trisomy 21, 18, and 13 which
cause Down’s, Edwards’, and Patau’s syndrome, respect-
ively [2], autism [3, 4], and other severe birth defects [5].
Somatic CNAs (SCNAs), on the other hand, are com-
monly observed in cancer and are major drivers for
tumor development and drug resistance [6, 7]. Such
SCNA events occur both at the gene and the chromo-
some levels: pan-cancer genomic analyses have reported
frequent amplification of MYC and deletion of PTEN
and TP53 in many tumor types [6]. In acute myeloid
leukemia (AML), deletions involving large portions of
chromosomes 5 and 7 are frequently seen in patients
with unfavorable cytogenetic risk [8]. In multiple mye-
loma, deletion of chromosome 17 is associated with
more aggressive disease and acquisition of chromosome
17 deletion during disease progression confers a worse
prognosis [9]. Moreover, deletion of TP53 or amplification
of chromosome 1 leads to deregulation of genes involved
in myeloma pathogenesis (e.g. CKS1B, MCL1) and is asso-
ciated with poor prognosis [10–13]. In contrast, presence
of hyperdiploidy (concurrent gains of multiple chromo-
somes such as 3, 5, 7, 9, 11, 15, 19 and 21) [14] is associ-
ated with favorable outcomes with extended patient
response after high-dose melphalan-based therapies and
other therapies [13, 15–17]. Characterization of cancer-
associated copy number events is therefore valuable for
identifying patient subgroups and provides insights into
prognosis and potential treatment strategies.
The detection of SCNAs in cancer samples has tradition-

ally been performed by cytogenetic and microarray-based
technologies such as fluorescent in situ hybridization (FISH),
array comparative genomic hybridization (CGH), and Affy-
metrix single nucleotide polymorphism array 6.0 (SNP6
array) [18]. While FISH has been widely used in clinical
applications for detection of specific abnormalities [19], it is
limited by the number of loci that it can simultaneously
investigate and also by the availability of FISH probes for
pre-specified regions of interest. Next-generation sequencing
(NGS) is becoming increasingly popular for studying
genomic variations in cancer. Whole genome sequencing
(WGS) allows for genome-wide detection of CNAs, translo-
cations, and breakpoints. However, in the clinical setting, a
capture-based approach that interrogates the exome (whole
exome sequencing; WES) or a panel of cancer genes in a
cost-effective manner can be preferred [20].
Several bioinformatics methods exist to call CNAs

from WGS data [21–24]. Additionally, due to popularity
of WES in clinical sequencing, several methods have
been developed for copy number analysis of WES data
[25], including ExomeDepth [26], copy number inference

from exome reads (CoNIFER) [27], CopywriteR [28],
and CNVkit [29]. ExomeDepth compares reads mapped
to a region of interest in the test sample with reads
mapped in the reference set using a beta-binomial model
to control for technical variability at library preparation,
capture and sequencing [26]. CoNIFER, on the other
hand, attempts to detect and remove technical biases
from a study cohort using singular value decomposition
(SVD) [27]. To handle the large variation in capture effi-
ciency of targeted capture regions, CopywriteR excludes
all reads mapping to capture regions and uses only off-
target reads to infer CNAs [28]. CNVkit takes an
augmented approach at estimating CNAs in samples by
utilizing both the targeted regions and the non-
specifically captured off-target reads to infer copy number
more evenly across the genome [29].
These algorithms primarily use relative read depths to

derive the copy number status of the sample of interest.
However, read depth alone is not sufficient to provide
information critical for interpreting cancer genomes,
such as copy-neutral loss of heterozygosity (CN-LOH),
tumor-normal admixture, and potential sample contam-
ination. In the clinical oncology setting, typically there
are limited matched normal samples collected or se-
quenced during clinical studies due to budget restriction
or sample availability, further posing challenges to algo-
rithms that require paired normals. Utilizing a panel of
unmatched normal samples is an alternative approach
for somatic CNV detection recommended by CNVkit
[29] and GATK4 [30].
Here, we present CNV Radar (CNV Rapid aberration

detection and reporting), a new CNV calling algorithm
that addresses challenges such as lack of matched con-
trols and technical biases due to bait sizes, location, and
hybridization conditions, by utilizing a panel of normal
samples sequenced in similar conditions to the tumor
sample. In addition to read depth information at regions
of interest, CNV Radar’s statistical model uses variant
allele frequency (VAF; also known as B-Allele Frequency
[31]) patterns to infer the copy number status. VAF is
the proportion of aligned reads at a common single nu-
cleotide polymorphism (SNP) location that carry the al-
ternate allele; therefore, in a normal diploid sample, each
heterozygous locus has an expected VAF of 0.5, whereas
the deletion or amplification of a chromosome produces
different expected VAFs (e.g. a single copy gain leads to
VAFs shifting towards 1/3 or 2/3). Since multiple germline
SNPs typically coexist in a copy number altered region,
their VAF information when used together as a group
provides more signal for detecting CNVs than individual
mutations. This information not only facilitates the esti-
mation of copy numbers but also allows for the identifica-
tion of CN-LOH and hyperdiploidy events that are
commonly observed in cancer. A comparison of the
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advantages and disadvantages of read depth- versus VAF-
based approaches is outlined in Table 1.
To illustrate the performance of CNV Radar in real-

world scenarios, we evaluated it on several large-scale
cancer datasets including multiple myeloma, AML, and
prostate cancer, and compared the exome-derived CNVs
with CNVs defined by FISH, WGS, and microarray as-
says. We also compared its performance to several other
CNV callers, and evaluated it in samples collected from
two global phase 3 studies in patients with relapsed or
refractory multiple myeloma [32, 33]. Overall, CNV
Radar is accurate and sensitive across these datasets,
provides genomic information important for interpreting
tumor samples (e.g. identification of risk biomarkers and
interrogation of emerging biology), and can potentially
guide treatment strategies for patients.

