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Abstract

https://github.com/zhaodalv/VBCALAVD.

Background: Hybrid capture-based next-generation sequencing of DNA has been widely applied in the detection
of circulating tumor DNA (ctDNA). Various methods have been proposed for ctDNA detection, but low-allelic-
fraction (AF) variants are still a great challenge. In addition, no panel-wide calling algorithm is available, which
hiders the full usage of ctDNA based ‘liquid biopsy’. Thus, we developed the VBCALAVD (Virtual Barcode-based
Calling Algorithm for Low Allelic Variant Detection) in silico to overcome these limitations.

Results: Based on the understanding of the nature of ctDNA fragmentation, a novel platform-independent virtual
barcode strategy was established to eliminate random sequencing errors by clustering sequencing reads into virtual
families. Stereotypical mutant-family-level background artifacts were polished by constructing AF distributions.
Three additional robust fine-tuning filters were obtained to eliminate stochastic mutant-family-level noises. The
performance of our algorithm was validated using cell-free DNA reference standard samples (cfDNA RSDs) and
normal healthy cfDNA samples (cfDNA controls). For the RSDs with AFs of 0.1, 0.2, 0.5, T and 5%, the mean F1
scores were 043 (0.25~0.56), 0.77, 0.92, 0.926 (0.86~1.0) and 0.89 (0.75~1.0), respectively, which indicates that the
proposed approach significantly outperforms the published algorithms. Among controls, no false positives were
detected. Meanwhile, characteristics of mutant-family-level noise and quantitative determinants of divergence
between mutant-family-level noises from controls and RSDs were clearly depicted.

Conclusions: Due to its good performance in the detection of low-AF variants, our algorithm will greatly facilitate
the noninvasive panel-wide detection of ctDNA in research and clinical settings. The whole pipeline is available at
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Background

Somatic mutations play key roles in human diseases,
such as cancer [1] and neurological disease [2]. In can-
cer, these mutations can be raw materials for cancer
evolution [3, 4] and serve as actionable targets [5-7].
Thus, many variant calling algorithms, such as Varscan2,
MuTect, and SiNVICT, have been developed for accur-
ate detection of somatic mutations through next-
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generation sequencing [8-12]. Several studies have
benchmarked the performance of various somatic vari-
ant callers [13-17], and most of these studies assess per-
formance at an allelic fraction (AF) level greater than
1%. However, systematic benchmarking and assessment
studies using high-sequencing-depth samples with an AF
as low as 0.1% have not been performed. A previous
study showed that notably different sensitivities were
found even at the 5% AF level, and the callers achieved
low positive predictive values (PPVs). At a high AF level
(5% ~ 100%), although the PPVs increase as AF rises, the
PPVs continue to show substantial fluctuations among
the tested calling algorithms [14]. Another study demon-
strates that the published approaches yield unreliable re-
sults for an AF as low as 2% [16]. Thus, the detection
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limits of most calling algorithms restrict their calling ef-
ficacy of low-AF variants, which might be problematic in
several applications, particularly liquid biopsies due to
the low template levels of mutant circulating tumor
DNA (ctDNA) in patient plasma [18, 19].

The detection limit of single nucleotide variants
(SNVs) is generally affected by the input DNA quantities
and sequencing depth [20, 21]. A high sequencing depth
is required for the detection of low-AF variants. How-
ever, the coverage increment accompanies with an in-
crease in the background error rate. Many methods have
been proposed to suppress this type of background
noise. These methods include the use of exogenous mo-
lecular barcodes (unique molecular identifiers, UMIs),
endogenous position-based method, sequencing tech-
nical replicates [20, 22-26] and background error mod-
eling [20, 26, 27]. The UMI strategy is an effective way
to remove stochastic sequencing errors [20, 28—-30] and
duplicates, which can improve the accuracy of low-
frequency variant detection and solve severe quantitative
bias in RNA-seq [31]. However, UMIs’ universal applica-
tion is limited by their experimental design [32]. The en-
dogenous position-based method is an alternative way to
deal with duplicates and remove errors. Modules in
popular tools such as SAMtools [33] and Picard (http://
broadinstitute.github.io/picard/) use this approach to
mark duplicates, select a representative read and further
improve calling results and RNA quantification [31].
However, these tools are based on 5 prime position of a
read and do not use full segment information. In
addition, usage of a representative read with the highest
mapping quality or total base quality could result in a
false call at a specific genomic position. Application of
sequencing technical replicates in ERASE-Seq can sig-
nificantly eliminate stochastic errors [27]. However, its
application involves greater expense than the single-
replicate method, and some low-AF stochastic errors
cannot be removed without replicates.

