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Abstract

Background: ChIP (Chromatin immunoprecipitation)-exo has emerged as an important and versatile improvement
over conventional ChIP-seq as it reduces the level of noise, maps the transcription factor (TF) binding location in a
very precise manner, upto single base-pair resolution, and enables binding mode prediction. Availability of
numerous peak-callers for analyzing ChiP-exo reads has motivated the need to assess their performance and report
which tool executes reasonably well for the task.

Results: This study has focussed on comparing peak-callers that report direct binding events with those that report
indirect binding events. The effect of strandedness of reads and duplication of data on the performance of peak-
callers has been investigated. The number of peaks reported by each peak-caller is compared followed by a
comparison of the annotated motifs present in the reported peaks. The significance of peaks is assessed based on
the presence of a motif in top peaks. Indirect binding tools have been compared on the basis of their ability to
identify annotated motifs and predict mode of protein-DNA interaction.

Conclusion: By studying the output of the peak-callers investigated in this study, it is concluded that the tools that
use self-learning algorithms, i.e. the tools that estimate all the essential parameters from the aligned reads, perform
better than the algorithms which require formation of peak-pairs. The latest tools that account for indirect binding
of TFs appear to be an upgrade over the available tools, as they are able to reveal valuable information about the

consequences on the output of data analysis.
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mode of binding in addition to direct binding. Furthermore, the quality of ChIP-exo reads have important

Introduction
Chromatin immunoprecipitation (ChIP) combined with
DNA sequencing has been widely used to study DNA
binding proteins [1, 2]. Over the last decade, the trad-
itional ChIP-sequencing protocol [3] has been modified
to newer methods such as ChIP-exo [4], ChIP-Nexus
[5], ATAC-seq [6], and Mnase-seq [7] to determine vari-
ous aspects of transcription factor (TF) binding, histone
modifications and chromatin architecture [3, 4, 8].

In 2011, Rhee & Pugh et al. [4] developed a modifica-
tion of ChIP-seq called ChIP-exo in which lambda exo-
nuclease is used in an additional step to degrade
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unbound double-stranded DNA in the 5'-3" direction
until degradation is blocked at the interface of the cross-
linked protein-DNA complex. This leads to the gener-
ation of highly accurate protein-DNA footprints, up to a
single nucleotide resolution.

ChIP-exo has several advantages over conventional
ChIP-seq. Firstly, ChIP-exo exhibits lesser background
noise due to removal of non-specific unbound genomic
DNA. Moreover it has the ability to detect: (i) precise
DNA binding locations of TFs with high spatial reso-
lution (ii) different modes of TF binding, including pro-
teins bound in the oligomeric state (iii) enrichment of
other proteins that interact with the targeted protein [9,
10] (iv) proteins that are weakly bound to DNA using
peak shape-based algorithms [11]. Additionally, it has
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the ability to distinguish clustered binding events, which
would otherwise appear as a single peak.

During a ChIP-seq analysis, the accumulation of reads
on one particular genomic locus is usually treated as an
amplification artefact. Contrarily, ChIP-exo might con-
sider this to be a true signal, where the 5’ end of reads
represents the binding location of the protein under in-
vestigation. Moreover, the peaks obtained by ChIP-exo
are more specific since they are called within a range of
approximately +5bp of the actual binding site, whereas
in ChIP-seq, the peaks are less specific as they are called
within a range of +300 base pairs, due to the heteroge-
neous nature of the sheared DNA [9, 12].

Despite the aforementioned advantages of ChIP-exo,
ChIP-seq continues to be a preferred method for profil-
ing genome-wide protein binding sites. The exonuclease
digestion of unbound DNA during ChIP-exo reduces the
number of genomic loci to which the reads get aligned.
This reduces the complexity of the ChIP-exo library by
increasing the instances of mapping multiple reads to
very few genomic loci [13], thus rendering the ENCODE
guidelines for ChIP-seq data unsuitable for ChIP-exo
analysis [12]. This, in turn generates misleading values
for quality metrics of ChIP-seq data such as PCR Bottle-
neck Coefficient (PBC), Normalized Strand Cross-
Correlation (NSC), and Relative Strand Cross-
Correlation (RSC). Moreover, there are no separate EN-
CODE guidelines for assessing the quality metrics and
analysing the ChIP-exo data. Additionally, during ChIP-
seq data analysis a certain threshold is determined for
mapping the 5’ positions of reads beyond which the en-
richment is treated as a PCR artefact; such a threshold
cannot be determined for ChIP-exo [13]. Furthermore,
the experimental protocol of ChIP-exo is tedious as
compared to that of ChIP-seq [9].