Results
CNV Radar for CNV and CN-LOH detection
To evaluate the performance of CNV Radar, we first ana-
lyzed the WES data from a subset of patient samples from
the Multiple Myeloma Research Foundation (MMRF)
CoMMpass study (https://www.themmrf.org), which is a
landmark initiative in the field of multiple myeloma re-
search with the goal of mapping 1000 patients’ genomic
profiles to clinical outcomes and enabling development of
a more complete understanding of patients’ responses to
treatments (Methods and materials). This subset of pa-
tients also have CNV information derived from matched
WGS or FISH assays. Following the CNV detection work-
flow (Fig. 1), all tumor and normal WES samples were

independently aligned and pre-processed for SNP detec-
tion and read depth calculation. For each capture region,
we calculated the average (mean) read depth across all of
its sequenced bases. The dendrogram of the normal sam-
ples clustered by the average read depth at all capture
regions showed heterogeneity possibly due to varying
library preparation conditions, exome capture efficiencies,
or sample quality (Additional file 1). As no obvious out-
liers were observed, all normal samples were used as refer-
ences to determine CNVs.
CNV Radar normalizes the read depths, estimates the

relative copy ratio using a regression model, and through
an iterative process over 3 rounds calculates a VAF score
that indicates deviation from a copy neutral state. The
relative read depth and VAF score are then combined to
detect breakpoints in the genome and make CNV calls
(Fig. 2; Methods and materials). Across the tumor
samples, CNV Radar detected an average of 233 CNV
events, with a median length of 109,800 bp (Fig. 3). Closer
inspection of the copy number events showed focal and
large-scale CNAs consistent with myeloma biology such
as deletion of TP53, monosomy, hyperdiploidy, and dele-
tion of chromosomes 13 and 17p (Fig. 4). As chromo-
somes 1p, 1q, 13, and 17p are known regions associated
with multiple myeloma risk and commonly measured in
patients by FISH, we further examined CNV Radar calls at
the four marker regions. Since these large scale events typ-
ically span most of the chromosome arm (e.g. chr1q), the
marker level CNV status was determined based on the de-
tection of CNV in ≥ 50% of the region by CNV Radar.
Comparison of CNV Radar calls with FISH results showed

Table 1 Advantages and disadvantages of using relative read depths vs. VAF for determining CNV

CNV detection approach Advantages Disadvantages

Read depth 1. Uses any locus with reasonable coverage, providing
higher resolution.
2. Dependent on proper mapping, not on variant calls.
3. Relatively robust to small contamination events
from another human sample.

1. Highly susceptible to technical bias both from batch to
batch and from sample to sample due to variable
sensitivity of the various regions to moderate or even
slight changes in hybridization conditions and other
factors (such as exome enrichment kit versions). When
used by itself, this approach can yield a large number of
false positives and negatives if not sufficiently validated.
2. Unable to identify complex copy number events such
as CN-LOH or hyperdiploidy.

Variant allele frequency (VAF) 1. Uses heterozygote positions to discern bands that
indicate larger copy number changes.
2. More resistant to technical bias from batch to batch
and from sample to sample.

1. Can confuse copy number events with contamination
events.
2. Cannot discern concurrent gains in both alleles from
normal state.
3. Misinterprets CN-LOH events as copy number loss
events.
4. Requires that variant calling and heterozygous states
be established. Resolution depends on the number and
distribution of variants called.

Read depth combined with VAF 1. One method fills in the gaps in information from
the other method.
2. Properly assesses CN-LOH events and concurrent
gains in both alleles as well as copy number state
when small levels of contamination occur.

1. Inherently different resolution levels complicate
creation of individual segments from both sources of
information.

VAF variant allele frequency; CNV copy number variation; CN-LOH copy-neutral loss of heterozygosity
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> 70% concordance (Table 2). While in a small number of
cases CNV Radar had missed CNV calls due to complex
rearrangement events, most discordant cases were attri-
buted to tumor heterogeneity or low number of tumor
cells harboring the CNV.
We also evaluated the sensitivity and specificity of

CNV detection on WES data by comparing to CNVs
defined by WGS (as reported by MMRF), and evaluated
the performance of four other commonly used CNV

callers: CNVkit, CoNIFER, CopywriteR, and Exome-
Depth (see Additional file 2). It is worth mentioning that
two methods, PennCNV2 and ASCAT [34, 35], which
were originally developed for CNV detection from SNP
arrays, also utilize VAF information; therefore, in
principle these methods could be adapted to analyze
WES data. However, as the WES versions of these
methods are still under development and do not allow
the use of pooled normal references, they were excluded