Background error modeling as a complementary
method can eliminate recurrent/stereotypical errors well.
The proposed methods apply different kinds of samples
to construct background models, such as tumor samples
in TAm-Seq [26], healthy cfDNA samples in iDES [20]
and sample replicates in ERASE-Seq [27]. ERASE is lim-
ited by sample replicate numbers, and the likelihood that
stereotypical noise position changes over sequencing
time is certain. For TAm-Seq, background models from
tumor samples limit its usage in ultradeep cfDNA data.
iDES does not consider the impact of different cfDNA
templates on stereotypical errors, as the cfDNA quan-
tities of patients with various types of cancer are far
higher than those of normal healthy individuals [34-37].

For various applications, many UMI-based calling
strategies and computer pipelines have been developed
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[20, 24, 30], but these studies are primarily limited to
the detection of mutations in COSMIC and hotspot
sites. Only two different panel-wide calling methods
have been proposed for ctDNA detection: iDES and SiN-
VICT [10, 20]. iDES provides pipelines for input file
conversion, background database construction, back-
ground polishing, and quality control statistics but does
not incorporate a detailed panel-wide calling method.
The performance of SINVICT is validated based on sim-
ulated and real data, but the analysis of its performance
based on real data only focuses on the sensitivity aspect.
The panel-wide calling ability of SINVICT requires val-
idation using a large panel. Accurate panel-wide muta-
tion calling is essential for various clinical applications,
such as calculation of the tumor mutation burden
(TMB) [38, 39], which serves as an important marker for
immunotherapy and a significant indicator for gene fu-
sion detections [40]. Thus, an effective panel-wide call-
ing method needs to be established.

To address these problems, we performed a compre-
hensive analysis of the sources of background noise gen-
erated by cfDNA sequencing data from normal health
plasma (controls) and reference standard samples
(RSDs). Based on that, a novel virtual barcode was first
established on high-depth cfDNA data. Unlike the previ-
ous position-based deduplication method, our virtual
barcode was based on segment position and length,
which would help us to distinguish different segments
with the same 5’ position but different 3’ positions. Like
UM]I, virtual barcode was used to cluster reads to form a
consensus sequence, which provides a more reliable base
call at every position. Unlike previously proposed en-
dogenous unique identifiers [23], the performance of
virtual barcode was comprehensively validated in ex-
ogenous UMI cfDNA samples, which made our algo-
rithm platform-independent and universally applicable
for the noninvasive detection of SNVs using next gener-
ation sequencing (NGS) data in silico. As illustrated in
Fig. 1, our algorithm first utilizes a virtual barcode to
eliminate sequencing errors, polishes the stereotypical
background artifacts among background samples (BGs)
and then uses three fine-tuning filters to achieve great
sensitivity and specificity. We anticipate that the pro-
posed algorithm will have wide applications in research
and clinical settings.

Results

Performance of our virtual barcode

The real family was clustered by UMI, start site and
template length. The virtual family was defined as reads
that shared the same start site, template length and
strand. The mean virtual family numbers were slightly
fewer than the mean real family numbers (2730 vs.
2943) (Fig. 2a, red bar vs. yellow bar) among 10 samples,
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and a strong linear relationship was found between vir-
tual and real family numbers among 20,000 randomly
selected genomic positions in one sample (Fig. 2b; y=
1.105x - 75.152, 95% Confidence interval (CI):
1.1038~1.1058, P <10~ *%; R* = 100%). The recovery rates
for real families among the majority of the 20,000 posi-
tions ranged from 91.87 to 94.0% (Fig. 2¢; 92.98% +
1.1%) and only a small proportion of reads with different
UMI tags were mistakenly clustered by the virtual bar-
code. The incorrectly clustered family contents were in-
vestigated. The results showed that 92.6% of these
members were composed of two real families, and 6.8%
were three real families (Fig. 2d). The incorrect clusters
might introduce false negatives, particularly if the allele
number of a variant is extremely low. Thus, we compared
f=1.0 virtual family numbers with f= 1.0 real family num-
bers at six positive sites among three UMI samples. At the
0.1% level, five out of the six positive sites had equal family
numbers and no false negatives were detected (Fig. 2e).
Similar to the 1 and 5% levels, no false negatives were
found (Figure S1). At the same time, AF values of six posi-
tive sites calculated from the virtual-family level were
close to the expected AF values and similar to the AF
values from the variant-read level (Figure S1). In the de-
creasing noise aspect, efficiencies of the virtual tag and
real tag were the same, supported by similar mean fraction
of panel-wide error-free genomic positions (Fig. 2f; Real
tag: 84.44% +0.91%; Virtual tag: 88.07% + 0.66%) and
mean panel-wide error rates (Real tag: 7.1*10™ > + 0.3*10~
% Virtual Tag: 5.9*107° + 0.5*10" °).

