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Abstract

Background: With the rapid development of whole exome sequencing (WES), an increasing number of tools are
being proposed for copy number variation (CNV) detection based on this technique. However, no comprehensive
guide is available for the use of these tools in clinical settings, which renders them inapplicable in practice. To
resolve this problem, in this study, we evaluated the performances of four WES-based CNV tools, and established a
guideline for the recommendation of a suitable tool according to the application requirements.

Results: In this study, first, we selected four WES-based CNV detection tools: CoNIFER, cn.MOPS, CNVkit and
exomeCopy. Then, we evaluated their performances in terms of three aspects: sensitivity and specificity,
overlapping consistency and computational costs. From this evaluation, we obtained four main results: (1) The
sensitivity increases and subsequently stabilizes as the coverage or CNV size increases, while the specificity
decreases. (2) CoNIFER performs better for CNV insertions than for CNV deletions, while the remaining tools exhibit
the opposite trend. (3) CoNIFER, cn.MOPS and CNVkit realize satisfactory overlapping consistency, which indicates
their results are trustworthy. (4) CoNIFER has the best space complexity and cn.MOPS has the best time complexity
among these four tools. Finally, we established a guideline for tools’ usage according to these results.

Conclusion: No available tool performs excellently under all conditions; however, some tools perform excellently in
some scenarios. Users can obtain a CNV tool recommendation from our paper according to the targeted CNV size,
the CNV type or computational costs of their projects, as presented in Table 1, which is helpful even for users with
limited knowledge of computer science.

Keywords: Copy number variants, Next generation sequencing, Whole exome sequencing, Sensitivity, Specificity,
Overlapping consistency, Computational costs, Recommendation, Guideline
Background
Copy number variation (CNV) is a phenomenon that is
caused by genomic rearrangement, and the CNV length
typically exceeds 1 kilobase (kb) [1]. In medicine, the fre-
quency of CNVs is 12% [2]; hence, it is an important
component of gene variations and plays an important
role in generating the necessary variation of population
and of disease phenotypes [3, 4]. Since the CNV is of
substantial medical significance, it has become a hotspot
in current medical research, and many accurate CNV
identification methods have been proposed in the past
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two decades. At present, there are many types of CNV
recognition methods based on various gene-sequencing
methods. Among them are three typical methods: the
fluorescence in situ hybridization (FISH), the high-
throughput sequencing (HTS) and the array-based com-
parative genomic hybridization (aCGH) [5]. FISH has a
relatively low resolution, and only large repeats can be
detected [6]. aCGH only has a high genomic resolution
for large CNVs [7]. HTS has a high genomic resolution
and can detect not only repetitions but also other types
of structural variations in the genome [6]; hence, HTS
has become the most popular method for gene sequen-
cing in CNV detection. With the in-depth study of HTS,
two branches of research have been developed—the
whole genome sequencing (WGS) and the whole exome
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sequencing (WES). WGS is the laboratory process of de-
termining most DNA base pairs across the 46 chromo-
somes of an individual’s genome [8], and WES is a
process of sequencing all protein-coding regions of
genes in a genome [9]. Compared with WGS, WES was
proposed later; however, it is more popular in clinical
diagnostics and academic research, which due to two ad-
vantages of WES: (1) WES is an effective technique for
the study of rare Mendelian and common polygenic dis-
eases, such as Alzheimer’s disease; (2) WES is cheaper
than WGS. Thus, the CNV detection based on WES has
become a research hotspot, and increasingly many have
been conducted on methods for detecting CNVs from
genes with WES data. However, although increasingly
many CNV detection tools are becoming available, there
is still no recommended reference for WES-based CNV
detection tools in medical applications, which hinders
the use of CNV detection tools in practice.
To resolve this problem, in our study, firstly, we chose

four tools, which are usually appearing in the literature on
CNV tool evaluation and are based on the read depth ap-
proach. Then, we comprehensively evaluated their perfor-
mances in terms of the following three aspects: (1) the
sensitivity and specificity of CNV detection for various cov-
erages, CNV sizes and CNV types; (2) the overlapping
consistency; (3) the computational cost. Finally, by compar-
ing the performances of these tools, our study not only
identifies the limitations and advantages of each CNV tool
but also provides a recommended reference on CNV tools
according to various requirements, which will facilitate re-
searchers in the selection of suitable tools for their projects.