Fig. 1 CNV detection workflow. The tumor and normal samples were first aligned to the human genome and processed independently to
remove PCR duplicates and perform local realignment. Common SNPs were detected in the tumor sample using GATK [30]. CNV Radar then uses
the alignment files from tumor and normal samples to calculate relative read depths (log2 fold change; black) at all capture regions. VAF scores
(orange), which indicate the level of deviation from a copy neutral state, were calculated for all heterozygous common SNPs in the tumor
sample. The smoothed log2 fold change and VAF scores were then combined into CNV scores, which CNV Radar then uses to iteratively detect
breakpoints, re-center the genome-wide read depth, and make the final CNV calls (green). CNV, copy number variation; GATK, Genome Analysis
Tool Kit; VAF, variant allele frequency
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from this evaluation. In our performance evaluation,
ground truth CNVs were defined by WGS because, in
contrast to WES, WGS provides full sequencing cover-
age of the entire genome and is not affected by exome
capture biases. CNV Radar showed high sensitivity and
specificity as demonstrated by the receiver operating
characteristic (ROC) curves and area under the ROC curve
(AUC) values (Fig. 5, Table 3; Methods and materials).
The performance of CNV Radar was also comparable or su-
perior to other commonly used CNV callers (Table 3), with
CNV Radar and CNVkit showing the highest AUC values.
We further evaluated the sensitivity of CNV detection at

the sample level for the two best performing algorithms:
CNV Radar and CNVkit. Across the 109 multiple mye-
loma patient samples evaluated, CNVkit had a median
sensitivity of 95.8%, while CNV Radar had a median sensi-
tivity of 97.3% (Additional file 3). Median positive predict-
ive values (which equals 1-false discovery rate), defined as
the total number of true positive (TP) calls divided by the
sum of the TP and false positive (FP) calls were 98.0% for
CNVkit, and 98.1% for CNV Radar. Given the comparable
performance between the two algorithms, we manually
characterized cases where CNV Radar and CNVkit
performed most differently.
As CNV Radar utilizes information from both read depth

and VAF, it is particularly suited for inferring the CNV
status in massively altered genomes such as myeloma where

read depth based methods typically have trouble correctly
normalizing and establishing the baseline. For example, in
sample SRR2128492, the relative read depth between the
tumor and normal samples showed a biased genome-wide
background possibly due to complex copy number alter-
ations and differences in the exome enrichment efficiency
(Fig. 6a). It was, therefore, challenging to infer the correct
copy number status using read depth information alone: the
unadjusted log2 fold change (LFC) values suggested large-
scale amplification of more than a dozen regions and the
deletion of the rest of the entire genome. CNV Radar
iteratively used VAF to identify copy neutral regions and re-
establish the baseline LFC. As a result, the LFC was correctly
estimated and CNVs could be accurately detected (Fig. 6b).
On the contrary, CNVkit was unable to properly re-center
the baseline LFC and infer the correct CNV status of this
sample. Overall, the genome-wide level of copy number
changes had a slight impact on the performance of both
CNV callers: in cases where CNV Radar was more sensitive
than CNVkit, a median of 923M bases were modified as
defined by WGS truth, whereas samples where CNVkit
performed better had a median of 370M modified bases.

Evaluation of CNV Radar on the AML and prostate TCGA
datasets
In addition to the MMRF CoMMpass study, we exam-
ined the performance of CNV Radar on two TCGA

Fig. 2 Schematic diagram for assigning copy number types to each genomic segment that was defined by identified breakpoints. mCNV, median
copy number variation; CNV, copy number variation; mLFC, median log2 fold change; LFC, log2 fold change; mVAF, median variant allele
frequency; VAF, variant allele frequency; LOH, loss of heterozygosity
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datasets (AML and prostate) [8, 36] and compared the
CNV Radar calls to CNVs derived from SNP6 arrays in
each study. We also used these datasets to evaluate the

performance of several other CNV callers: CNVkit,
CoNIFER, CopywriteR, and ExomeDepth. In both TCGA
AML (Fig. 7, Table 4) and prostate (Fig. 8, Table 5)

Fig. 3 CNV Radar detects CNV events at varying scales. (a) Distribution of CNV events at all lengths. (b) Distribution of CNV events smaller than
1 Mbp. CNV Radar, copy number variation rapid aberration detection and reporting
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datasets, the ROC curves and AUCs showed that CNV
Radar and CNVkit had comparable results and had the
best performance among the evaluated CNV callers.

Application of CNV Radar in a clinical trial setting
The efficacy of daratumumab, an anti-CD38 monoclonal
antibody, in combination with lenalidomide and dexa-
methasone or bortezomib and dexamethasone was eval-
uated in patients with relapsed or refractory multiple
myeloma in POLLUX and CASTOR, respectively [32,
33]. High-risk cytogenetics is a key prognostic factor in
multiple myeloma and to determine if daratumumab
would be efficacious in high risk patients (defined as

Fig. 4 Genome-wide plots of relative read depth and VAF for (a) a hyperdiploidy example (SRR2128547) (b) a sample (SRR2128541) that had risk
associated cytogenetic changes (amp1q, del13, and del17p). Top panel of horizontal bars indicates calls by CNV Radar. Red dots indicate 1 + VAF.
Black dots indicate relative read depth measured by the log2 ratio of normalized tumor depth vs. normalized reference depth. VAF, variant allele
frequency; CNV Radar, copy number variation Rapid aberration detection and reporting, CN-LOH, copy-neutral loss of heterozygosity