In conclusion, our virtual barcode was sufficiently ro-
bust to replace a real UMI tag and could become a uni-
versally applicable approach for reducing noise in
cfDNA sequencing samples.

Subsequently, virtual barcode was applied for 30 BGs,
and the panel-wide error position percentage was signifi-
cantly decreased in every BG (Fig. 3a). In turn, the mean
panel-wide error-free position percentage was improved
by ~64.11% + 12.9%. The ability of the method to de-
crease random read errors was further confirmed at six
positive sites in the top 7 high-sequencing-depth control
samples. There were random non-reference alleles in
two or more samples at the positive site (Fig. 3b), and
nearly all of these alleles were eliminated (Fig. 3c). These
results confirmed the good and stable performance of
our virtual barcode for decreasing read-level stochastic
noise.

Characteristics of mutant-family-level noise

A small proportion of error sites supported with f=1.0
mutant families made the virtual barcode/real tag alone
indistinguishable from real variants. We denote this type
of noise mutant-family-level noise (designated as f=1.0
sites). Thus, additional robust filters are needed to im-
prove the specificity of the proposed algorithm.

The profiles of mutant-family-level noise among 14 con-
trols and 16 RSDs showed an interesting divergence. A sig-
nificant linear relationship between the mean depth and
error position percentage (Fig. 3d; y =0.347x + 0.412, 95%
CL: 0.292~0402, P=2.8*10""% R*=85.56%) remained at
the mutant-family-level in the RSDs (Fig. 3e, green line; y =
0.083x +0.029, 95% CL 0.059~0.107, P=5.22*10"% R*=
80.82%;) but not among the controls (Fig. 3e, red dots).
This disagreement might be caused by input DNA quan-
tities (virtual family numbers) and uneven depth/coverage.
By normalizing panel-wide virtual family numbers based on
coverage, the family degree was obtained for every sample.
Compared with controls, the median virtual family degree
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template RSDs (blue line) than in 14 low-template controls (red line)

Fig. 3 Noise profile among the 30 background samples (BGs) before and after application of the virtual barcode. a Panel-wide error position
percentage in every BG before and after application of the virtual barcode (Oncosmart2 BGs: blue square to red square; Oncosmart3 BGs: gradient
blue to gradient yellow). b Numbers of non-reference alleles at six positive sites among the top 7 high-sequence-depth controls at six positive
sites. ¢ Numbers of the variant f=1.0 virtual family at six positive sites among the top 7 high-sequence-depth controls. d Significant linear
relationship between the panel-wide mean depth and the panel-wide error position percentage among 30 BGs (green dot: 16 RSDs; red dot: 14
controls; R = 85.56%). e Relationship between the fraction of the error position with f=1.0 virtual family and the panel-wide mean depth among
30 BGs after application of the virtual barcode (16 RSDs, green dots; 14 controls, red dots). A significant linear relationship was observed in the 16
RSDs (R® = 80.82%). f Boxplot of family degree for 11 Oncosmart2 RSDs, 5 Oncosmart3 RSDs, 14 Oncosmart2 controls, HWT samples and 2 tumor
samples. Compared with controls, the Oncosmart2 and Oncosmart3 RSDs had significantly higher family degrees; *** means P < 0.001. g Boxplot
of panel-wide median family size between 14 controls and 16 RSDs; *** means P < 0.001. (H) Significantly higher error percentage in the 16 high-

