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Abstract

Background: Feature selection is a crucial step in machine learning analysis. Currently, many feature selection
approaches do not ensure satisfying results, in terms of accuracy and computational time, when the amount of
data is huge, such as in ‘Omics’ datasets.

Results: Here, we propose an innovative implementation of a genetic algorithm, called GARS, for fast and accurate
identification of informative features in multi-class and high-dimensional datasets. In all simulations, GARS
outperformed two standard filter-based and two ‘wrapper’ and one embedded’ selection methods, showing high
classification accuracies in a reasonable computational time.

Conclusions: GARS proved to be a suitable tool for performing feature selection on high-dimensional data.
Therefore, GARS could be adopted when standard feature selection approaches do not provide satisfactory results
or when there is a huge amount of data to be analyzed.
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Background
In machine learning, the feature selection (FS) step seeks
to pinpoint the most informative variables from data to
build robust classification models. This becomes crucial
in the Omics data era, as the combination of high-
dimensional data with information from various sources
(clinical and environmental) enables researchers to study
complex diseases such as cancer or cardiovascular dis-
ease in depth [1–4]. Given the amount and sophistica-
tion of data, accurate prediction, for example, of the
nature of the disease and/or the outcome of patients is
difficult, but the design of high-performance classifica-
tion models through the application of machine learning
is strongly required.
There are several methods available for performing FS,

which are generally grouped into three main categories:
(i) filter-based methods that rely on univariate statistics,
correlation or entropy-based measurements; (ii) wrapper

methods, which combine the search algorithms and clas-
sification models; and (iii) embedded methods, where
the FS is realized during the construction of the classi-
fier. Even though they are often fast and easy-to-use on
low to medium size data, these techniques have however
substantial disadvantages: the filter-based methods ig-
nore the relationship between features, whereas the
wrapper methods are prone to over-fitting and get stuck
in local optima [5]. Furthermore, wrapper and, to a
lesser extent, embedded methods present a high compu-
tational complexity, increasing serious constraints when
dealing with a high number of features (> 15,000), i.e. in
Omics datasets; this makes necessary to precede these
methods with a previous filter-based method or standard
pre-processing, in order to be effective [6, 7]. Another
way of categorizing FS methods is to consider their algo-
rithmic aspect, specifically as a search problem, thus
classifying FS as exhaustive, heuristic and hybrid search
methods [8]. Exhaustive search is very limited in practice
because these methods try all possible feature combina-
tions of the total original features, thus, making compu-
tational calculations too heavy to be effectively
accomplished. Conversely, heuristic search aims to
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optimize a problem by improving iteratively the solution
based on a given heuristic function, whereas hybrid
methods are a sequential combination of different FS ap-
proaches, for example those based on filter and wrapper
methods [9].
A specific class of wrapper methods is represented by

optimization approaches, inspired by natural selection,
such as population-based or Genetic Algorithms (GAs)
[10]. GAs are adaptive heuristic search algorithms that
aim to find the optimal solution for solving complex
problems. Briefly, a GA tries and assesses the goodness
of a set of candidate solutions, called chromosomes,
simulating the Darwinian law of the “survival of the fit-
test”. Chromosomes are a string of a set of variables.
Specifically, a GA is composed of five steps: (1) gener-
ation of a random set of chromosomes (ˈPopulationˈ);
(2) evaluation of each chromosome by a score that re-
flects how good the solution is (ˈFitness Functionˈ); (3)
‘Selection’ of chromosomes with the highest fitness
score; (4) ˈCrossover’ between pairs of chromosomes at
points chosen from within the chromosomes to generate
offspring (‘Reproduction’); and (5) ‘Mutation’ with a low
random probability. The last three are called “evolution-
ary” steps. At the end of this process, a new “evolved”
chromosome population is obtained. To find the optimal
solution this scheme is repeated several times until the
population has converged, i.e., new offspring are not sig-
nificantly different from the previous generation.
These optimization strategies ensure better perform-

ance, in terms of classification accuracy, than simpler FS
techniques such as filter-based or deterministic wrapper
methods. In addition, GAs are capable to search the op-
timal solution on high-dimensional data composed of
mutually dependent and interacting attributes. Nonethe-
less, GAs are more computationally expensive. More-
over, GAs, like every wrapper method, are more prone
to overfitting, because a specific classifier is built to as-
sess both the goodness of the fitness function and classi-
fication accuracy [5]. To do this, popular methods are
based on Support Vector Machines [11] and Random
Forest [12]. For these reasons, GAs have not been widely
used for performing FS, despite their high potential.
To overcome these limitations, here, we propose an

innovative implementation of such algorithms, called
Genetic Algorithm for the identification of a Robust
Subset (GARS) of features. GARS may be applied on
multi-class and high-dimensional datasets, ensuring high
classification accuracy, like other GAs, taking a compu-
tational time comparable with basic FS algorithms.