Conclusions
In this study, first, we selected four WES-based CNV de-
tection tools: CoNIFER, cn.MOPS, CNVkit and exome-
Copy. Then, we comprehensively evaluated and compared
the performances of four selected CNV tools. Finally, by
analyzing the experimental results, we recommend suit-
able CNV tools according to the application requirements,
which are listed in Table 1. According to this table, we
can divide the requirements into two categories: (1) The
accuracy is the primary comparison criterion. (2) The
Table 1 The recommended tool for different requirements

Requirements Recommendation

Accuracy first CNV size is small(< 100 kb) CNVkit

CNV size is large cn.MOPS

More insertion CoNIFER

More deletion CNVkit

No prior knowledge cn.MOPS+CoNIFER

Others Speed first cn.MOPS

Low- memory CoNIFER
accuracy is not the primary comparison criterion. In the
first category, if the target CNV sizes are small, the recom-
mendation is CNVkit; otherwise, the recommendation is
cn.MOPS. If the CNV insertions are more frequent than
the CNV deletions, the recommendation is CoNIFER;
otherwise, CNVkit is a satisfactory choice. However, in
practice, the information of the target CNVs is typically
unknown, and the recommendation of our study is to use
CoNIFER and cn.MOPS together. In the other category, if
the researcher must deal with large WES data rapidly and
desires a typical sensitivity, the recommendation is
cn.MOPS, whereas if the researcher wants to detect CNVs
on any computer, including a low-configuration com-
puter, the recommendation is CoNIFER. Thus, in practice,
we can recommend a proper CNV tool to researchers ac-
cording to their requirements, which can maximize the
accuracy of the test result. For instance, according to
Rohrback’s study [10], the size of a CNV that is in a
neuron of the human brain is typically between 2Mb and
10Mb, and to obtain an accurate result for its CNV detec-
tion, the recommended CNV tool is cn.MOPS.

Method
Data sets
In this study, we used simulated WES data and real
WES data to evaluate the performances of CNV tools.
For simulated data, the CNV size, the CNV number and
the coverage are available to the researchers, while those
of real data are unknown.
For the simulated data, we used hg38 as the reference

genome, which can be downloaded from The National
Center for Biotechnology Information (NCBI), https://
www.ncbi.nlm.nih.gov/. Then, we simulated the test gen-
ome by using the reference genome, and in this process,
three assumptions were made: (1) The CNV size exceeds
1 kb. (2) The coverage is 100X. (3) The length of the
reads is 50 bp. After obtaining the test genome and the
reference genome, we used bowtie2 and samtools with
their default parameters to obtain the aligned BAM file,
which can be used by CNV tools directly.
For the real data, we selected ten real samples from

the exome example of CNVkit, which can be down-
loaded from GitHub, https://github.com/etal/cnvkit-ex-
amples/tree/master/exome. Then, to enable the use of
these data with other selected CNV tools, we converted
these samples from cnn files to GRange objects and S4
objects; in addition, we created files in which the reads
per kilobase per million mapped reads (RPKM) are re-
corded. After these steps, we can obtain real data that
can be used with these CNV tools directly.