Table 2 Concordance between CNV Radar calls and FISH results

TP FP FN TN Total Concordance

del1p 6 3 4 96 109 93.58%

amp1q 23 1 29 56 109 72.48%

del13q14 45 4 12 48 109 85.32%

del17p13 6 1 11 91 109 88.99%

CNV Radar copy number variation Rapid aberration detection and reporting;
FISH fluorescence in situ hybridization; TP true positive; FP false positive;
FN false negative; TN true negative
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having at least one of t [4;14], t [14;16], or del17p
cytogenetic abnormalities), bone marrow aspirates were
collected from 311 patients from POLLUX and 353 pa-
tients from CASTOR at screening. Exome-seq was per-
formed and copy number status was evaluated by CNV
Radar, and independent experts manually reviewed the
sequencing depth and VAF patterns to verify the status
of amp1q, del13, and del17p; 98.6% of the CNV Radar
calls were confirmed by experts. A subset of these pa-
tients was also evaluated by FISH, and the concordance
rate for del17p between these two methodologies was
88% in POLLUX and 90% in CASTOR. Lower rates of

concordance were observed for del13 (70 and 64%, re-
spectively) and amp1q (72 and 70%, respectively), which
may be due to variations in how FISH data was entered
at local sites (e.g. number of positive cells or number of
chromosome copies required to define a case), and the
possibility that some CNAs identified by CNV Radar
were not captured by FISH [37].
Given the complexity of the myeloma genomes and

the prognostic value of copy number changes [13, 38],
the utility of CNV Radar in investigating disease biology
is highlighted by case studies from these phase 3 trials.
In one patient who was determined to be negative for

Fig. 5 Comparison of the calls made by CNV Radar to those defined by WGS on the MMRF CoMMpass dataset. (a) ROC curve for amplification
detection. (b) ROC curve for deletion detection. CNV Radar, copy number variation rapid aberration detection and reporting; WGS, whole genome
sequencing; MMRF, Multiple Myeloma Research Foundation; ROC, receiver operating characteristic
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del17p by both exome-sequencing and FISH, CNV
Radar detected a focal deletion in TP53 that may repre-
sent a functional deletion of this chromosomal region
(Fig. 9a). In a different patient who was also determined
to be del17p-negative by exome-sequencing (no FISH
results were reported), alteration of the VAF without
loss of relative read depth measured by CNV Radar

revealed CN-LOH of the 17p region, where the loss of a
copy of 17p and amplification of the remaining copy
shifted the VAF bands towards 0 and 1 (Fig. 9b). These
examples highlight the value of exome-sequencing in de-
tecting clinically important cytogenetic events not de-
tectable by conventional FISH.

Discussion
Although NGS has been routinely applied in medical
genetics [39], the application in oncology has primarily
focused on the detection of mutations, and gains or
losses in a limited number of cancer genes [40]. With in-
creased cost-efficiency, WES-based tests are now being
used in a clinical oncology setting and allow for global
detection of mutations and copy number changes in
coding regions of the genome, although more sensitive
and accurate methodologies for defining copy number
changes are needed [41].
We developed CNV Radar to overcome the technical

and logistical hurdles that prevent accurate detection of
CNVs in clinical samples. Although WES typically cap-
tures less than 2% the genome and relies on probes and
PCR amplification that can introduce library prep-
specific biases, we demonstrated that CNV Radar’s

Table 3 AUC of the evaluated CNV callers on the MMRF
CoMMpass WGS dataset

CNV Caller AUC (gain) AUC (loss)

CNV Radar 0.94 0.90

CNVkit 0.93 0.65

CoNIFER – FCSVD0 0.45 0.59

CoNIFER – FCSVD1 0.23 0.45

CoNIFER – FCSVD2 0.11 0.37

CoNIFER – FCSVD3 0.08 0.28

CopywriteR 0.25 0.01

ExomeDepth 0.05 0.35

AUC area under the receiver operating characteristic curve; CNV copy number
variation; MMRF Multiple Myeloma Research Foundation; WGS whole genome
sequencing; Radar rapid aberration detection and reporting; CoNIFER copy
number inference from exome reads

Fig. 6 A myeloma tumor (SRR2128492) with complex CNAs. (a) Initial LFC across the genome. (b) Corrected LFC across the genome. The average
log2 ratio of copy neutral segments changed from − 0.2044 in the first iteration (a) to 0.003 in the last (b). Horizontal blue lines indicate a copy
ratio of 0. CNA, copy number alteration; LFC, log2 fold change
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performance was comparable to other genomics
methods for copy number identification. Using samples
from the MMRF CoMMpass study, CNV Radar achieved
99.5% sensitivity when compared to WGS data, suggest-
ing that WGS is not required for accurate detection of
most CNV events. In addition, when compared to FISH
calls, we obtained an average concordance rate of 85%.
CNVs detected by SNP6 arrays in TCGA AML and
prostate cancer samples also agreed with CNV Radar
calls.

Although FISH and SNP6 arrays have been considered
gold standard methods for CNV detection, there remain
concerns with both technologies. Compared to newer gen-
omics technologies, FISH has poor resolution and it is
therefore difficult to detect small events and precise break-
points. Furthermore, it has relatively low throughput and
requires time-consuming manual curation, and can only
detect specific abnormalities of pre-determined interest.
Interlaboratory variability also makes it challenging to in-
terpret FISH data derived from different laboratories [42].