Computational tools available for analyzing the ChIP-
seq data are deemed unsuitable for analyzing the ChIP-
exo data, as they are designed for longer fragments
which need to be shifted to a certain length after map-
ping. Moreover, the tools do not account for the add-
itional digestion step in the ChIP-exo protocol which
leads to much smaller fragments [14, 15]. Several tools
such as Exoprofiler [10], Genetrack [16], GEM [15],
MACE [17], Peakzilla [18], CexoR [19] developed by dif-
ferent research groups have been used over the years to
analyze the ChIP-exo data. The key features of all the
tools used in this study are enlisted in Table 1. We have
omitted CexoR from this analysis because of its limita-
tions in analyzing samples with low sequencing read
depth and coverage [19].

Although numerous computational tools are available
for such data analysis, a tangible framework which can
be utilized to analyze the vast amount of complex gen-
omic data is still missing. As different tools are based on
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different algorithms, it makes it difficult for the end-user
to make a choice.

In this study, we have compared the most popular
peak callers developed for ChIP-exo data analysis based
on the (i) number of binding events reported and (ii)
motif discovery from the peak output. We have imple-
mented the above-listed peak callers on publicly avail-
able ChIP-exo data of glucocorticoid receptor (GR) from
three different cell lines [10] to draw an objective com-
parison between them. As these tools are mostly used by
biologists with limited computational experience, we
have compared the tools using default parameters to
conclude which one works best without any modifica-
tions. We have also attempted to investigate how the
quality of reads affects peak calling during the analysis.

Classification of ChIP-exo tools: Due to variations in
the output of these tools, it is hard to assess their per-
formance using the same parameters. So for the ease of
understanding, we have classified the available tools into
two broad categories:

1. Tools that report binding event subtypes: These
tools give a protein-DNA crosslinking pattern using
ChIP-exo tag distribution, which can be further
used to classify binding event subtypes of the pro-
tein of interest. ExoProfiler and ChExMix fall in this
category.

ExoProfiler analyses the ChIP-exo signal for alternative
modes of TF binding. It scans the peaks for motifs, pro-
vided the binding motif is already known. It then finds
the 5" read coverage around the motif to discover the
type of binding. ChExMix, on the other hand, utilizes a
probabilistic mixture model to use sequencing tag en-
richment patterns and DNA motifs for TF binding; un-
like ExoProfiler, it does not require a subtype binding
event to contain a motif instance. ChExMix is also cap-
able of de novo motif discovery using MEME [21] and
can use peaks reported by other peak callers as input.

2. Tools that report direct binding events: These tools
follow the classical approach of signal enrichment
by an accumulation of reads over a genomic
location. GEM, MACE, Genetrack, and Peakzilla fall
into this category.

GEM uses an empirical distribution of ChIP-exo reads
to identify the cross-linking pattern, and if the distribu-
tion is not specified, it automatically learns a model from
sequences around binding events. MACE outputs a
border pair of binding positions where right and left
borders denote the 5" position of TF binding on top and
bottom strands, respectively. Genetrack requires post-
processing of peak files for ChIP-exo samples; here the
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Table 1 Peak-callers used for comparison in this study along with their key features and output formats

Tool Key feature

Output

MACS, 2008 [20]
length.

2. Uses dynamic Poisson distribution to compare test and

control samples

GEM, 2012 [15]
to the reads after each iteration

2. Reciprocally links binding event discovery and motif

discovery
3. Resolves closely spaced binding events

Peakzilla, 2013 [18] 1. Estimates all parameters from the data itself

2. Uses bimodal distribution of reads to calculate fragment

length and predict binding sites
3. Resolves closely spaced binding events

Genetrack, 2008 [16]

bp

3. Combines strand information in a composite value

4. Requires manual pairing of border peaks
MACE, 2014 [17]

algorithm

Exoprofiler, 2015 [10] 1. Useful to detect different types of footprints

2. The peaks are scanned against the motif database to find

the highest scoring peaks

3. High scoring peaks are then used to calculate 5" ChIP-

1. Uses bimodal distribution of reads to model fragment

1. Uses a generative probabilistic model to assign positions

1. Rapid data smoothing using Gaussian smoothing
2. Peak detection by selecting the highest peak in a local
maximum with an exclusion zone of up to a few hundred

1. Normalizes and corrects sequencing data for any biases
2. Consolidates signal to noise ratio by reducing noise

3. Detects border peaks using the Chebyshev Inequality
and pairs them using Gale-Shapley stable matching

1. Peak position
2. p-value (based on pileup height at peak summit) and g value
(against random Poisson distribution with local lambda)

1. Binding events file (including location, IP strength, fold
enrichment, p-value is computed from the Binomial test when
control data is available, p-value computed from Poisson test in
the absence of control data, divergence of the IP reads from
the empirical read distribution, fraction of noise, Kmer Group
and p-value associated to the K-mer and strand)

2. Motif files

3. K-mer set memory motifs

4. HTML output

5. Read distribution file

6. The spatial distribution between primary and secondary
motifs

1. Peak file with exact position, summit, score (based on read
distribution in peaks that fits bimodal tag distribution and chi-
square test), FDR, fold enrichment.