Results
GARS implementation
A specific GA is characterized by a custom implementa-
tion of the chromosome structure and the corresponding

fitness function. Let assume we have a dataset D with n
samples (s1, s2,..., sn) and m features (f1, f2,..., fm). In
GARS, we define the chromosome as a vector of unique
integers, where each element represents the index (1 to
m) of a specific feature in the dataset. The length l of
each chromosome, with l <m, corresponds to the length
of the set of features to be selected. A chromosome
population is, thus, a matrix l × k, where k is the number
of chromosomes (Fig. 1). The first population must be
randomly generated.
A specific and distinctive characteristic of GARS im-

plementation is the way to evaluate the fitness of each
chromosome. This is accomplished in two consecutive
steps: first, a Multi-Dimensional Scaling (MDS) of the
examined samples is performed using the chromosome
features. Then, the averaged Silhouette Index (aSI, [13])
is calculated on the sample coordinates (first 2 dimen-
sions) obtained by MDS:

aSI ¼
Pn

i¼1
b ið Þ−a ið Þ

max a ið Þ; b ið Þf g
n

ð1Þ

where i is a sample, n is the total number of samples,
a(i) is the average dissimilarity of i with respect to all
other samples within the same class, and b(i) is the low-
est averaged distance of i to all samples belonging to any
other class. Finally, the negative values of aSI are set to 0
(see the flowchart in Fig. 1):

Fitness ¼ aSI; aSI > 0
0; aSI ≤0

�
ð2Þ

In this way, the maximum fitness score is equal to 1
(i.e., the score that can be assigned to a chromosome
with the maximum discrimination power), while the
minimum fitness score is 0 (i.e., a chromosome with no
discrimination power). For fitness score = 1, all samples
are correctly allotted to their class and each group of
samples is very far from each other. For fitness score = 0,
the sample groups cannot be distinguished.
The evolutionary steps implemented in GARS are ac-

complished by the most frequently used methods and
consist of an elitism step, coupled with the Tournament
or the Roulette Wheel selection methods, followed by
the one-point or two-points crossover [14, 15]. In
addition, the mutation step is carried out by replacing a
specific chromosome element with a random number,
not present in that chromosome, in the range 1 to m.

Performance and comparison with other FS methods
To evaluate the performance of GARS, we implemented
three machine learning analyses, testing our GA against
an univariate filter-based method, called Selection By
Filtering (SBF) [5], a wrapper method, consisting of a
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Recursive Feature Elimination (RFE) strategy [16], an
embedded method called LASSO (Least Absolute
Shrinkage and Selection Operator) regression [17], and
two GAs, where the fitness function was calculated by a
Support Vector Machine (svmGA) [18] and a random
forest classifier (rfGA) [19], respectively (see Methods).
The first and the second analyses aimed to select fea-

tures in binary classification problems, using a low-
dimensional (henceforth, ‘binary low-dimension’ dataset)
and a mid-dimensional dataset (‘binary mid-dimension’),
respectively (see Methods). The former dataset was ob-
tained by a miRNA-Seq experiment, investigating the
miRNAome dysregulation in cervical cancer tissues [20];
the latter resulted from a Nuclear Magnetic Resonance
(NMR) spectrometry experiment, in which hundreds of
urinary metabolic features were studied in acute kidney
injury [21]. In the last analysis, each method was tested
on several multi-class classification problems, using
high-dimensional data (‘multi high-dimension’ dataset)
downloaded from the Genotype-Tissue Expression por-
tal (GTEx, https://gtexportal.org/home/) [22, 23]. In par-
ticular, we used RNA-Seq expression data from 11 brain
regions (see Methods).