Tools’ comparisons
To facilitate researchers in the selection of suitable WES-
based CNV tools according to their requirements, we
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selected representative tools and evaluated their perfor-
mances in various cases. In this process, one of tool selection
criteria is that they are based on the read depth approach
for the detection of CNVs, which assumes that the variation
in the read depth is unbiased, random and normally distrib-
uted and that the deviation from the background document
may signify the presence of a CNV [11–13]. The other selec-
tion criterion is the availability of the tools.
With these criteria, first, we identified candidate tools

from previous studies on the evaluation of CNV detec-
tion tools [14–16], such as CoNIFER [17], exomeCopy
[18], ExCopyDepth [14], CNVkit [19], cn.MOPS [20]
and so on. Then, we attempted to download these candi-
date tools. In the process, because the resources of some
tools were unavailable, we screened out several of the
CNV tools, such as ExCopyDepth. Finally, we selected
four tools as the final tools by comparing the weekly
downloads of candidate tools, and information on them
is presented in Table 2.
According to Table 2, our selected CNV tools are CoNI-

FER, exomeCopy, CNVkit and cn.MOPS. Among them,
CoNIFER uses singular value decomposition (SVD) to
eliminate capture biases between sample batches and to
detect CNVs in exome data [17]. exomeCopy uses the hid-
den Markov model (HMM) to detect CNVs in exome data
[18]. CNVkit uses both targeted reads and nonspecific
captured off-target reads to infer the copy number evenly
across the genome for the detection of CNVs in exome
data [19]. cn.MOPS uses Bayesian inference to detect
CNVs in the exome data [20]. Tools differ in terms of
their methods, which typically causes their performances
to differ among cases. In practice, while using these CNV
tools, we need to adjust their parameters to realize their
optimal performances in various cases. However, this
workload is heavy, and the simulation of all cases is un-
realistic. Therefore, we chose a compromise in our study
and adjusted parameters of each of the tools by evaluating
their comprehensive performances for simulated data for
which the CNVs’ sizes range from 1 kb to 10Mb ran-
domly. Our recommended parameters for these CNV
tools are as follows: For CoNIFER, we set svd to 1. For
Table 2 Selected representative CNV calling methods

Tools Language Input format Methodology Installation

CoNIFER python BAM/RPKM、
bed、RPKM

Principal Component
Analysis

http://con

exomeCopy R BAM、bed、
Grange

A hidden Markov
model which
uses positional
covariates

http://www
exomeCop

CNVkit python BAM、bed、
cnn

Principal Component
Analysis

https://cnv

cn.MOPS R BAM、bed、
Grange

Bayesian approach http://www
exomeCopy, we set relto to 0.01, goto.cnv to 0.0001 and
goto.normal to 0.01. For CNVkit, we set target-avg-size to
300 bp. For cn.MOPS, we set priorImpact to 20, min.width
to 9, upperThreshold to 0.4 and lowerThreshold to the de-
fault. All the experimental results of parameter adjustment
are shown in additional file 1.

Comparison criteria
To more comprehensively assess the tools, we evaluated
these tools mainly in terms of the sensitivity and specifi-
city, overlapping consistency and computational costs.
The comparison criteria are described in detail as follows.

Sensitivity and specificity
In medicine, sensitivity and specificity are two statistical
measures that are widely used to evaluate the perform-
ance of a binary classification test [21]. Sensitivity is the
statistic that measures the proportion of positive results
that are correctly identified as such, and specificity is the
statistic that measures the proportion of negative results
that are correctly identified as such [22]. As in other
medical dichotomy experiments, in our study, we used
sensitivity and specificity as criteria for the performance
evaluation of these CNV tools. In the process of calcu-
lating the sensitivity and specificity, we used the exon as
the minimum unit, and calculation formulas for the sen-
sitivity and specificity are presented as follows. The sen-
sitivity is calculated via eq. (1) and is defined as the true
positive rate (TPR). The specificity is calculated via eq.
(2) and is defined as the true negative rate (TNR).