was significantly higher in both Oncosmart2 (2.49-
fold, P=2.26*10"°) and Oncosmart3 RSDs (1.88-fold,
P=0.007; Fig. 3f). Based on the observation that the
reciprocal of family degree could reflect panel-wide
median virtual family size (Figure S2), 14 controls
had significantly larger overall virtual family size than
16 RSDs (Fig. 3g; P =5.88*10"°), which in turn could give
more confident support for calculating f values and further
decreasing random read-level noise (Fig. 3f; Figure S2). The
significantly larger family size in 14 controls was caused by
the significantly lower template numbers than 16 RSDs
(P=2.05*10"">, Figure S2). The scatterplot clearly showed
that high template numbers in 16 RSDs caused a signifi-
cantly higher percentage of mutant-family-level noise than
14 controls (P=6.25*10"% Fig. 3h). This result indicated
that using cfDNA data from normal healthy individuals
with low-level templates as the background [20, 41] is not
sufficient to cover all noises in samples with high-level tem-
plates under similar sequencing coverage. Thus, we com-
bined controls with RSDs for the following analysis.
According to the relationship between sample occur-
rence and AF spectra (Figure S3), mutant-family-level
noises were classified into two types: stereotypical (occur-
rence > = 6 BGs) and stochastic mutant-family-level noise.
In total, we obtained 265 unique stereotypical variants
(Fig. 4a). The RSDs made a greater contribution than the
controls to recovering stereotypical variants, many of
which occurred only once in controls (Figure S4). As ex-
pected, 265 stereotypical noises occurred stably showing a
significant linear relationship between 25 Oncosmart2
BGs and 529 Oncosmart2 cfDNA samples (Figure S3; y =
1.097x - 0.137, 95% CI: 0.922~1.235, P=56*10" %% R*=
41.7%). Further analysis of the occurrence rates of 121
shared noises (Fig. 4a) showed a significant linear relation-
ship with a higher R? value (Fig. 4b; y = 1.164 x — 0.187,
95% CI: 1.019 ~1.308, P=4.7*10""% R*=67.8%). Add-
itionally, after polishing based on Oncosmart2, no stereo-
typical noises were found among the 5 Oncosmart3 RSDs
at the intersection region of the two panels (Table S2-2).
Stereotypical noise is caused by many factors, such as
DNA damage [42] and PCR errors [43], which have differ-
ent substitution preferences. The main substitution types

of our stereotypical variants were C>T/G> A, C>A/G >
T, and A > G/T > C (71.05%, Fig. 4c), which were consist-
ent with the substitution types from Oncosmart3 RSDs
(Table S2—4) and previously reported error profiles for
‘Kapa HF’ polymerase [43]. The percentage of these six sub-
stitutions further increased to 84.297% in 121 shared sites,
which demonstrated that these substitutions intro-
duced by PCR errors were likely to occur universally
(Fig. 4b, Figure S3; R*67.8% vs. 41.7%). These PCR-
induced distortions are mainly caused by PCR sto-
chasticity and polymerase errors [43, 44] and cannot
be removed by UMI strategies only [20, 43].

Strategies for decreasing mutant-family-level noises
Based on a clear understanding of the characteristics of
stereotypical noise, a filtered database was constructed
for the polishing of real mutations of the same type at
these sites (265 polishing sites). Unlike in the previously
proposed iDES polishing method [20], we first obtained
10 best-fit candidate distributions from 529 Oncosmart2
cfDNA samples based on AIC, BIC, SEE, and R values,
which were independently validated in 104 Oncosmartl
cfDNA samples. Then a comparison between the iDES
construction step and our step was made (Figure S4). Fi-
nally, 265 stereotypical variants were polished by calcu-
lating cutoff AF values from the best-fitted personalized
distribution. The results showed that the ‘Johnsonsu’ dis-
tribution was the best-fitted distribution (Table 1; 26%).
AF cutoffs are shown in Table S3-3.

Compared with stereotypical noises, stochastic
mutant-family-level noises (designated as stochastic f=
1.0 site) were prone to low AF values, wide AF value
spectra and unstable occurrence (Figure S3). Three add-
itional fine-tuning filters were proposed based on appro-
priate specific features.