Low-dimensional dataset in a binary classification problem
The ‘binary low-dimension’ dataset allows us to evaluate
the performance in an easy binary classification problem,
where the number of features is relatively small, and
groups are well separated (see Additional file 1: Fig. S1,
panel A). This dataset, after pre-processing steps (see
Methods), was composed of 58 samples and 168 features.
We randomly split the dataset into two subsets: a ‘learn-
ing dataset’, composed of 50 samples (25 tumors, T, and
25 non-tumor, NT), and an ‘independent test set’, com-
posed of the remaining 8 samples (4 T and 4 NT). The
range of desired chromosome features was set from 5 to
20, for GARS and RFE. As for the three GAs, we chose
reasonable and frequently used GA parameters, setting
the probability of mutation to 0.1, the crossover rate to
0.8, the number of iteration to 100, the number of chro-
mosomes to 100, and the number of chromosomes kept
by elitism to 2. We considered ‘T’ as the positive class.
Results obtained after the classification analysis are

summarized in Table 1. Overall, GARS and LASSO out-
performed the other four FS methods, by identifying the
smallest feature set (n = 14) capable of ensuring the max-
imum accuracy, sensitivity, specificity, Negative

Fig. 1 Block diagram of the GARS workflow. The first population of chromosomes (red block) is created by randomly selecting sets of variables
(see the red box on the left). Then, each chromosome is assessed (green block). To do this (see green box on the left), we designed a fitness
function that (A) extracts for each sample the values of the variables corresponding to the chromosome features, (B) uses them to perform a
Multi-Dimensional Scaling (MDS) of the samples, and (C) evaluates the resulting clustering by the average Silhouette Index (aSI). Finally, to obtain
a new evolved population, the Selection (light blue block), Reproduction (blue) and Mutation (purple) steps are implemented. This process,
iteratively repeated several time, allows to reach the optimal solution. f = feature, s = sample, v = value of a features in a sample, n = total number
of samples, m = total number of features, rnd (1,m) = random integer between 1 and m, i = specific sample, a(i) = average dissimilarity of i with
respect to all other samples within the same class, b(i) = the lowest averaged distance of i to all samples belonging to any other class, aSI =
average Silhouette Index, and MDS =Multi-Dimensional Scaling
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Predicted Value (NPV), Positive Predicted Value (PPV)
and Area Under ROC Curve (AUC). Notably, the feature
sets selected by GARS and LASSO are 1.5 to 6 times
smaller than the subsets identified by svmGA, SBF, and
rfGA (Table 1). Compared to GARS, the two out of
three fastest methods (i.e., RFE and SBF) did not reach
an equally high classification accuracy or else selected
far more numerous features, respectively. On the other
hand, the other two most accurate algorithms (i.e., rfGA
and svmGA) needed several hours to identify a set of

features. Only LASSO ensured a very short execution
time and a small number of features. To jointly assess
the improvement of efficacy and efficiency over the
other algorithms, we used radar charts displaying the
performance metrics of the ongoing programs (Fig. 2).
These highlighted that, due to its short computational
learning time (about 4 min per fold), high classification
performances, and the small number of resulting fea-
tures, GARS and LASSO achieved the highest score cov-
ering 98% of the total area.

Mid-dimensional dataset in a binary classification problem
A second test consisted of comparing the FS methods
on the ‘Binary mid-dimension’ dataset, which was com-
posed of 26 patients affected by Acute Kidney Injury
(AKI) and 72 healthy subjects (non-AKI). Using this
dataset, we assessed the performance of the 5 algorithms
in a hard binary classification problem, where the num-
ber of features is pretty high and two groups are not well
separated (see Additional file 1: Figure S1, panel B).
Here, the ‘learning dataset’ was generated by random
sampling of 20 patients with AKI and 20 non-AKI. The
remaining 50 non-AKI and 6 AKI samples were used as

Table 1 Performance evaluation, testing FS methods on the
‘binary low-dimension’ dataset

ACC SEN SPE PPV NPV AUC Time Nfeats

GARS 1 1 1 1 1 1 4 min 14

RFE 0.75 0.75 0.75 0.75 0.75 0.94 1 s 5

SBF 1 1 1 1 1 1 15 s 74

rfGA 1 1 1 1 1 1 1 h 33 min 84

svmGA 1 1 1 1 1 1 13 h 2min 23

LASSO 1 1 1 1 1 1 1 s 14

ACC Accuracy, SEN Sensitivity, SPE Specificity, PPV Positive Predictive Value,
NPV Negative Predictive Value, AUC Area Under ROC Curve, Time average
learning time for each cross-validation fold, Nfeats n. of selected features