TPR ¼ TP
P

¼ TP
TP þ FN

ð1Þ

TNR ¼ TN
N

¼ TN
TN þ FP

ð2Þ

In these equations, there are six values: positive (P),
negative (N), true positive (TP), true negative (TN), false
positive (FP) and false negative (FN). They are defined in
Table 3. From this table, we can obtain not only the def-
initions of these values but also the relationships among
tutorial Reference

ifer.sourceforge.net/index.html Krumm.
et al.(2012) [17]

.bioconductor.org/packages/release/bioc/html/
y.html

Love.
et al.(2011) [18]

kit.readthedocs.io/en/stable/ Eric.
et al.(2016) [19]

.bioinf.jku.at/software/cnmops/cnmops.html Klambauer.
et al.(2012) [20]
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Table 3 The definition of six values in sensitivity and specificity

Values Definition

P (Positive) Number of exons which are within the real CNV

N (Negative) Number of exons which are out of the real CNV

TP (True Positive) Number of exons which are within both the detected
CNV and the real CNV

TN (True Negative) Number of exons which are out of both the detected
CNV and the real CNV

FP (False Positive) Number of exons which are within the detected
CNV and out of the real CNV

FN (False Negative) Number of exons which are out of the detected
CNV and within the real CNV
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them, such as TP plus FN equals P and TN plus FP
equals N.

Overlapping consistency
The overlapping consistency is a comparison method that
is typically used in medicine. In our study, since ground-
truth information for the real data is unavailable, we aban-
doned the strategy of evaluating the performances of these
CNV tools by comparing their sensitivity and specificity
values under various conditions; instead, we used the
Venn diagram [23–25] to evaluate their performances on
real data. During this process, since the differences in the
sample types may affect the results of the overlap test, we
conducted this test for not only real data but also simu-
lated data, and used the result for simulated data as the
reference for the real data. To facilitate the evaluation, we
quantified the consistency among these four tools. Here,
we introduce the overlap rate as the quantitative value,
which is defined as the ratio between N_(overlap) and N,
where N is the total number of exons that are detected by
a CNV tool and N_(overlap) is the number that over-
lapped with those that were detected by the other tools.
For example, from Fig. 4a, for cn.MOPS, N = 6405, and
N_(overlap) = N-58; hence, the overlap rate is 99%. This
process aims at determining the consistency of these tools’
results. If the overlap rates detected by these tools are
high, the results of these tools have high CNV consistency
and are trustworthy.

Computational costs
Computational costs are typically used to evaluate the per-
formance of an algorithm in computer science. To make
our assessment comprehensive, we assessed these CNV
tools in terms of not only statistical characteristics but also
computational costs. In the evaluation, computational
costs include the time complexity and the space complex-
ity. The time complexity refers to the computational effort
that is required to execute the algorithm, which can be
represented by the product of the central processing unit
(CPU) utilization and the average running time. The space
complexity is a measure of the size of the storage space
that is required by the algorithm, which can be repre-
sented by the memory occupancy.

Results
Sensitivity and specificity
In our study, we used the sensitivity and the specificity
to evaluate the performances of these selected tools. In
this process, since the coverage, CNV size and CNV type
of the WES data may influence the performances of
tools, we simulated three types of data and studied the
changes in the CNV tools’ performances with respect to
these three factors. The results are presented as follows.

Coverage
To evaluate the impact of the coverage on the CNV de-
tection performances of these tools, we considered a
series of WES datasets with coverages of 3X, 10X, 30X
and 100X for which the probability of insertions is equal
to the probability of deletions. Then, we used the se-
lected tools to detect CNVs from these data. The results
are presented in Fig. 1. Figure 1a and b presents the
changes of these tools’ sensitivities (TPRs) and specific-
ities (TNRs) with respect to the coverage, and Fig. 1c
presents the numbers of detected CNVs by these tools
with various coverages.
From Fig. 1, we obtain three main conclusions: First, the

sensitivity (TPR) increases rapidly and subsequently stabi-
lizes with the increase of the data’s coverage, which may
be caused by the ceiling effect. Second, the specificity
(TNR) decreases overall with the increase of the sensitiv-
ity. Finally, the number of detected CNVs of every tool in-
creases initially and subsequently remains unchanged with
the increase of the data’s coverage. According to these re-
sults, the coverage of 100X is sufficient in practice, for
which the sensitivities and specificities of these tools are
satisfactory, and the computational burden is much lower
than that for the data with higher coverage.