Fig. 7 Comparisons of the calls made by CNV Radar to results from the Affymetrix SNP6 arrays for the TCGA AML dataset (200 patients). (a) ROC
curves for amplification detection. (b) ROC curves for deletion detection. CNV Radar, copy number variation rapid aberration detection and
reporting; SNP, single nucleotide polymorphism; TCGA, The Cancer Genome Atlas; AML, acute myeloid leukemia; ROC, receiver
operating characteristic
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Similarly for SNP6 arrays, Pinto et al. reported < 50% con-
cordance of various SNP calling algorithms on the same
raw SNP array data and < 70% concordance of calls from
the same platform and algorithmic software, but used rep-
licate preparations for almost all SNP array platforms [43].
Pinto et al. further reported a concordance rate of 80%
between replicates for one lab but approximately 60%
between replicates for another lab [43].
Although CNV Radar utilizes both read depth and

VAF information for CNV detection, it still occasionally
requires manual tuning by the user. For example, the
MMRF sample that had the most false negative (FN)
bases by CNV Radar compared to CNVkit was
SRR2128693, where CNV Radar marginally missed the
CNV threshold for the entire chromosomes 2, 3, and 4
(Additional file 4). Also, large regions of double amplifi-
cations, if present in the majority of the cells, would
cause VAF to center around 0.5 and be missed by CNV
Radar. In addition, although CNV Radar uses VAF infor-
mation to detect CN-LOH, cross-sample contamination
could lower the signal-to-noise ratio and reduce its
performance. In this case, the user should evaluate the
extent of the contamination. If most of the derived read
depth from WES came from the tumor sample of
interest, the user may adjust the parameters and have
CNV Radar rely solely on read depth information (e.g.

set CNV-score to dLFC , effectively discarding any VAF
information). A related limitation is the inference of
subclonal CNV events from bulk tumor sequencing data,
which remains challenging to current copy number cal-
lers but can be addressed with advanced single cell tech-
nology. Lastly, although we demonstrated the detection
of TP53 deletions and detected small CNV events, the
possible lack of heterozygous SNPs and low overlap with
WES capture regions makes identification of focal alter-
ations a challenging and active area of research. Future

work to improve CNV Radar is ongoing to further
incorporate different sources of information to accurately
identify complex and focal events.

Conclusion
The field of oncology drug development is growing in-
creasingly dependent on the identification of biomarkers
for drug approval [44–48]. We verified CNV Radar’s
ability to accurately infer the copy number status of
disease relevant biomarkers using TCGA AML and
prostate samples, demonstrating its potential utility in
both heme and solid cancers. We further applied CNV
Radar to the CASTOR [32] and POLLUX [33] myeloma
clinical trial datasets and found a strong concordance
rate with FISH in identification of various myeloma risks
associated CNA/CNV events such as amp1q, del13, and
del17p. The application of CNV Radar to patient sample
repositories, such as TCGA, and to future clinical trials
could provide additional prognostic or predictive gen-
omic characterization of patients and help accurately
identify patients with high-cytogenetic risk to enable
evaluation of therapeutic efficacy in this particularly
vulnerable population.

Methods
Cancer samples
MMRF CoMMpass
We used the exome-seq data from the MMRF CoMM-
pass study [49] to assess the accuracy of CNV Radar and
to demonstrate its application in the oncology setting.
MMRF CoMMpass is an ongoing multi-institution col-
laboration that will create a comprehensive genomic
database of 1000 multiple myeloma patients. Samples
are collected at baseline and longitudinally for low-pass
WGS [50], exome-seq, RNA-seq, and immunopheno-
typing. FISH is also performed to detect the copy num-
ber status for regions associated with myeloma risk (e.g.
chromosomes 1q, 13, 17p). The MMRF selected a subset
of 109 baseline patient samples and manually curated
the FISH results to ensure the accuracy and consistency
of data (e.g. done with plasma cell enrichment; FISH
results properly transcribed into database). For the low-
pass WGS data, copy number variants were identified by
an analysis of differential coverage between each tumor
and its matched normal sample. Relative copy number is
determined as the log2 difference between the normal
and tumor normalized coverage, where normalization is
defined as the mean coverage across a 2 kb window
divided by the genome-wide coverage. Circular binary
segmentation (CBS) algorithm was used to segment copy
number data. Allele frequency of common SNPs from
matched tumor WES was further used to re-center the
copy number data so regions with VAF of 0.5 became
copy neutral. Segments with LFC values less than − 0.25

Table 4 AUC of the evaluated CNV callers on the TCGA AML
dataset

Caller AUC (gain) AUC (loss)

CNV Radar 0.83 0.96

CNVkit 0.79 0.80

CoNIFER_FCSVD0 0.43 0.10

CoNIFER_FCSVD1 0.08 0.02

CoNIFER_FCSVD2 0.05 0.03

CoNIFER_FCSVD3 0.04 0.03

CopywriteR 0.79 0.29

ExomeDepth 0.14 0.10

AUC area under the receiver operating characteristic curve; CNV copy number
variation; TCGA The Cancer Genome Atlas; AML acute myeloid leukemia; Radar
Rapid aberration detection and reporting; CoNIFER copy number inference
from exome reads
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were defined as deleted, whereas segments with greater
than 0.2 were defined as amplified. The scripts for
generating the WGS CNV calls are available at https://
github.com/tgen/MMRF_CoMMpass/tree/master/tCoNu
t_COMMPASS. In this manuscript, we defined the CNV
status of patients based on MMRF-reported calls derived
from WGS and FISH. To evaluate the performance and
accuracy of different CNV callers, we used the exome
data from these patients along with 141 normal samples
(95 matched and 46 unmatched) to derive their copy
number status and compared the results to those derived

from the corresponding low-pass whole genome and
FISH assays.