Fig. 2 Radar plots that summarize the performance of the different algorithms tested in a ‘binary low-dimension dataset’. To test the efficacy of
each algorithm, we calculated ACC = Accuracy, SEN = Sensitivity, SPE = Specificity, PPV = Positive Predictive Value, NPV = Negative Predictive Value,
AUC = Area Under ROC Curve, and Nfeats = n. of selected features on the independent test set. To evaluate the efficiency of each algorithm, we
measured the average learning time for each cross-validation fold (Time). To get an overall assessment of the algorithm performance, we
calculated the area of the polygon obtained connecting each point of the aforementioned measurements: the wider the area, the better the
overall performance. GARS (red chart) and LASSO (purple chart) covered 98% of the total area, SBF (green chart) 91%, rfGA (yellow chart) 87%,
svmGA (light blue chart) 76% and RFE (blue chart) 70%
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the ‘independent test set’ for performance evaluation.
The GA settings were the same as the previous analysis,
except for the number of iteration, set to 150. We con-
sidered ‘AKI’ as the positive class.
On this dataset, GARS found a feature set that allowed

reaching the highest classification accuracy (73%) and
the best compromise between sensitivity and specificity
with a small number of features (n = 7; see Table 2).
Conversely, SBF, which showed similar accuracy and
performance, identified a minimum feature set of 83 me-
tabolites; and, LASSO, which selected the smallest num-
ber of features (n = 2; Table 2) but at the expense of a
relevant lower accuracy (66%) compared to GARS. In
terms of computational learning time, GARS dramatic-
ally outperformed the other two GAs: rfGA and svmGA
took 2–16 h per fold to complete the analysis, while
GARS less than 12min. The radar chart in Fig. 3 sum-
marizes these results: GARS covered a larger area (62%)
than any other algorithm, which ranged from 38 to 59%.

High-dimensional datasets in multi-class classification
problems
For the last machine learning analysis, we picked sam-
ples belonging to 11 brain regions from a large normal
tissue transcriptomics dataset, with a total of 19,162 fea-
tures. This high-dimensional dataset was used to test the
FS algorithms in multi-class classification problems,
where the number of features is as high as in common
RNA-Seq datasets, and each group is very similar to
each other (see Additional file 1: Figure S1, panel C).
We constructed five different datasets, composed of an
increasing number of tissue samples (from 3 to 11 with
2-step increments), and generated ‘learning datasets’ by
random sampling 50 samples per tissue. The remaining
samples (n = 156–479) were used as ‘independent test
sets’ for performance evaluation. The GA settings were
the same as the previous analysis, except for the desired
chromosomal feature range that was set from 15 to 25.
The performance achieved by GARS were very high in

all multi-class analyses, as shown in Table 3: accuracies
ranged from 0.86 to 0.92, decreasing linearly (r = − 0.96,

p = 0.009) as the number of classes increased. We ob-
served similar inverse correlations between the number
of classes and sensitivity (r = − 0.96, p = 0.01), specificity
(r = 0.88, p = 0.05), PPV (r = − 0.96, p = 0.01), NPV (r =
0.85, p = 0.07), number of features (r = 0.88, p = 0.05),
and learning time expressed on a log2 scale (r = 1, p <
0.001).
The result for such complex settings clearly re-

vealed the limitations of the other feature selection
methods considered. Indeed, we observed that: (i)
LASSO, RFE and SBF implementations cannot handle
a huge number of variables as produced by RNA-seq
experiment (> 15,000); and, (ii) rfGA and svmGA can-
not complete the analyses within the time limit of 24
h per fold.
To try and compare GARS with the other tools in a

multi-class setting, we reduced the number of features
of the five high-dimensional datasets selecting the top
1000 genes with the highest variance over all samples.
As summarized in Table 4, again svmGA did not
complete the analysis in the maximum time allotted
(24 h per fold), whereas rfGA accomplished the task
only when the number of classes was equal to 3.
Conversely, SBF was able to rapidly select feature sets
for any given multi-class analysis, but the number of
variables chosen ranged from 28% (3-class problem)
to 98% (11-class problem) of the available features.
RFE showed the shortest learning time, but in three
cases did not perform any feature selection at all (n =
999 in 3-, 7-, and 11-class analyses). LASSO showed
a classification accuracy of 3–6% higher than GARS;
however, the number of features selected by LASSO
was from 3 to 7 times higher than those identified by
GARS. Overall, although classification accuracy and
other metrics were similar whatever the number of
classes, the number of selected features was dramatic-
ally different. GARS always selected the lowest num-
ber of features in all the analyses performed. Notably,
when the number of classes was greater than 5, the
learning time required by GARS for the feature selec-
tion using the full (19,162 genes) or reduced datasets
(1000 genes) was not significantly different (p = 0.08).

Robustness of GARS
In most comparisons, GARS ensured that the differ-
ences between accuracies on a training set and test
set (Δ) were less than 10%. The only three exceptions
are the performance on the mid-dimensional dataset
(Δ = 25% [1.8–48.2]) and on the high-dimensional
dataset with 11 classes, where Δ = 12% [10.8–13.2]
and Δ = 10.6% [7.8–13.4], with all features and with
the top 1000 most variant features, respectively. Re-
sults obtained in all simulations for each FS methods
are summarized in Additional file 2.