CNV size
To evaluate the influence of the CNV size on the CNV
detection performance, we simulated a series of datasets
as input, for which the CNV sizes are distributed in 1
kb–10 kb, 10 kb–100 kb, 100 kb-1Mb and 1Mb–10Mb
while the coverage is 100X and each CNV type (deletion
and insertion) occurs with equal frequency among them.
Then, we used the selected tools to detect CNVs from
these datasets. The results are presented in Fig. 2. Fig-
ure 2a and b show the changes of these tools’ sensitiv-
ities (TPRs) and specificities (TNRs) with respect to the
CNV size, and Fig. 2c shows the numbers of detected
CNVs of various CNV sizes for these tools. For the ab-
scissa axis of Fig. 2a and b, the CNV size* is a value that
is computed from the CNV size by dividing the CNV
size by 1000, calculating the base 10 logarithm, and



Fig. 1 The changes of tools’ performances with respect to the coverage. Fig a and b describe the changes of these tools’ sensitivities (TPRs) and
specificities (TNRs) with respect to the coverage, and Fig c describes the numbers of detected CNVs in different coverages for these tools.
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rounding up the value. For example, when the CNV size
is 111 kb, the CNV size* is 3, and when the CNV size is
9Mb, the CNV size* is 4.
From Fig. 2, we draw two main conclusions: First, for all

these tools, the sensitivity increases initially and subse-
quently remains unchanged or decreases slightly with the in-
crease of the CNV size, while the specificity decreases as the
sensitivity increases, and the number of detected CNVs in-
creases as the CNV size increases. Second, the performances
of these tools change with the CNV size, and the recom-
mended tools differ among the cases. For example, when
the targeted CNV size is between 1 kb and 100 kb, CNVkit
comprehensively outperforms other tools in terms of the
sensitivity and specificity, whereas when the targeted CNV
size is between 100 kb and 10Mb, cn.MOPS performs best
comprehensively in terms of the sensitivity and specificity.
After we obtained the sensitivities and specificities of

these tools for various CNV sizes, since the targeted
CNVs may be unknown, we calculated the global sensi-
tivities and specificities of these tools by averaging their
sensitivities and specificities over various CNV sizes.
The results are presented in Table 4. According to the
information in this table, cn.MOPS is a suitable choice
for unknown research as its specificity and sensitivity are
satisfactory comprehensively.

CNV type
To determine whether the CNV type influences the CNV
detection or not, we simulated a series of datasets, of
which the coverage is 100X, the CNV size is random and
the CNV types occur with equal frequency. Then, we used
the selected tools to detect CNVs and counted the num-
ber of detected CNVs of each type. The results are pre-
sented in Fig. 3.
From Fig. 3, we conclude the following: First, all these

tools can detect not only CNV insertions but also CNV
deletions. Second, all tools except CoNIFER perform bet-
ter for CNV deletions than for CNV insertions. Third, al-
though CoNIFER performs better for insertions than for
deletions, it may not perform the best among all these



Fig. 2 The changes of tools’ performances with respect to the CNV size. Fig a and b show the changes of these tools’ sensitivities (TPRs) and
specificities (TNRs) with respect to the CNV size, and Fig c shows the numbers of detected CNVs in different CNV sizes for these tools.
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tools for insertions, of which the performance also de-
pends on the distribution of the CNV size.