2. Negative peaks in the presence of control.

1. Gff file with chromosome, peak exclusion zone, tag sum,
strand information and standard deviation of reads in the peak
exclusion zone

1. BED file containing border pairs of the binding event, the
method for detecting each border pair and corresponding p-
value (composite p-value of two borders in a pair)

1. Heat map of 5' ChIP-exo coverage

2. Footprint profile of 5’ coverage of all reads

3. Footprint profile of the 5' coverage of reads on both strands
matching the scanned motif (output of motif permutation)

exo coverage of reads relative to the TFBS center to find

the protein-DNA crosslink boundaries

ChExMix, 2018 [11]
modes of DNA-protein interactions

2. Expectation Maximization (EM) algorithm for estimating
binding subtype probability for each binding event

1. Probabilistic mixture model for characterizing different

1. Event subtype file (reports total read count, signal fraction,
binding coordinate, fold enrichment, event subtype, binding
sequence, log[2]p-value (log likelihood score of subtype
specificity for a motif hit))

2. Motif file

3. Peak-peak distance histogram

4. Peak-motif distance histogram

peaks which are a fixed distance apart (distance is se-
lected by the user depending on factors including sonic-
ation fragment length and an idea of the length of
protein footprint) on opposite strands are selected to
form a peak-pair similar to the border pair in MACE.
Peakzilla is similar to MACS and works better for TFs
with narrow peaks.

We have also incorporated MACS2 [20] in this ana-
lysis to evaluate its performance with ChIP-exo samples.

Why GR dataset? GR is known to have a broad
spectrum of binding sites, including canonical GBS (GR
binding site) as well as binding by protein-protein inter-
actions via recruiting other TFs such as FOX, JUN [10,
22]. The three cell lines IMR90, K562, and U20S report-
edly [10] have different GR binding profiles. In IMR90

ChIP-exo data, the binding loci are shared by GR and
STAT proteins (JASPAR MAO0144.2); it also reveals a
high number of binding motifs for FOX (JASPAR
MAO0148.) proteins. The K562 cells are enriched in
GATA (JASPAR MAO0140.2) binding sequences, while
U20S is highly enriched with GBS (JASPAR MA0113.2)
[10]. In this study, we have attempted to determine if
different peak callers can successfully report these anno-
tated motifs in GR ChIP-exo data.

Results

Strandedness and duplication of reads influence the peak
calling of ChIP-exo data

ChIPexoQual [12] is extremely useful to determine sam-
ple quality before proceeding with the data analysis. It
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gives the user an idea about how well the experiment
was performed, based on library complexity, enrichment,
and strandedness. IMR90 and K562 datasets are highly
duplicated with approximately 86 and 93% redundancy
rates, respectively, as compared to the U20S dataset
which has a low 24% redundancy rate. Although reads
are expected to accumulate over a few genomic locations
in ChIP-exo samples, it is hard to distinguish whether
this accumulation of reads is due to signal or PCR arti-
facts. The suitability of reads to be analyzed by ChIP-exo
peak-callers can be estimated by FSR (Forward Strand
Ratio) plots reported by ChIPexoQual, which gives a fair
idea of strandedness of reads, which in turn is an im-
portant measure in many algorithms specific to ChIP-
exo data (GEM, MACE, CexoR, Genetrack, ExoProfiler).

In the ChIP-exo datasets from the IMR90 and U20S
cell types, Unique Read Coefficient (URC) is very high
and it decreases with an increase in Average Read Coef-
ficient (ARC), implying high ChIP enrichment and li-
brary complexity [12] (Fig. la). The same trend is
observed in K562 cell line indicating high ChIP enrich-
ment; however, the URC value is low in comparison to
other cell types which suggest that the K562 library is
less complex than the other two samples (Fig. 1a).

Ideally performed ChIP-exo experiments show expo-
nential decay in the proportion of single-stranded re-
gions in Region Composite Plots. More than half of the
reads in IMR90 and K562 datasets fall only on a single
strand while in the U20S dataset, maximum number of
reads fall on both the strands. The U20S sample dem-
onstrates a decrease in the proportion of reads on a sin-
gle strand, whereas in IMR90 and K562 cell samples, the
proportion of reads on a single strand are more spread
around the median value (Fig. 1b, left panel).

In a well-performed ChIP-exo experiment, the
enriched regions are expected to have an equal number
of reads on forward and reverse strand. FSR plots (Fig.
1b) depict the rate at which the FSR value reaches 0.5
(indicates that there is an approximately equal number
of reads on both strands). The FSR value quickly reaches
0.5 in both the quantiles for the U20S sample as com-
pared to both IMR90 and K562 cells. The constant value
of FSR for a low minimum number of reads in IMR90
and K562 datasets indicates that these samples have very
few unique positions to which reads are aligned. In other
words, both these samples are highly duplicated. K562 is
more duplicated than IMR90. On the other hand, the
ESR plot (Fig. 1b) for U20S cells has an approximately
equal number of reads on forward and reverse strands,
which implies an equal distribution of reads, as desired
in an ideal ChIP-exo experiment.