Table 2 Performance evaluation, testing FS methods on the
‘binary mid-dimension’ dataset

ACC SEN SPE PPV NPV AUC Time Nfeats

GARS 0.73 0.83 0.72 0.26 0.97 0.81 11 min 41 s 7

RFE 0.57 0.33 0.6 0.09 0.88 0.54 2 s 10

SBF 0.73 0.83 0.72 0.26 0.97 0.87 20 s 83

rfGA 0.7 1 0.66 0.26 1 0.92 2 h 33 min 145

svmGA 0.68 0.83 0.66 0.23 0.97 0.86 16 h 53min 94

LASSO 0.66 0.83 0.64 0.22 0.97 0.80 1 s 2

ACC Accuracy, SEN Sensitivity, SPE Specificity, PPV Positive Predictive Value,
NPV Negative Predictive Value, AUC Area Under ROC Curve, Time average
learning time for each cross-validation fold, Nfeats n. of selected features
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Discussion
The ever-increasing development of ground-breaking
technologies has changed the way in which data are gen-
erated, making measuring and gathering a large number
of variables a common practice in science today. Regard-
less of the field of study, the common but challenging
goal for most data analysts is to identify, from this large
amount of data, the most informative variables that can
accurately describe and address a relevant biological
issue, namely, the feature selection. Feature selection is
particularly important in the context of classification

problems because multivariate statistical models for pre-
diction usually display better performance by using small
sets of features than building models with bulks of vari-
ables. Unlike other methods of dimensional reduction,
the feature selection techniques maintain the original
representation of the variables and seek for a subset of
them, while concurrently optimizing a primary objective,
e.g. prediction performance on future data [24, 25]. Re-
ducing the complexity of high-dimensional data by fea-
ture selection has different potential benefits, including
(i) limiting overfitting while simplifying models, (ii) im-
proving accuracy and (iii) computational performance,
(iv) enabling better sample distinction by clustering, (v)
facilitating data visualization and (vi) providing more
cost-effective models for future data.
Conversely, the use of an inefficient feature selection

strategy can lead to over-fitting or poorly performing
classification models. Nonetheless, the feature selection
step is underestimated in several applications as com-
mon users often prefer to apply fast, easy-to-use tech-
niques instead of methods where multiple parameters
have to be set or computational time is high, all at the
expense of accuracy and precision. However, the

Fig. 3 Radar plots that summarize the performance of the different algorithms tested in a ‘binary mid-dimension dataset’. To test the efficacy of
each algorithm, we calculated ACC = Accuracy, SEN = Sensitivity, SPE = Specificity, PPV = Positive Predictive Value, NPV = Negative Predictive Value,
AUC = Area Under ROC Curve, and Nfeats = n. of selected features on the independent test set. To evaluate the efficiency of each algorithm, we
measured the average learning time for each cross-validation fold (Time). To get an overall assessment of the algorithm performance, we
calculated the area of the polygon obtained connecting each point of the aforementioned measurements: the wider the area, the better the
overall performance. GARS (red chart) covered 62% of the total area, SBF (green chart) 59%, LASSO (purple chart) 58%, rfGA (yellow chart) 55%,
RFE (blue chart) 39% and svmGA (light blue chart) 38%

Table 3 Performance evaluation, testing GARS on ‘multi-class
high-dimension’ datasets

ACC SEN SPE PPV NPV Time Nfeats

3 classes 0.92 0.89 0.95 0.87 0.94 59 min 15

5 classes 0.91 0.85 0.96 0.84 0.96 1 h 48 min 18

7 classes 0.89 0.82 0.97 0.78 0.97 3 h 43 min 18

9 classes 0.89 0.82 0.97 0.79 0.97 6 h 49 min 24

11 classes 0.86 0.75 0.97 0.72 0.97 11 h 55min 22

ACC Accuracy, SEN Sensitivity, SPE Specificity, PPV Positive Predictive Value,
NPV Negative Predictive Value, AUC Area Under ROC Curve, Time average
learning time for each cross-validation fold, Nfeats n. of selected features
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selection of the correct feature selection algorithm and
strategy is still a critical challenge [7]. Among feature se-
lection techniques, GA has been proven to be effective
as both a dimensional reduction (feature extraction) and
feature selection method. Although feature extraction
can be very effective in reducing the dimensional space
and improving classification performance both in terms
of accuracy and speed, it works by transforming the ori-
ginal set of features into new (few) ones. The drawback
of this approach is that the extracted features are derived
as a combination of the original variables and, therefore,
the number of features to be experimentally tested can-
not be reduced in practice. This issue is particularly