Overlapping consistency
In our study, to evaluate the consistency of these CNV
tools, we conducted overlap tests on the simulated data
and real data.
For the simulated data, first, we simulated a series of

datasets, of which the coverage is 100X and the CNV
size and type are random. Then, we used the selected
four tools to detect CNVs. Finally, we drew a Venn dia-
gram of the detection results, which is shown in Fig. 4a.
For the real data, first, we downloaded exome examples

from CNVkit and used them as the original data. Then, we
Table 4 The global sensitivity and the global specificity of four
CNV tools

CNV detection tool ExomeCopy CoNIFER CNVkit cn.MOPS

Sensitivity (TPR) 0.64 0.29 0.75 0.65

Specificity (TNR) 0.60 0.99 0.76 1.00
converted the original data (in cnn format) into the formats
that are required by the other three CNV tools: RPKM for-
mat for CoNIFER, GRange format for exomeCopy and S4
for cn.MOPS. Finally, we detected CNVs and drew a Venn
diagram by following the same procedure as for the simu-
lated data. The Venn diagram is presented in Fig. 4b.
With the information in Fig. 4, we calculated the over-

lap rates (defined in section Comparison criteria) of
these four tools to quantify their consistency, which are
listed in Table 5.
According to Table 5, the overlap rates of CoNIFER,

CNVkit and cn.MOPS exceed 90% for the simulated data;
hence, they realize satisfactory consistency in the detection
of CNVs, and their results are highly trustworthy. In
addition, cn.MOPS and CoNIFER also realize satisfactory
consistency (86 and 67%) on the detection of CNVs from
real data.
However, not all of these tools realize satisfactory

consistency. The overlap rate of exomeCopy is always
low (23% on simulated data and 3% on real data). To de-
termine the cause of this phenomenon, we reviewed



Fig. 3 The number of detected CNV for different CNV type.
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many other studies and found that our result is similar
to Tan’s results (22%) [24], according to which the over-
lap rate of exomeCopy is associated with its algorithms.
In addition, we found that the tools’ overlap rates for

simulated data are higher than those for real data in our
test. To determine what led to this phenomenon, we made
the Venn diagrams of three of four tools, which were se-
lected randomly. The results are presented in Fig. 5.
According to Fig. 5, all the combinations of three of

these four tools have common exons except the combin-
ation of exomeCopy, cn.MOPS and CoNIFER, which is
because the number of detected exons by cn.MOPS is
too small relative to those by other tools. However, from
the detection results on the simulated data, cn.MOPS
outperformed most of the tools in terms of global sensi-
tivity and specificity, which is not in line with the result
of overlapping consistency. Based on the results from
the simulated data, we think the underlying causes of
Fig. 4 The overlapping consistency results. Fig a and b show the simulated
this phenomenon may be that the CNV sizes of the sam-
ples don’t focus on 10 kb to1 Mb and the number of
CNV insertions exceeds the number of CNV deletions,
which may cause the numbers of false detections for
exomeCopy and CNVkit to be far larger than those for
cn.MOPS and CoNIFER.

Computational costs
To assess these CNV tools comprehensively, we also
used the computational cost as an evaluation criterion,
which includes the time complexity and the space com-
plexity. The results are presented as follows.

Time complexity
In our study, to determine the time complexities of these
tools, we simulated a series of datasets as input, of which
the coverage is 100X and the size is close to 11.2MB.
Then, since we do not have the detailed algorithm of these
data and real data.



Table 5 The overlap rates of four CNV tools

CNV detection tool ExomeCopy CoNIFER CNVkit cn.MOPS

simulated data 0.23 0.98 0.93 0.99

real data 0.03 0.67 0.05 0.86
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tools, we calculated the time complexity of each tool by
multiplying the average running time and the CPU
utilization. The results are presented in Fig. 6.
According to Fig. 6, cn.MOPS has the lowest time

complexity; hence, it will require the minimum time for
the same data processing among these tools. CNVkit has
the highest time complexity, while it realizes satisfactory
sensitivity and specificity.