The final step of the ChIPexoQual pipeline includes
fitting the data to a linear model and estimate f1 and
B2 which are parameters to estimate the library
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complexity. Samples with 1 less than or equal to 10
and P2 approximately equal to O are considered as
deeply-sequenced high-quality samples. The median
values of Bl in both IMR90 and K562 datasets are
higher than 10 whereas, in U20S dataset, it is lower
than 10. The median values of B2 are higher than 0 for
all three datasets. High values of p1 and 2 in IMR90
and K562 datasets (Fig. 1c) imply low library complex-
ity and poor quality of ChIP-exo samples which are not
deeply sequenced [12].

Overall, the U20S sample has high-quality ChIP-exo
data compared to the other two datasets, as it has low
redundancy, high ChIP enrichment, and library com-
plexity and an approximately equal number of reads on
opposite strands. Due to the huge amount of strand im-
balance in IMR90 and K562 cells, it becomes difficult to
identify precise border pairs of the protein-DNA cross-
link pattern. In such cases where the strand imbalance is
high and the libraries are less complex, it becomes difti-
cult to separate binding signal from noise.

Deduplication of reads affects the performance of ChiIP-
exo peak callers

The Genetrack peak-caller, represented by the number
of peak-pairs and not peaks, reports the highest number
of peaks in IMR90 and K562 cell types (which are highly
duplicated at ~ 86% and ~ 93% respectively) followed by
GEM, MACE, MACS, and Peakzilla (Fig. 2a). On the
contrary, GEM and MACS report maximum peaks for
U20S samples followed by Genetrack, MACE, and Peak-
zilla (Fig. 2a). Also, GEM reports the highest number of
binding events in U20S dataset (Table S1).

Genetrack identifies peaks based on a local maxima in
accumulated reads; no other peak is reported within a
fixed distance of the highest peak. It has no threshold of
peak height beyond which a peak should be considered
as a true peak [23] due to which it is capable of report-
ing the maximum number of peaks (Table S1). It should
also be noted that the total number of reads in the
U20S sample, as reported in the original study [10], was
far less in comparison to the other cell types. As a result,
the number of peaks reported by each tool for U20S is
less in comparison to that for the other two cell types.

Carroll et al. [24] reported that the removal of dupli-
cated reads (i.e., removal of PCR duplicates) in ChIP-exo
may lead to a loss of signal. To check whether removing
duplicates makes any difference to the predictions about
the K562 and IMR90 datasets, the reads with identical co-
ordinates on 5" and 3" ends were filtered using Picard [25]
and peak calling was repeated for the deduplicated reads.
(Fig. 2b). GEM, MACE, and MACS report similar number
of peaks after deduplication of the datasets. But contrary
to an expected decrease, the number of peaks called by
Genetrack and Peakzilla increased by 2-fold and 1.5-fold,
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(See figure on previous page.)

Fig. 1 Quality metrics of ChIP-exo datasets as reported by ChlPexoQual. a ARC vs. URC plots for IMRI0, K562 and U20S datasets. The color
represents the number of read islands (enriched regions) or bins, and with increasing number of read islands, the color shifts from blue to yellow.
b Region composite plots and Forward Strand Ratio plots for IMR90, K562 and U20S datasets representing the strand compositions of read
islands (enriched regions). Left panel: Region composite plots, in which green represents the proportion of read islands that have reads only on
the reverse strand, blue represents the proportion with reads on forward strands and red represents read islands with reads on both strands.
Right panel: FSR plots in which quantiles are marked with green (0.25), red (0.5) and purple (0.75). ¢ 1 and (32, estimates of library complexity for
IMR90, K562 and U20S datasets. The box and whiskers plot here, gives the median value of 31 and 32 for all three cell types

respectively for U20S cell type (Table S2). However, the
number of binding events discovered by Genetrack and
Peakzilla drop drastically in case of IMR90 and K562 cell
types (Fig. 2b), indicating that the high number of peaks
reported was because of duplicate reads.

ChExMix has an inbuilt read filter option to remove
the PCR artefacts. It forces a per-base limit on read
counts to reduce the number of duplicated reads [11].
ChExMix discovered 58,672, 39,454 and 18,228 binding
events for IMR90, K562 and U20S cell types, respect-
ively, which is extremely high in number in comparison
to the binding events reported by ExoProfiler (4496, 313,
6236 GR binding events in IMR90, K562 and U20S, re-
spectively) [10]. The binding events reported by ChEx-
Mix are a total of direct binding (where the protein is
bound to a canonical sequence) and indirect binding
(where the binding location is degenerate).

Peak-pairing tools are more prone to identify false peaks
To assess the number of unique regions found by each
peak caller when compared to the rest, the data reported

by all the peak callers were merged into a single set, ex-
cept the one whose uniqueness was to be measured. The
peaks of the tool, whose uniqueness was to be found,
were then intersected with the set, to report the number
of unique regions discovered by each tool. Genetrack re-
ports maximum number of unique regions in IMR90
and K562 datasets whereas GEM finds highest number
of unique genomic locations in U20S dataset. Peakzilla
does not report any unique peak (Fig. 3a).