relevant when dealing with Omic data since they are
generated by expensive experimental settings. This
makes a feature extraction approach less feasible for
real-world scenarios where, instead, the use of low-cost
measurements of few sensitive variables (e.g. biomarkers)
is a challenging target, for example for medical applica-
tions [26].
However, class-dependent feature selection by GA has

been already shown to perform efficiently and with fast
processing on medium-sized datasets (~ 100 features)
with similar or even better accuracy compared to well-
performing algorithms such as those based on sequential
floating forward search [9, 27]. Despite that, the methods
based on GA traditionally did not deal with high-
dimensional data as produced by the most modern,
cutting-edge Omics technologies and, thus, GAs have
not been widely used in this context.
By combining a dimension reduction method (i.e.

MDS) with a score of similarity (i.e. silhouette index) be-
tween well-defined phenotypic sample groups (aka clas-
ses), GARS represents an innovative supervised GA
implementation that, exploiting the search optimization
of population-based algorithms, proves to be an efficient
and timely method of selecting informative features on
simple (binary) and complex (multi-class) high-
dimensional data issues. Actually, other GA implementa-
tions have already considered the use of similarity scores
to assess the consistency of clustering in an unsuper-
vised setting [28, 29]. The main difference with GARS is
that our algorithm is designed to solve a supervised
problem where the averaged silhouette index calculation
of the MDS result is embedded in the fitness function to
estimate how well the class-related phenotypes are
grouped together while searching the optimal solution.
In addition to being effective, the combination of the
MDS and the silhouette index calculations proved to be
very fast, thus producing accurate solutions for high-
dimensional data sizes as well. On the contrary, the ex-
cessive time of execution for other GA implementations
(i.e. days) or the inadequacy to handle complex problems
(multi-class settings, tens of thousands of variables) pre-
clude their use for real applications.
We demonstrated the GARS efficiency by benchmark-

ing against the most popular feature selection methods,
including filter-based, wrapper-based and embedded
methods, as well as other GA methods. We showed that
GARS enabled the retrieval of feature sets in binary clas-
sification problems, which always ensured classification
accuracy on independent test sets equal or superior to
univariate filter-based, wrapper and embedded methods
and other GAs. We also found that the selected features
by GARS were robust, as the error rate on the validation
test sets was consistently low for GARS and obtained
with the lower number of features selected compared to

Table 4 Performance evaluation, testing FS methods on
reduced ‘multi-class high-dimension’ datasets (1000 features)