TCGA AML
TCGA analyzed a collection of genomes of 200 de novo
AML patients [8]. Affymetrix SNP Array 6.0 was per-
formed on both tumor and matched normal skin samples
to derive copy number changes. Briefly, TCGA normal-
ized intensity values using Partek Genomics Suite. Seg-
mentation and copy number calling were done using CBS
in the DNACopy package [51]. From the TCGA AML

Fig. 8 Comparison of the calls made by CNV Radar to results from the Affymetrix SNP6 arrays for the TCGA prostate dataset (333 patients). (a)
ROC curves for amplification detection. (b) ROC curves for deletion detection. CNV Radar, copy number variation rapid aberration detection and
reporting; SNP, single-nucleotide polymorphism; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic
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cohort, we selected 21 patients with known favorable risk
and 39 patients with unfavorable risk, analyzed their WES
data to make CNV calls with respective methods, and
compared the results to the copy number status defined
by the SNP6 array as reported in the paper [8]. With
respect to the WES data, we downloaded the raw sequen-
cing files from the Genomic Data Commons (GDC) Data
Portal (https://portal.gdc.cancer.gov/), and used respective
CNV calling pipelines to detect copy number changes.

TCGA prostate
TCGA performed molecular analysis of 333 primary
prostate cancers to identify major subtypes among pa-
tients as well as potential treatment targets [36]. Tumor
and matched normal specimens were characterized
using platforms such as WES and Affymetrix SNP 6.0
arrays. We selected a subset of 30 patients who showed
evidence of recurrent CNAs defined by the SNP6 array
data and GISTIC2 [52, 53], as provided by Firehose
(http://gdac.broadinstitute.org), and downloaded the raw

Table 5 AUC of the evaluated CNV callers on the TCGA
prostate dataset

Caller AUC (gain) AUC (loss)

CNV Radar 0.75 0.83

CNVkit 0.75 0.86

CoNIFER_FCSVD0 0.62 0.53

CoNIFER_FCSVD1 0.59 0.52

CoNIFER_FCSVD2 0.37 0.38

CoNIFER_FCSVD3 0.14 0.26

CopywriteR 0.26 0.21

ExomeDepth 0.25 0.24

AUC area under the receiver operating characteristic curve; CNV copy number
variation; TCGA The Cancer Genome Atlas; Radar rapid aberration detection
and reporting; CoNIFER copy number inference from exome reads

Fig. 9 Leveraging CNV Radar to uncover additional risk factors. (a) Focal deletion in TP53 detected by CNV Radar. Arrow indicates region that is
deleted. (b) Copy-neutral loss of heterozygosity in 17p. CNV Radar, copy number variation rapid aberration detection and reporting
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WES data from GDC Data Portal to make CNV calls
using respective CNV analysis pipelines. The results
were compared to the ground truth defined by SNP6
arrays.

Overview of CNV detection workflow
Mapping and pre-processing
The CNV Radar analysis pipeline (Fig. 1) starts with binary
representations of sequence alignment map (BAM) files
[54] of a tumor and a set of matched or un-matched nor-
mal samples that have been aligned, sorted, and indexed
using standard alignment tools (e.g. Burrows-Wheeler
Aligner (BWA) and SAMtools). Picard MarkDuplicates
[55] is then used to remove PCR duplicates. The Genome
Analysis Toolkit (GATK) [30] is used to perform local
realignment of reads around indels and to identify single
nucleotide variants (SNPs) in the tumor genome. SNP calls
are annotated using The Single Nucleotide Polymorphism
Database (dbSNP) [56] and snpEff [57, 58]. We utilize all
heterozygous common SNPs for CNV detection since if a
segment of the genome is amplified or deleted, all of the
heterozygous common SNPs in the region will have altered
VAF as a result. For example, in a homogeneous tumor

sample, the VAFs will approach ½ 1
ð2þCN gainÞ ;

ð1þCN gainÞ
ð2þCN gainÞ� in

the case of copy number (CN) gain, and ½1−CN loss
2−CN loss ;

1
2−CN loss�

in the case of copy number loss. The analysis of the
deviation of VAF from the copy neutral state as well as the
pattern of this deviation in a group of neighboring SNPs in
a genomic region of interest forms the basis of our method.
The common SNPs are defined by dbSNP [56].

Read depth calculation and normalization
We define “read depth” as the number of times that a
given nucleotide has been read in a WES experiment.
For each capture region, we calculate the mean read
depth across all of its sequenced bases. The mean read
depths for each capture region, or capture depths, are cal-
culated for each sample. Capture depths are then median
scaled and log transformed across regions to account for
differences in overall sequencing depth between samples.

Selection of normal references
Before CNV calls can be made, a normal baseline must
be established. CNV Radar does not require matched
tumor-normal samples. Instead, it establishes a normal
depth baseline from a normal sample cohort. Due to the
properties of the algorithmic implementation (linear
regression, see below for more information), CNV Radar
automatically up-weights those normal samples with a
profile closest to the tumor sample allowing for good
performance as long as at least a subset of the normal
cohort has a depth profile similar to the tumor sample.
However, it may still be beneficial to remove obvious

outliers potentially caused by contamination or capture/
sequencing failure. CNV Radar (available at the EA
Genomics GitHub page [https://github.com/Expression-
Analysis]) provides scripts that perform a clustering ana-
lysis of the set of normal samples to identify potential
quality control issues. Using this cluster diagram, end
users may remove outliers and select normal reference
samples that best represent the sample population.