The unique peaks were scanned for the reported direct
binding motif MA0113.2 (JASPAR [26]) for GR using
FIMO [27]. GEM and MACS reported the maximum
motif occupancy in unique peaks for all three datasets
followed by MACE. Genetrack performed poorly in
comparison to other tools, and motif occupancy could
not be found using Peakzilla, as it did not report any
unique regions (Fig. 3b). It is to be noted that although
Genetrack reported the maximum number of unique re-
gions (Fig. 3a); the motif occupancy in these regions is
the lowest. The maximum occupancy of GEM peaks can
be explained by the fact that GEM links peak finding to
motif discovery and reciprocally improves the binding
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event prediction around the motifs with high tag accu-
mulation. MACE pairs the peaks on opposite strand
without any constraint of a fixed sequence between the
border peak-pairs. Motif occupancy in MACS peaks is
also higher than MACE in IMR90 and U20S cells but
not in K562 cell type (Fig. 3b).

Thus, the binding event predictions using tools where
peak-pairs are formed by nearest peaks, either by the
software (MACE) or manually (Genetrack) do not per-
form at par with tools like MACS, Peakzilla, and GEM,
where most of the parameters are estimated from the
data itself.

Total motif occupancy in peaks

GR is known to bind multiple DNA sequences via direct
as well as tethered binding to DNA by binding to already
recruited proteins. The peaks reported by all direct bind-
ing peak callers were scanned for the GBS motif (JAS-
PAR MAO0113.2) using FIMO [27]. FIMO reported the
highest number of motifs, with a p-value of less than le-
4, in the peaks reported by GEM (18,105 hits in IMR90,
2803 hits in K562 and 44,148 hits in U20S datasets
(Table S3)) followed by MACS, Peakzilla, and MACE,
while the least number of motifs were obtained in the
Genetrack predicted binding sites (261 hits in IMR90,
158 hits in K562 and 318 in U20S datasets (Table S3))
(Fig. 4a). The K562 dataset, which had the highest level
of duplicated reads, reported the least number of motifs
for all the peak callers (Fig. 4a).

Peaks discovered before and after deduplication were
scanned for the presence of GBS (JASPAR MAO0113.2),
FoxAl (JASPAR MAO0148.3), GATA (JASPAR MA0140.2)
and STAT3 (JASPAR MAO0144.2) motifs, which have been
previously reported to bind the GR in multiple studies [10].
When the peaks were scanned for GBS (JASPAR
MAO0113.2) in IMR90 and U20S datasets and GATA (JAS-
PAR MAO0140.2) in K562 datasets (GATA sequences are
known to be highly enriched in K562 cells [10]), GEM and
MACS found an approximately equal number of motifs in
peaks, irrespective of deduplication of reads (Fig. 4b). Peak-
zilla identified a higher number of motifs after deduplica-
tion in the datasets, thereby implying that Peakzilla
performance improves after removing PCR duplicates. A
similar trend was observed when peaks were scanned for
secondary motifs (FOXA1 and STAT3) in all three datasets
(Suppl. Fig. S1). MACE and Genetrack output had the least
number of motif hits in all the datasets for all the scanned
motifs including FOXA1 (JASPAR MAO0148.3) and STAT3
(JASPAR MA0144.2) (Suppl. Fig. S1).

Therefore, the motif occupancy reported in tools
where peak-pairs are formed by nearest peaks, either
by the software (MACE) or manually (Genetrack) does
not perform at par with tools like MACS, Peakzilla,
and GEM, where most of the parameters are estimated
from the data itself. GEM outperforms all the tools in
the number of motifs identified in discovered peaks,
while minimum motif occupancy was reported in
Genetrack binding events. ExoProfiler peaks were not
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analyzed for motif occupancy. This is because a motif
file is a prerequisite to run this tool, and therefore all
the reported peaks would have a motif instance. Thus,
Exoprofiler is more useful to study the binding foot-
print of a known motif.

Validation of peak caller output based on the significance
score of peaks

Peaks are ranked by a significance score in the output of
all peak callers. The parameters deciding the significance
of a peak are different for each peak caller. The peaks with
highest significance score have highest motif occupancy;
this decreases with the significance of the peaks. To inves-
tigate which peak caller ranked the peaks with the highest
accuracy, we sorted the peaks in descending order of their
rank and top n peaks (in multiples of 50) were plotted
against the fraction of annotated motifs (present within
50bp of a peak) reported by FIMO. GEM, MACS, and
Peakzilla perform consistently better in all the datasets as
compared to MACE and Genetrack (Fig. 5).