ACC SEN SPE PPV NPV Time Nfeats

3 GARS 0.92 0.90 0.95 0.88 0.94 26min 18

3 RFE 0.94 0.92 0.96 0.91 0.96 3 s 999

3 SBF 0.95 0.94 0.97 0.94 0.97 1 min 58 s 289

3 rfGA 0.93 0.91 0.95 0.91 0.95 19 h 55 min 598

3 svmGA – – – – – – –

3 LASSO 0.95 0.93 0.96 0.93 0.97 2 s 54

5 GARS 0.93 0.89 0.97 0.89 0.97 1 h 22 min 17

5 RFE 0.93 0.89 0.97 0.88 0.97 6 s 21

5 SBF 0.93 0.89 0.97 0.87 0.97 9 min 38 s 890

5 rfGA – – – – – – –

5 svmGA – – – – – – –

5 LASSO 0.96 0.93 0.98 0.93 0.98 2 s 74

7 GARS 0.90 0.84 0.97 0.81 0.97 3 h 6min 16

7 RFE 0.95 0.91 0.98 0.89 0.98 13 s 999

7 SBF 0.95 0.92 0.99 0.90 0.99 16min 7 s 959

7 rfGA – – – – – – –

7 svmGA – – – – – – –

7 LASSO 0.96 0.93 0.99 0.90 0.99 4 s 105

9 GARS 0.92 0.86 0.98 0.85 0.98 6 h 6min 22

9 RFE 0.93 0.89 0.98 0.87 0.98 11 s 25

9 SBF 0.95 0.91 0.99 0.89 0.99 22min 47 s 963

9 rfGA – – – – – – –

9 svmGA – – – – – – –

9 LASSO 0.96 0.92 0.99 0.90 0.99 6 s 123

11 GARS 0.93 0.88 0.99 0.86 0.98 10 h 31 min 19

11 RFE 0.94 0.90 0.99 0.88 0.99 17 s 999

11 SBF 0.95 0.91 0.99 0.89 0.99 30min 44 s 976

11 rfGA – – – – – – –

11 svmGA – – – – – – –

11 LASSO 0.96 0.92 0.99 0.90 0.99 9 s 134

ACC Accuracy, SEN Sensitivity, SPE Specificity, PPV Positive Predictive Value,
NPV Negative Predictive Value, AUC Area Under ROC Curve, Time average
learning time for each cross-validation fold, Nfeats n. of selected features
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the other methods. Furthermore, for real-time process-
ing, GARS required a computational time that was simi-
lar compared to filter-based, wrapper or embedded
feature selection methods, or drastically lower, roughly
1% on average, compared to GAs, but always returning a
set with the lower number (up to 6 times less) of in-
formative variables.
Remarkably, when dealing with high-dimensional data

sets, i.e. presenting around 20,000 features (as in com-
mon Omic experiments), GARS was the only method
able to complete the analysis on all variables without
any pre-filtering step. Specifically, in multi-class classifi-
cation problems, GARS achieved classification accuracies
ranging from 0.86 (11 classes) to 0.92 (3 classes), select-
ing feature sets with at most 25 variables. Consistently,
even if we reduced the number of original variables of
the high-dimensional datasets to a smaller one (i.e. 1000
features), enabling comparison with the other feature se-
lection methods, GARS guaranteed similar performance
to the other algorithms (accuracies greater than 0.9), but
always selecting the smallest set of features.

Conclusions
While we do not presume to have covered here the full
range of options for performing feature selection on
high-dimensional data, we believe that our test suggests
GARS as a powerful and convenient resource for timely
performance of an effective and robust collection of in-
formative features in high-dimensions. Through compar-
ing with other feature selection algorithms, we also
showed that GARS is feasible for real-world applications
when applying to solve a complex (multi-class) problem.
Therefore, GARS could be adopted when standard fea-
ture selection approaches do not provide satisfactory re-
sults or when there is a huge amount of data to be
analyzed.

Methods
Dataset collection and pre-processing
To test and compare the performance of the different
feature selection algorithms, we collected and pre-
processed three publicly available -omics datasets:

� ‘Binary low-dimension’ dataset. To generate this
dataset, we filtered and normalized the data
produced by [20], consisting of 58 samples (29 with
cervical tumor vs. 29 without tumor) in which the
expression of 714 miRNAs was assessed by RNA-
Seq technology. Specifically, we discarded features
(miRNAs) with less than 10 counts in more than
50% of the samples; subsequently, the variance sta-
bilizing transformation was applied.

� ‘Binary mid-dimension’ dataset. We derived this
dataset from the NMR spectrometry

characterization, conducted by [21], of the urine
metabolomic profiles in 72 healthy subjects and 34
patients affected by AKI, divided into three classes
based on the Acute Kidney Injury Network (AKIN)
criteria. The number of metabolic features is 701
and we used the original data normalized by
quantile normalization. To accomplish the binary
classification task, we selected all the healthy donors
and the 26 patients with stage-1 AKI.

� ‘Multi-Class high-dimension’ datasets. These
datasets were yielded exploiting the Genotype-
Tissue Expression Project (GTEx) that collects the
transcriptome profiles (56,318 transcripts) of 53 tis-
sues gathered from more than 700 donors [22, 23].
We selected samples from 11 brain regions: amyg-
dala (n = 72), anterior cingulate cortex (n = 84),
caudate (n = 117), cortex (n = 114), frontal cortex
(n = 108), hippocampus (n = 94), hypothalamus (n =
96), nucleus accumbens (n = 113), putamen (n = 97),
spinal cord (n = 71), and substantia nigra (n = 63).
We applied the same filtering and normalization
steps, adopted for the ‘binary-low dimension’
dataset.