The minimum absolute distance (Ds value) was ob-
tained between the distances from the variant position
to the start and end positions in the corresponding vir-
tual family. Ds trajectories of f=1.0 families from the
stochastic f = 1.0 site were compared with Ds trajectories
from high-AF sites, positive sites, mutant singletons, and
Ds trajectories of f< 1.0 virtual families from genomic
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sites filtered by the virtual barcode step (Figure S5).
Then, the specific Ds value (<=2 and > =149) for sto-
chastic f=1.0 site was obtained. The virtual family that
met the identified Ds value was defined as a false family.
In every BG, the percentage of sites fully constituted by
a false family (false family ratio: FFR = 1.0) was calcu-
lated and is shown as an orange bar in Fig. 4d and
Figure S9.

With respect to the variant singleton ratio, based on
the observation that variant singleton numbers (ranging
from 0 to 39) among stochastic f=1.0 sites were signifi-
cantly higher than variant singleton numbers among six
positive sites, we hypothesized that for the real SNV site,
the ratio of singleton numbers to f=1.0 family numbers
would fluctuate within a certain range. First, at the panel
level, the singleton ratios of all BGs were less than 2.0
(Fig. 4e). This singleton ratio was a general robust cutoff
value that could well distinguish positive mutations,
known mutations of non-small-cell lung carcinoma
(NSCLC) patients [45] and high AF variants from these
stochastic family-level noises (Figure S6). Second, at the
sample level, the mean variant singleton ratios of high-AF
sites could reflect the panel-wide singleton ratio, indicat-
ing that the variant singleton ratios of real variants fluctu-
ated around the panel-wide singleton ratio (Fig. 4f). Thus,
a sample-level strategy based on the distribution of single-
ton ratios from high-AF variants (AF > =0.05) was applied
(Figure S6). After false discovery rate (FDR) correction, a
small number (blue bar) of extreme outliners with mean
ratios ranging from 4.1~28.2 (orange bar) were removed
(FDR < =0.01; Fig. 4g). In addition, our method was rela-
tively conservative, and no outliers were found in samples
with an overall high or low singleton ratio (Figure S6),
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Table 1 Information on the best distribution among 265 polishing sites

Distributions Best numbers

Percentage (%)

Mean sample size Sample size range

Dweibull 1 4.15
Lognorm 18 6.79
Alpha 19 717
Exponnorm 24 9.06
Weibull_min 25 943
Nct 27 10.19
Gamma 33 1245
Beta 39 14.72
Johnsonsu 69 26.04

21.181818 8~95
108.052632 19~354
104.157895 8~475
122.791667 21~545
89.16 7~550
173.962963 9~514
139.757576 8~525
139.794872 6~479
109.115942 8~529

such as two tumor samples (Fig. 4g). In conclusion, this
filter could avoid over-recovery of variant singletons at
genomic sites vulnerable to random noise.

Finally, template numbers were updated and updated
f=1.0 numbers and qualified variant singletons were ob-
tained. This updated template feature was the most spe-
cific features (Figure S7). Based on this specific template
feature, an ROC curve was constructed for six positive
sites at every AF level (Fig. 4h), which showed an opti-
mal tradeoff between sensitivity and specificity at a strict
99% confidence level.

Effectiveness of all the filters in improving the panel-wide
calling efficacy

We systematically evaluated the effectiveness of each of
the above-described three steps in the proposed ap-
proach. With respect to reducing noise, the virtual bar-
code clustering step removed the majority of noise in
both 14 Oncsmart2 controls (Fig. 5a) and 11 Oncsmart2
RSDs (Fig. 5b). The subsequent filters showed greater ef-
fectiveness of error reduction in RSDs versus controls
(Fig. 5b), indicating the necessity of these filters for error
reduction in high-template samples, such as samples
from various types of cancer. By combining all the filters,
the mean panel-wide error position percentage of 25
Oncosmart2 BGs was extremely low (Table S4; 7.95*10™
%), lower than reported percentage in iDES (2%~ 10%).
In Oncosmart2 RSDs, false-positive sites were main-
tained at extremely low numbers (Fig. 5c). We then cal-
culated the sensitivity, PPV, F1 score and false positive
rate (FPR) per genomic position of our algorithm and
five panel-wide calling algorithms at every level using 25
Oncosmart2 BGs (Figure S8; Table S4). The results
showed that the performance of our algorithm was sig-
nificantly better than that of previously published calling
software at every AF level from 0.1 to 5% (Figs. 5d-h).
Our algorithm kept the false positive rate (FPR) per gen-
omic position lower than benchmarked software and the
reported FPRs in ERASE-seq [27] and iDES (Table S4).
Additional validation of our algorithm using 5