Estimation of log fold change by read depth
For each tumor sample, the copy number changes are
estimated by comparing the tumor capture depths to
depths from the normal references in log space. This is
achieved by using a multiple linear regression model,
which took the selected normal references as independ-
ent variables, and the transformed capture depth from
the tumor sample as a dependent variable:

Yj � β0þ
Xn
i¼1

βiXij
� �þ ɛi

In this model, Yj is the log2 mean depth of capture re-
gion j in the tumor sample, Xij is the log2 mean depth of
sample i in the normal cohort for capture region j, and n
is the number of samples in the normal cohort. β0 cap-
tures the bias that is present in both the tumor sample
and the normal cohort (e.g. hybridization probe affinities)
and each of the βi captures the bias that is present in each
sample (e.g. total read depth of the sample). We can then
use the parameter for each sample to provide a weight for
the observed mean depth for each of the capture regions
found in the normal cohort to predict the expected
normal copy number depth for the tumor. The expected
normal copy number depth is therefore:

bYj ¼ β0 þ
Xn
i¼1

βiXij
� �þ ɛi

And LFC for each capture region j is thus calculated as
the difference between the log tumor read depth and the
regression fitted values of log read depth using the
normal references.

LFC j ¼ Yj− bYj

This regression model implicitly gives higher weight to
normal samples having more similarity in read depths to
the current tumor sample. This reduces the impact of
systematic variations that happen due to laboratory pro-
tocols or reagent lots, preservation techniques or tissue
types. To reduce noise, we further calculated smoothed

LFC values ( dLFC j ) for each capture region j using a
smoothed spline of the LFCs across all capture regions.
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Calculation of CNV breakpoints
Using the filtered VAFs from the GATK calls, we define
a VAF score for every detected heterozygous position i
in the genome:

VAF−scorei ¼ VAFi−0:5j j3

where VAFi ∈ [0,1]. The exponent of 3 was set after em-
pirical analysis using initial datasets. VAF-scores are

then spline-smoothed and fitted values ( dVAF−score jÞ are
made for each capture region j. For each chromosome,

the dLFC j and dVAF−score j values were multiplied to-
gether to form CNV scorej and call copy number events
as follows:

CNV � score j ¼ min max dLFC j;−3
� �

; 3
� �

� dVAF−score j

The ceilings and thresholds for dLFC j ensure that the
CNV-score is not completely dominated by the read-
depth portion of the formula when analyzing read depth
extremes. For single copy loss or gain in a typical admix-

ture with normal cells, dLFC j may range from approxi-

mately [−0.4,0.3] while the dVAF−score j is naturally bound
to [0,0.125] for any CN state. Next, the numerical deriva-
tive of the CNV-scores were calculated and used to iden-
tify breakpoints. Adjacent prospective CNVs having a
large overlap in the interquartile ranges were merged into

a single event. Specifically, if more than 20% of the dLFC of
the first CNV segment were contained within the inter-
quartile range of the second CNV, or vice versa, then the
two CNV segments were collapsed into a single CNV
defined by their total region.

Determination of CNV state (loss, gain, or CN-LOH)
Genomic segments defined by the identified breakpoints
were next categorized as loss, gain or CN-LOH. For each

segment, median CNV-scores, dVAF and dLFC (mCNV,
mVAF and mLFC, respectively) were calculated. Using
separate thresholds for each metric, segments were classi-
fied as follows. A segment was classified as CN-LOH if its
mCNV was within the upper and lower CNV thresholds,
but the mVAF was above the VAF threshold. A segment
was also classified as CN-LOH if mCNV was outside of
the CNV thresholds, but its mLFC was within the LFC
thresholds. Alternatively, a segment was classified as an
amplification if its mCNV was outside of the CNV thresh-
olds and the mLFC was above the upper LFC threshold.
Finally, a segment was classified as a deletion if the mCNV
was outside of the CNV thresholds, but the mLFC was
below the lower LFC threshold. This categorization is
illustrated in Fig. 2. The program defaults to threshold
values which were established based on those values that
provided the greatest accuracy (balancing FP and FN calls)

on a training set of data. The truth for this reference data
was determined through one or more orthogonal molecu-
lar assays and expert consensus manual review of detailed
sequencing summaries (variants, variant frequencies, rela-
tive read depths) that were independent of any software
CN algorithms. These default values should be appro-
priate in most scenarios, although parameters are avail-
able for tuning.

Iterative refinement of dLFC
Samples with CNAs in large portions of their genome

can have biased estimates for dLFC since these CNA re-
gions contribute to a large proportion of the sequence
reads and affect the sequencing coverage available for
the rest of the genome. For example, given constant
sequencing capacity, if half of the genome is amplified,
the total reads from the amplified regions will increase
substantially, leaving less room for reads from the rest of

the normal genome and hence biasing dLFC estimates
downward, giving a false detection of deletion. For this
reason, CNV Radar first calculates regions containing
CNVs of highest absolute LFC. Excluding these biased

regions, dLFC is re-estimated for each capture region and
CNVs are recalculated. This process is repeated three
times (default) or for the number of iterations specified
by the user.