Space complexity
To determine whether the CNV tool will affect other pro-
grams while it is running, we simulated a series of datasets
Fig. 5 Venn diagrams of three CNV tools. Fig a is for CoNIFER, cn.MOPS an
CNVkit, cn.MOPS and exomeCopy, and Fig d is for CoNIFER, CNVkit and exo
as input, of which the coverage is 100X and the size is
close to 11.2MB. Then, we used the selected tools to de-
tect CNVs from these datasets and calculated the average
memory occupancy as a characterization quantity of the
space complexity. The results are presented in Fig. 7.
According to the information in Fig. 7, CoNIFER has the

lowest memory occupancy for the same data processing
among these tools; hence, it has the minimum requirements
for computer hardware. cn.MOPS has the highest memory
occupancy among these tools, while it has the lowest time
complexity, and this is because the time complexity and the
space complexity are mutually constrained.
Discussion
With the development of CNV detection based on WES,
increasingly many tools are being proposed and evalu-
ated. However, no reference guide of CNV tools
d exomeCopy, Fig b is for CoNIFER, cn.MOPS and CNVkit, Fig c is for
meCopy.



Fig. 6 The time complexities of exomeCopy, CoNIFER, CNVkit and cn.MOPS.
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recommendation is available for various cases. Hence,
the application of CNV tools in the clinic is challenging.
To facilitate clinicians and investigators in the selection

of suitable CNV tools, we reviewed and compared prom-
inent studies on evaluating CNV tools [23–25], and we
identified three main areas for improvement: (1) the evalu-
ation method. Most studies compared CNV tools only in
terms of statistical characteristics, such as the sensitivity
and specificity, and the influences of the coverage, CNV
size and CNV type on tools’ statistical characteristics were
not considered. Therefore, in our study, we evaluated the
performances of CNV tools in terms of not only statistical
characteristics but also computational costs; in addition,
we evaluated the influence of CNV characteristics; (2) the
selection of CNV tools. In most studies, the latest tools
were selected; however, the perfective maintenance stage
in the software life cycle and user evaluations were not
considered; therefore, in our study, we selected CNV tools
Fig. 7 The space complexities of exomeCopy, CoNIFER, CNVkit and cn.MOP
according to the frequency of application, which is repre-
sented by the download frequency and the number of cita-
tions in the literature; (3) the practical guideline. Most
studies identified advantages and disadvantages of tools
without considering the users’ background. Therefore, it is
difficult for users to choose suitable tools for their pro-
jects. In our study, we recommend suitable CNV tools ac-
cording to various conditions, which is helpful for users
who have limited knowledge of computer science.
In the study, we have selected four representative

WES-based tools and evaluated their performances from
three aspects. From results of this study, we obtain infor-
mation about the performances of these tools in various
cases. Then, by comparing their performances, the most
suitable tool can be identified in various scenarios, which
will facilitate researchers in the selection of proper tools
according to their projects. For example, among these
tools, CNVkit has the highest sensitivity and a typical
S.
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specificity for CNVs of which sizes are between 10 kb
and 100 kb; hence, CNVkit is the best choice for CNVs
with sizes that are in this range.
Based on this study, we can recommend suitable CNV

tools to researchers according to their projects, which
can promote the clinical application of these tools. How-
ever, there are still many areas for improvement in this
study: first, in this study, we selected only four WES-
based tools as representatives for performance evalu-
ation, and the guideline for CNV detection based on
WES can be improved by adding more tools to this
comparison. Second, the guideline is mainly for WES
data with a coverage of approximately 100X, and the
performances of these tools for low coverage data are
unknown in various cases. Finally, this study only evalu-
ated the performances of WES-based CNV tools and ig-
nored the comparison between WES-based CNV tools
and WGS-based CNV tools.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3421-1.

Additional file 1: Selection of tool parameters. A text includes all the
figures and tables about tool parameters’ selection.
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