Oncosmart3 RSDs proved the robustness of our algo-
rithm at AF levels ranging from 0.1 to 5% (Figure S9;
Table S2-1: Sensitivity).

A small number of false-positive sites were retained in
the 25 Oncosmart2 BGs. From a previous reference, we
incorporated low-complexity (LC) regions [46] and short
tandem regions (STRs) [47] into the pipeline. False-
positive sites left in controls were annotated as SNP sites
(Table S5) and explained by the “spreading-of-signal”
[48] with the newer sequencing platform (HiSeq 3000/
4000/X Ten) in the same sequencing lane (Table S6).

Discussion

Recently, several studies have focused on the application
of cfDNA fragmentation information in clinical settings
[49-51]. Here, for the first time, we use cfDNA fragmen-
tation information as an endogenous UMI to decrease
random sequencing noise. A previous study showed that a
similar endogenous UID (unique identifier) can be applied
to decrease random sequencing noise, though it relies
heavily on random DNA or RNA fragmentation [25, 32].
Through comprehensive validation from exogenous UMI
cfDNA data and supported by application in our previous
research [45], our endogenous UMI fit cfDNA well.

The downside of this step was that approximately 8%
of the UMI was wrongly clustered by the virtual barcode,
because different cfDNA molecules have a certain prob-
ability of sharing the same virtual barcode [19]. This
downside of our proposed method leads to a lower yield
of usable families that might generate lower f=1.0 sup-
ported family numbers for a candidate mutation, as
shown by the lower f=1.0 virtual family numbers
compared with f=1.0 real family numbers in Fig. 2e and
Figure S1. This downside did not have an effect on the
sensitivity or PPV at any of the AF levels tested in this
study, and thus, we did not further optimize this step of
the algorithm. However, because this downside might
have some effect in some cases, the value of the f param-
eter can be adjusted to minimize this effect. This step
can also be affected by paralogous sequences. Reads in
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these regions tend to have lower mapping quality due to
multiple alignments. Multiple mismatches (MM) [52]
are another feature to avoid this effect.

For the polishing step, unlike iDES, we found the most
best-fitted distribution of stereotypical noise through
large samples. Meanwhile, best-fitted distributions also
provided informative prior distributions for distribution
construction with low sample sizes using Bayesian
methods.

For the variant singleton ratio filter, the hypothesis of
this filter relies on the panel-wide singleton ratio and se-
quencing depth (family degree). For samples with panel-
wide singleton ratios lager than 2, this calculation
process might not be necessary. For example, for one
exome dataset, most of its templates were singletons
(Figure S6) that were the main virtual family form to
support variants. Under this circumstance, overall variant
singleton ratios were high among the variants. Besides the
panel-wide singleton ratio, sequence depth is another fac-
tor. For the tumor-70kb panel with extremely low se-
quence depth among all samples (Figure S2), its low
family degree under low sequence depth led to a small
proportion of singletons that caused overall low variant
singleton ratios (Fig. 4e: dark green dot; Figure S6). Al-
though our method can intelligently recognize these sam-
ples, we though that there should be a sample level cutoff
value to assess whether this sample needs the calculation
process of this filter, and related precise sample level cut-
off values need further detailed investigation in large series
of family degree samples with different sequencing depths.

Conclusions

This study develops a novel calling algorithm for the ac-
curate detection of somatic mutations with an AF as low
as 0.1%. The algorithm introduces three noise-reduction
strategies based on a comprehensive analysis of the
source of different types of sequencing noise. The ro-
bustness of the strategies is well elaborated using 11
Oncosmart2 RSDs and 14 Oncosmart2 controls and val-
idated with 5 Oncosmart3 RSDs. Our algorithm is inde-
pendent of the platform and well suited for NGS data
with or without a UMI. Due to its good performance for
the detection of low-AF mutations, our algorithm will
greatly facilitate the noninvasive panel-wide detection of
ctDNA in research and clinical settings.