Performance evaluation and comparison with other
CNV callers
Receiver operating characteristic (ROC) analysis
We assessed the performance of CNV callers by the
ROC curve and AUC. ROC curves have the desirable
property of visually displaying the trade-offs between
sensitivity and specificity. However, they also require the
existence of only two states, where CNAs have at least
three: neutral, deletion and amplification. For this reason,
TP, FP, true negatives (TNs) and FN calls were assigned
according to Table 6 for deletions and amplifications.
Here, each base was tallied separately, allowing for larger
CNVs to have more weight in ROC analysis.
The true positive rate (TPR) and the false positive rate

(FPR) are defined separately for amplifications and
deletions as follows:

TPR ¼ TP
P

; FPR ¼ FP
N

where TP is the number of bases with correctly inferred
copy numbers, P the total number of bases with a copy
number event defined by ground truth, FP the number
of bases with incorrectly inferred copy numbers and N
the total number of bases without a copy number event
defined by ground truth, as defined in Table 6. The false
positive rate is defined as the number of false positive
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bases divided by the sum of the false positive bases and
the true negative bases. Calculating the number of true
negative bases is done by subtracting the sum of the true
positive, false positive, and false negative bases from the
total bases in genome. For each CNV caller, outputs
generated by each of the CNV calling tools were used,
and we used varying thresholds on the corresponding
CNV indicator variable to classify if a region had a copy
number event. Generally, these tools only list the gen-
omic coordinates identified as being part of a CNV. In
these regions, the magnitude of the CNV (e.g. log2 fold
change) and sometimes a metric of how much evidence
exists for the CNV call are reported (e.g. Bayes factor for
ExomeDepth). For this ROC analysis, copy number gain
and loss were evaluated separately for each CNV caller,
and the threshold is based on how much evidence/confi-
dence each algorithm has that the base is part of a CNV
call. When multiple metrics could be used to define
ROC curves (e.g. p-value and fold change), the metric
giving the best performance was chosen (i.e. LFC for
CNVkit, CNV-score for CNV Radar, z-FPKM for CoNI-
FER, LFC for CopywriteR, and Bayes factor for Exome-
Depth). As the thresholds were incremented on the
confidence scores, regions absent from the output were
not evaluable due to lack of confidence scores; therefore,
the ROC curves for a particular caller may not go to
1 even by choosing an extreme threshold. As a result, an
FPR of 1 was not able to be forced. Since the number of
true negatives was generally much larger than the
number of false positives, the portion of the ROC curve
from 0 to 0.25 is displayed as this gives the best
representation of the differences in the performance of
the selected tool.
For the same reason, AUC was calculated as a propor-

tion of the total area of the ROC curves defined by FPRs

between 0 and 0.05. Thus, unlike the typical ROC ana-
lysis an AUC under 0.025 would mean that a random
guess works better. Often, the total output of a caller,
under the most liberal parameters and filtering, pro-
duced FPRs less than 0.05. In these cases, AUC was cal-
culated by extending a horizontal line from the right-
most endpoint of the ROC curve to 0.05. The ground
truth CNV status is defined as segments with LFC values
less than − 0.25 or greater than 0.2, thresholds that
allow detection of single-copy CNVs in a tumor with
purity as low as 30%.

Concordance rate
For multiple myeloma samples from the MMRF
CoMMpass study, we evaluated the performance of
CNV callers in chromosomal regions associated with
myeloma risk: 1p, 1q, 13, and 17p. The CNV status
of each region (marker level CNV) was first deter-
mined based on the detection of CNV in ≥ 50% of
the region. The marker level CNV was then com-
pared to FISH calls that were manually curated by
the MMRF CoMMpass study team. The concordance
rate was defined as the total number of subjects
where the marker level CNV status by a CNV caller
agrees with the ground truth set by FISH, divided by
the total number of subjects.
For multiple myeloma samples from the phase 3

POLLUX and CASTOR studies [32, 33], chromosomal
regions 1q, 13, and 17p were evaluated for CNVs
using both CNV Radar (v1.0) and CNVkit by compar-
ing changes in read depth to a normal reference that
was generated using 100 peripheral blood mono-
nuclear cell samples; 95.8% concordance was observed
between the two callers. 100 discordant calls were
manually reviewed by two independent experts in a
central sequencing facility at Expression Analysis-Q2

Solutions (Morrisville, NC). Four cases too difficult to
judge by human experts were called using CNV Radar
(v1.1), which generated more detailed statistics across
the regions of interest.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3397-x.

Additional file 1. Dendrogram of 141 normal samples based on
clustering by read depth at all capture regions. Distance between
samples was defined as 1 – Pearson correlation of read depth at capture
regions.

Additional file 2. Supplementary material on running CNVkit, CoNIFER,
ExomeDepth and CopywriteR.

Additional file 3. Sensitivity of CNV Radar (blue) and CNVkit (pink).

Additional file 4. Sample SRR2128693 was called more accurately by
CNVkit than CNV Radar. Top panel of horizontal bars indicates CNV calls
by CNV Radar and CNVkit as well as the true CNV status defined by WGS.

Table 6 Assignment of CNV caller results into TP, FP, TN, and
FN as defined by FISH, WGS, or SNP arrays. Evaluation was
performed separately for (A) deletions and (B) amplifications

A. True State

CNV Neutral Amplification Deletion

State Neutral TN TN FN

Called Amplification TN TN FN

Deletion FP FP TP

B. True State

CNV Neutral Amplification Deletion

State Neutral TN FN TN

Called Amplification FP TP FP

Deletion TN FN TN

CNV copy number variation; TP true positive; FP false positive; TN true
negative; FN false negative; FISH fluorescence in situ hybridization; WGS whole
genome sequencing; SNP single nucleotide polymorphism
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