De novo identification of TF binding site

To assess the peak-callers’ performance in terms of find-
ing a motif that is similar to the previously reported JAS-
PAR motif [26], the binding output from all the peak

callers was submitted to MEME [21] for motif discovery.
Since ChExMix and GEM have inbuilt options for motif
discovery, MEME was not used separately for motif
identification for these tools.

When used with default parameters, GEM reported
only the half-site of GBS for both IMR90 and U20S cell
types, and successfully identified GATA motif in the
K562 dataset. ChExMix reported the full GBS motif,
which was an exact match to the JASPAR motif for
IMR90 and U20S datasets and the GATA sequence in
the K562 dataset (Table 2).

For MACE peaks of IMR90 and K562 datasets, MEME
reported very long motifs, none of which matched the
JASPAR motif when inspected visually and also when the
motifs were submitted to TOMTOM [28] to search for
similar binding sequences. Instead, FOSL1, which is
known to be repressed by GR binding [29], was reported
by TOMTOM [28] to be the best match of the motif
found in MACE binding events in IMR90 dataset. In the
K562 dataset, the best match for MEME motif was SP1-
like sequence. GR is known to bind indirectly to SP1 se-
quences via SP1 TF [30]. However, MEME was able to
identify the GBS motif in the U20S dataset (Table 2).

MACS identified a 44bp long repetitive motif in
IMR90 data, which resembles HSF1 binding sequence.
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HSF proteins are known to regulate the function of GR
[31]. It reported GATA and GBS motifs for K562 and
U20S datasets, respectively (Table 2).

In Peakzilla peaks, MEME identified the GBS motif in
the IMR90 and U20S datasets and the GATA motif in
K562 dataset. In case of Genetrack, where the peaks
were paired manually, MEME failed to generate a signifi-
cant output for the highly duplicated IMR90 and K562
datasets, but it identified the GBS motif in the U20S
data with least number of binding sites reported
amongst all the tools (Table 2).

For the high-quality U20S dataset, ChExMix and GEM
successfully reported the previously annotated GR binding
motifs. This may be because both these tools use ChIP-
exo read distributions to map the DNA-protein interact-
ing locations, and thus they will only assign motifs on
identified peaks. On the other hand, MEME, which has no
peak information, reports ungapped sequences as output
motif based on pattern search and recurrence of this pat-
tern in a fasta input of multiple DNA sequences. This ex-
plains why the MEME output for MACS and MACE
peaks in IMR90 and K562 datasets is different from the
annotated motif results (Table 2).

Peak resolution

GEM appears to be the best peak finding program
amongst the direct binding tools followed by Peakzilla
and MACS. Both GEM and Peakzilla can deconvolute
closely spaced peaks and give better resolution, whereas
MACS generates peaks with large widths, which often
span up to 200bp (Table S4). This reduces the reso-
lution of peaks by MACS because the resulting peaks
might be due to the merge of multiple small peaks,
which in turn makes MACS suitable for large proteins
like histones. This could be the reason why MACS re-
ported HSF1 instead of GBS motif in the IMR90 dataset.

It should not be ignored that MACS, in spite of being a
ChIP-seq peak calling tool, outperforms MACE and
Genetrack. Peakzilla, on the other hand, identifies lesser
peaks than GEM and MACS, but performs reasonably
well for de novo identification of binding motifs. It suc-
cessfully reported the previously annotated motifs for all
three datasets using MEME.

ChExMix identifies motifs with higher accuracy and
mode of binding using read distribution.

It is well-known that protein-DNA interactions do not
depend strictly on the availability of a canonical binding
motif. Proteins can interact with DNA indirectly, i.e., via
protein-protein interactions or they may have a broad
spectrum of recognition sequences to which they bind
with a different affinity [10, 11]. Starick et al. [10] used
ChIP-seq of GR for de-novo motif discovery and then
used these motifs along with ChIP-exo read distribution
in ExoProfiler to find the binding footprint of GR and its
interaction with other proteins. ChExMix encompasses
both the steps in a single tool, without the requirement
of a known motif.

ChExMix reported one direct binding subtype (12,021
binding events with a canonical GBS site) and four indirect
binding subtypes in the IMR90 dataset. Subtype O binds
directly to GBS, whereas no motif sequence is reported for
the rest of the subtypes (Fig. 6a). The subtype-specific read
distribution profiles of subtypes 1 and 3 and subtypes 2 and
4 are very similar but there is a difference in the number of
binding events (Table S2). The tag density profiles of sub-
types 1 and 3 suggest dimeric binding while those of sub-
types 2 and 4 might represent composite binding. GR is
known to bind a ‘combi motif [10]. When the patterns of
tag distribution profile were examined, it was observed that
ChExMix found the read distributions corresponding to all
modes of binding reported previously for GR, including
monomeric, dimeric and composite binding (Fig. 6a).
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Table 2 MEME output for MACE, MACS, Genetrack and Peakzilla
and motifs reported directly by ChExMix and GEM
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For highly duplicated datasets like K562, ChExMix fil-
ters out duplicates based on a global per-base limit from
a Poisson distribution by using a function of the number
of reads and their mappability. It then estimates a per-
missible number of reads using the probability based on
the Poisson distribution. ChExMix discovered 2 direct
binding and 3 indirect binding events for the K562 data-
set. Besides GATA motif, it reports SP1 binding motif
(STAMP [32] E-value 6.2839¢-14), a known cofactor of
GR activity [33]. The tag distribution profiles of subtypes
2 and 3 appears to be composite TF binding profiles,
and that of subtype 4 appears to be tethered binding.
The number of binding events of subtype 4 outnumbers
all other subtypes.