Comparison and evaluation metrics
To evaluate the goodness of the FS algorithms, we
implemented a supervised machine learning analysis,
depicted in Fig. 4. First, we split each dataset into
two parts: a balanced set, called “learning dataset”
and an “independent test set”. Then, we applied a 5-
fold cross-validation strategy to the learning dataset:
this was repeatedly subdivided into training sets,
used to select informative features and subsequently
build a random forest classifier [30], and in valid-
ation sets, used to test the classifier performance.
Extending the concept of a decision tree, this classi-
fier belongs to the class of ensemble strategy. First,
several decision trees are built independently, sam-
pling a bunch of features in a random way. Then,
the predictions of each tree are taken into account
to perform the random forest classification, weight-
ing each tree by a voting approach. This implemen-
tation ensures high accuracy and low over-fitting.
For each fold, the number of selected features, the
average computational time during the learning steps
(Learning Time), accuracy, specificity, sensitivity (i.e.,
recall), PPV and NPV (i.e., precision) were calculated
for each validation set. For binary comparisons, the
area under the ROC curve (AUC) was also computed
[31]. Finally, based on the highest AUC (binary com-
parisons) or the highest accuracy (multi-class com-
parisons) and the lowest number of features selected,
we chose the best model: this was successively tested
on the independent test set [32], measuring
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accuracy, specificity, sensitivity, PPV, NPV, and AUC
when appropriate (see Tables 1, 2, 3, and 4). We ex-
cluded from the comparisons those feature selection
algorithms that (a) took more than 24 h per fold to
produce the results and/or (b) stopped the execution
because of the high number of features to work
with.
To get an overall view of the results of the binary

classification analysis, we drew radar-plots. These
graphs are composed of equiangular radii on a cir-
cumference, where each segment represents a specific
measurement.
In order to set the same range used for the machine

learning evaluation metrics, values corresponding to the
number of features and the computational time were
scaled between 0 and 1. We calculated the area covered

Acov by the polygon obtained connecting the endpoints
of each segment, by the formula:

Acov ¼ 1
2
� rn � r1 � sin γð Þ

� �

þ
Xn−1

1¼1

1
2
� ri � riþ1 � sin γð Þ

� �
ð3Þ

where i represents the magnitude of the i measurement,
γ is the angle between two consecutive radii, and n is
the number of measurements. Finally, the performance
is evaluated by the ratio between Acov and the total area
available (Amax):

A% ¼ Acov

Amax
� 100 ð4Þ

where:

Amax ¼ n
2
� sin γð Þ ð5Þ

Robustness analysis
In machine learning, the robustness is the property of a
classifier or a classification analysis to ensure similar
performances on both training and test sets. The lower
this difference in performance, the more robust a classi-
fication. Therefore, we evaluated the robustness of each
feature selection tool, retrieving their performances on
training and validation sets during the 5-fold cross-
validation. In particular, we assessed the robustness by
computing the average difference in accuracy (Δ) and
the 95% confidence intervals over the five iterations.

Tools for data handling and assessments
GARS was entirely created in R v.3.5.1 environment
[33]. The filtering and normalization steps were per-
formed using the ‘DaMiRseq’ package [34]. Perfor-
mances were assessed by the dedicated functions,
implemented in the ‘caret’ package [12]. LASSO, rfGA,
svmGA, RFE, and SBF were performed by exploiting the
dedicated functions, implemented in the ‘caret’ package
[12]. Radar-plots were drawn using the ‘fmsb’ R package.

Hardware resources
All the analyses were run on R, installed in Windows 10
on a Workstation that has 64 GB of RAM and an Intel®
Xeon® CPU ES-2623 v4 @ 2.60 GHz processor.

Availability and requirements
Project name: GARS.
Project home page: https://www.bioconductor.org/

packages/GARS/
Operating system(s): platform-independent.
Programming language: R.

Fig. 4 Flowchart of the Machine Learning process used to assess
the performance of each algorithm tested. Each dataset is initially
split into two subsets: the ‘Learning dataset’ and the ‘Independent
test set’. Subsequently, the former undergoes a 5-fold cross
validation strategy, where Training sets are used to select
informative features (‘Feature Selection’) and Validation sets to test
the classifier performance (‘Evaluation’). Finally, the Best Model is
selected and, then, assessed on the Independent test set
(‘Evaluation’): the last evaluation step is used to compare the
performance of each feature selection method
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Other requirements: none.
License: GLP (> = 2).
Any restrictions to use by non-academics: No restrictions

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3400-6.

Additional file 1. MDS plots. A MDS plot for each dataset is provided.
Figure S1. Multi-Dimensional Scaling plots. Multi-Dimensional Scaling
analyses were applied to display normalized datasets in a two-
dimensional space and to highlight the degree of separation between
groups. In the ‘binary low-dimension’ dataset (panel A), tumor samples (T,
blue triangles) and non-tumor (NT, red circles) are well separated. Con-
versely, samples composing the ‘binary mid-dimension’ dataset (panel B)
are quite mixed (AKI, red circles, and non-AKI, blue triangles). Concerning
the ‘multi-class high-dimension’ dataset (panel C), samples from the 11
brain tissues are substantially overlapped, with the exception of those
from the spinal cord.

Additional file 2. Results of the robustness analysis. In this file, we
summarized the results of the robustness analysis, performed for each
dataset. A table is provided for each analysis.
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