Methods

Materials

In the present study, the following materials were in-
cluded: 14 Oncosmart2 cfDNA samples (controls) from
healthy individuals, 16 cfDNA reference standards
(RSDs, HD780), 529 Oncosmart2 patient cfDNA sam-
ples, 104 Oncosmartl patient cfDNA samples, 2 tumor
samples, and 3 wild-type cfDNA samples (HWT). RSDs

Page 10 of 13

were harboring six SNV-positive sites with AF levels
0.1% (4 samples), 0.2% (2 samples), 0.5% (2 samples), 1%
(4 samples) and 5% (4 samples). Three of RSDs were
UMI samples with AF 0.1, 1 and 5%. Our background
samples (BGs) were 14 controls and 16 RSDs. We fur-
ther classified BGs with respect to their panel version.
Fourteen controls and 11 Oncosamrt2 RSDs made up
the 25 Oncosmart2 BGs and were used to set and
optimize the filters used in our algorithm. Five Oncos-
mart3 RSDs (per sample at every AF level) were Oncos-
mart3 BGs that we used to validate all the filters
constructed based on the analysis of the 25 Oncosamrt2
BGs. Three Oncosmart2 UMI RSDs were used to valid-
ate the effectiveness of our virtual barcode. For 2 tumor
samples, one was enriched in the 70kb panel, and one
was whole-exome data. These 2 tumor samples were
used as internal standards for family degree exploration.
Sample statistics after preprocessing are provided in
Table S1.

A total of 529 Oncosmart2 patient cfDNA samples
and 104 Oncosmartl patient cfDNA samples were ana-
lyzed for two purposes. First, the stability of the occur-
rence rate for selected stereotypical sites was validated
using 529 Oncosmart2 cfDNA samples. Second, we ex-
plored the best-fit distribution candidates through ran-
dom position selection using 529 Oncosmart2 cfDNA
samples, which were independently validated using 104
Oncosmartl cfDNA samples. Based on distribution can-
didates, the distribution for every stereotypical site was
built using AF values from 25 BGs and 529 Oncosmart2
samples. All RSDs were used to benchmark five pub-
lished calling algorithms, and 11 Oncosmart2 RSDs were
used to compare the performance of our algorithm with
that of five published calling algorithms. More detailed
sample descriptions are provided in the Supplementary
Methods.

Virtual barcode-based algorithm

The sequencing reads were clustered into virtual families
according to the start site, template length and strand.
We validated the robustness and effectiveness of the vir-
tual barcode using 3 Oncosmart2 UMI samples from
three aspects: 1) recovery rate of the real family from the
UML 2) family contents; and 3) effectiveness in sup-
pressing errors. For validation, we randomly selected
genomic positions on Oncosmart2 panel 10 times (20,
000 positions per sample). After validation, if both readl
(R1) and read2 (R2) from the sample template covered a
genomic site, we further consolidated the R1 and R2
families. For a particular genomic site, if the bases from
R1 and R2 were the same, only one read was retained in
the corresponding virtual family; otherwise, both reads
were discarded. The virtual barcode was then defined
based on the start site and template length. Consensus
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reads were reads sharing the same virtual barcode, and
at least 2 reads were required for the virtual family. We
calculated f value, which is the ratio of the non-
reference allele for every family. For a singleton, only the
variant singleton was retained if the position had at least
one virtual family with f=1.0.

Construction of the polishing distribution

To establish a well-fitted distribution for stereotypical
mutant-family-level noises (designated as stereotypical
f=1.0 site), we adopted a novel strategy consisting of
two steps: 1) identifying candidate distributions from
529 Oncosmart2 cfDNA samples and validating the can-
didates in 104 Oncosmartl cfDNA samples independ-
ently; and 2) constructing the best-fit distribution for a
specific polishing site.

Additional fine-tuning filters
Based on comprehensive knowledge of the sources of
stochastic mutant-family-level noises, three fine-tuning
filters were introduced: 1) variant position in a segment,
2) imbalanced singleton number, and 3) minimum tem-
plate number requirement.

Detailed methods and illustrations of every part are
provided in the online Supplementary Methods.
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