For U20S dataset, ChExMix reported 7 binding sub-
types, with slight differences in tag distribution profiles,
and a total of 18,228 binding events. The read distribu-
tion profile of all the subtypes is similar, and each sub-
type has the same core GBS motif with few extra bases
to the left and right-hand side of the sequence. When
the intermediate output file of ChExMix was examined,
it was observed that all the motifs reported by the tool
were a match to the known interaction partners of GR.

Discussion

The abundance of tools available for peak-calling of
ChIP-seq data makes it essential to distinguish the
available tools according to the suitability of their usage
and performance. ChIP-exo is one of the modifications
of ChIP-seq that has gained popularity over the years
due to its precision of TF binding site detection. This
study has focused on some of the available peak-callers
for ChIP-exo data, namely GEM, MACE, Genetrack,
Peakzilla and recently developed ones like ExoProfiler
and ChExMix. We also included the ChIP-seq peak-
caller MACS in our analysis to compare its perform-
ance on ChIP-exo data with that of other tools special-
ized for the task.

In addition to the algorithm of the peak-callers, it was
observed that the quality of data highly influences the
output. Clearly, the U20S dataset, which was demon-
strated to have good quality ChIP-exo data from ChIP-
exoQual output, performed best with all the tools used
in this study. Another important observation was that a
TF can bind to different DNA sequences in different cell
types.

GR is a well-characterized TF and its interaction part-
ners are known, which made it easy to perform a com-
prehensive analysis of the various outputs generated
from the different tools. However, for de novo motif
finding, this task would become tricky and confusing.
Hence, there should be a proper control to differentiate
true peaks from false positives. Many times the false
positives are regions that tend to be highly enriched
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irrespective of the ChIP experiment. For removing such
biases, it is highly recommended that an input control
be used for ChIP-exo. In the original ChIP-exo study [4],
the authors were unable to generate a negative control
(yeast strain in which the protein of interest is not ex-
pected to bind) because the exonuclease digested all the
unbound DNA. Thus, for quite a long time, the use of
control was not deemed necessary for ChIP-exo experi-
ments. However, with the advancement in technologies
and increasing usage of ChIP-seq, it is noted that the in-
put control is mandatory to remove background or noise
from the signal and also to reduce the discovery of false
positives. Protein attached chromatin capture (PatCh-
Cap) [34] adds a few extra steps in the experimental

procedure, but has been reported to generate a reliable
input control for ChIP-exo.

GEM, MACS and Peakzilla report maximum direct
binding events with higher accuracy in comparison to
the peak-pairing tools. GEM outperforms MACS and
Peakzilla in terms of the number of reported binding
sites as well as resolution. MACE functions by making
peak-pairs of closely spaced peaks on opposite strands,
while peaks need to be paired manually in Genetrack.
Both MACE and Genetrack do not appear to be the best
strategies to work with ChIP-exo data, because ineffi-
cient enzyme functions of exonuclease and ligase affect
the border formation around the protein-bound and
digested DNA, which in turn influences the read
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accumulation around the bound protein in subsequent
analysis, leading to a faulty pairing of peaks.

ChExMix and ExoProfiler use tag distribution to identify
direct as well as indirect binding. ExoProfiler has the limi-
tation that it cannot be used for de novo motif discovery,
but is more suitable for predicting various modes of TF-
DNA binding, if the binding sequence is already known.
ChExMix, on the other hand, overcomes this limitation by
plugging into MEME to identify novel binding motifs
along with the prediction of the mode of binding.

Conclusion

In summary, this study demonstrates that the direct
binding tools, which learn the parameters from the
reads, (GEM, MACS, Peakzilla) serve as a better choice
for peak calling ChIP-exo data than the tools which form
peak-pairs to detect borders of TF binding site (MACE,
Genetrack). Indirect binding tools (ChExMix and Exo-
Profiler) are an improvement over the existing set of
tools since they also enable the user to predict the mode
of binding of TF to DNA. Although the number of bind-
ing events reported by ChExMix is less than those of
GEM, the fact that it provides an overall picture of TF
binding using the shape of the peak, gives it an edge over
the other methods. Furthermore, the quality of ChIP-exo
data influences the analysis; U20S dataset which has the
best quality data out of the three cell types performs bet-
ter with all the peak-calling tools.

Methods

Datasets

Aligned BAM files for GR ChIP-exo dataset were down-
loaded from EBI ArrayExpress (http://www.ebi.ac.uk/
arrayexpress) under accession number E-MTAB-2956,
originally submitted by Starick et. al. [10].

Quality control

To assess the quality of reads in the GR dataset, a re-
cently developed R package called ChIPexoQual [12],
which is dedicated to quality control of ChIP-exo/ChIP-
Nexus data, was used. The reads were assessed for en-
richment, strandedness, and complexity. ARC (average
read coefficient) and URC (unique read coefficient) were
used as measures to detect library enrichment and com-
plexity and FSR (Forward Strand Ratio) plots were used
to assess strandedness of reads.

Peak callers

ChExMix [11], GEM [15], Genetrack [16], MACE [17],
MACS [20], and Peakzilla [18] were used to call peaks
using data from three cell lines. Results from ExoProfiler
published in the original study [10] were used directly
for comparison.
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— GEM utilizes aligned read data, reference genome
sequence and an empirical ChIP-exo read distribu-
tion to identify the binding events. The empirical
read distribution file is used in the first step to assign
priors and after the first step, the read distribution is
re-estimated using the predicted binding events.

— Genetrack uses a probabilistic distribution in place
of a tag and sets an exclusion zone around the
mapped region to discover peaks. The peaks on the
opposite strand, which are separated by a fixed
distance, are then manually paired.

— MACE focuses on the 5 borders of the reads that
align themselves a fixed distance apart on the
reference genome, to find borders of the TF binding
site. If the coverage signal at the borders of the TF
binding site is not high, MACE is not able to build a
model for such data.

— MACS uses tag position and orientation to build a
model for estimating fragment size of DNA and uses
the length of fragment size to shift the tags to the 3’
end of reads. Peaks are called using the shifted tags
and enrichment against background.

— DPeakzilla utilizes the bimodal distribution of reads to
estimate all the parameters from the aligned data to
call peaks and predict the protein binding sites.

— ChExMix uses probabilistic modelling and tag
distribution patterns to predict DNA-protein bind-
ing modes and binding sequence.

— ExoProfiler requires DNA binding sequence of the
TF along with the tag distribution patterns to
identify DNA-protein binding profiles.

Removing PCR duplicates/deduplication

Picard [25] was used to remove PCR duplicates from
BAM files before another round of peak -calling
using GEM, Genetrack, MACE, MACS, and Peak-
zilla. All the tools were run using default parameters
to draw a fair comparison between them. --read fil-
ter option available in ChExMix was used to remove
duplicates from the datasets before running the pro-
gram. Results from ExoProfiler were used directly
from the original study [10].

Unique peaks

To identify unique peaks discovered by each peak caller,
the peak output was compared against a merged dataset
of the rest of the peak callers. BEDTools [35] and BED-
OPS [36] were used to merge the peak outputs from dif-
ferent peak callers and intersect it with the output of the
peak caller whose uniqueness was to be measured.
FIMO [27] was used to find percentage of GBS
(MAO0113.2) occupancy in unique peaks.
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Motif scanning
FIMO ([27] was used to scan the peaks for known GBS
(MAO0113.2) for direct binding. Motifs with a p-value of
less than le-4 were used to determine the occupancy in
reported peaks.

Motif discovery

The peak coordinates from all the tools except GEM
and ChExMix were converted to fasta sequences using
BEDTools [35] and the sequences less than 8 bp in size
were discarded. These fasta files were then used to find
enriched sequences using MEME [21]. The input param-
eters used were as follows,

1. DNA input (fasta format)
Discovery mode - Classic: optimizes the E-value of
the motif information content.

3. Site Distribution - zoops (one or zero motif
occurrences per region).

4. Motif Count - Searching for 3 motifs.

5. Motif Width - Between 6 wide and 50 wide
(inclusive).

For motif finding using ChExMix, the following pa-
rameters were used:

1. Discovery mode - Classic: optimizes the E-value of
the motif information content.

2. Site Distribution - zoops (one or zero motif

occurrences per region).

Motif Count - Searching for 3 motifs.

4. Motif Width - Between 6 wide and 18 wide
(inclusive).

w

List of tools used

1. ChIP-exoQual (version 1.8.0)

Picard (version 2.20)

ChExMix (version 0.4), GEM (version 3.4), MACE
(version 1.2), MACS (version 2.1.2), Genetrack,
Peakzilla

BEDTools (version 2.28.0), BEDOPS (2.4.36)
FIMO, MEME, TOMTOM,

STAMP

R (version 3.6.0)

GIMP (version 2.8)
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binding events discovered by each peak caller for IMR90, K562, U20S,
after filtering out the PCR duplicates. Table $3. Total GBS motif
occupancy (GBS motif hits (p-value <1e-4) reported by FIMO). Table S4.
Peak length statistics for GEM, Genetrack, MACE, MACS, and Peakzilla
when run on GR ChIP-exo datasets for IMR90, K562 and U20S cell types.
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