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Abstract

Background: High-throughput omics technologies have enabled the comprehensive reconstructions of
genome-scale metabolic networks for many organisms. However, only a subset of reactions is active in each cell
which differs from tissue to tissue or from patient to patient. Reconstructing a subnetwork of the generic metabolic
network from a provided set of context-specific active reactions is a demanding computational task.

Results: We propose SWIFTCC and SWIFTCORE as effective methods for flux consistency checking and the
context-specific reconstruction of genome-scale metabolic networks which consistently outperform the previous
approaches.

Conclusions: We have derived an approximate greedy algorithm which efficiently scales to increasingly large
metabolic networks. SWIFTCORE is freely available for non-commercial use in the GitHub repository at https://mtefagh.
github.io/swiftcore/.
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Background
Constraint-based reconstruction and analysis (COBRA) is
the current state-of-the-art in the genome-scalemetabolic
network modelling [1]. COBRA methods systematize
biochemical constraints into a mathematical framework
which synthetic biologists can utilize to quantitatively
simulate metabolic pathways in order to answer the rele-
vant biological questions. There is a critical mass of stud-
ies that combine these curated high-dimensional models
and in silico analysis for drug discovery or many other
applications [2–4].
Context-specific metabolic networks are extensively

studied because of their higher explanatory and predic-
tive power [5–8]. To date, a wide variety of computational
methods have been developed to extract context-specific
metabolic networks from the available comprehensive
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genome-scale reconstructions. Gene inactivity moderated
by metabolism and expression (GIMME) [9] uses quan-
titative gene expression data and presupposed cellular
functions to predict the subset of reactions that a cell
uses under particular conditions. Integrative metabolic
analysis tool (iMAT) [10, 11] integrates tissue-specific
gene- and protein-expression data to produce context-
specific metabolic networks. Integrative network inference
for tissues (INIT) [12–14] uses cell type specific pro-
teomic data from the human proteome atlas (HPA) to
reconstruct tissue-specific metabolic networks. Metapro-
teomic and taxonomic data have been exploited for a
context-specific reconstruction procedure applied to a
naphthalene-degrading bacterial community [15]. RegrEx
[16, 17] is based on regularized least squares optimiza-
tion using publicly available RNAseq expression profiles.
Context-specificity assessed by deterministic reaction eval-
uation (mCADRE) [18] is also based on gene expression
data but evaluates the functional capabilities duringmodel
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building too. Another approach is to infer the metabolic
functionalities of a cell or tissue from transcriptomic data,
and then protect these functions during the implemen-
tation of context-specific reconstruction [19]. Cost opti-
mization reaction dependency assessment (CORDA) [20]
relies solely on flux balance analysis (FBA), rendering it
more computationally efficient.
One approach to this problem is to curate a list of active

reactions and develop a framework to find the sparsest
subnetwork containing the specified reactions. Although
this subnetwork is assumed to be as sparse as possible, we
should avoid flux inconsistencies such as when one of the
desired reactions is included in the subnetwork, yet it is
blocked and cannot carry non-zero flux at the steady-state
condition. In this regard, context-specific reconstructions
seek to generate minimal consistent subnetworks includ-
ing a given set of core reactions.
It is known that identifying a consistent subnetwork

with the minimum possible size such that it contains
some core reactions is an NP-hard problem [21]. To
address this issue, approximate greedy algorithms have
been developed which either prune the original network
[5] or increment the core set [22] recursively to arrive at
a consistent subnetwork in between them. Among these
competing approaches, FASTCORE [22] exhibits superior
performance both in terms of the sparseness of the sub-
network and the computational efficiency.
Let M = {Mi}mi=1 denote m specific metabolites in

an organism, and R = {Ri}ni=1 be the set of n reactions
involving at least one of these metabolites. Under average
physiological conditions, the irreversible reactions I ⊆ R
are thermodynamically constrained to proceed in the for-
ward direction only, in contrast to the reversible reactions
which may proceed in the reverse direction as well.
We call a vector v of length n a flux distribution if

the absolute values of its entries are the rates of the cor-
responding reactions in R, and the signs of its entries
indicate the forward and reverse directions. Unless stated
otherwise, all flux distributions are assumed to respect the
irreversibility conditions in the sense that vi ≥ 0 for all
Ri ∈ I .
We represent the relative quantities of metabolites in

each reaction by an associated vector of lengthm and dis-
tinguish reactants from products by negative signs. After-
ward, we construct the stoichiometric matrix by stacking
these vectors for all the reactions in R as the columns of
anm×nmatrix S. Themass balance constraint asserts that
the concentration of each metabolite is constant through-
out the time-scale of interest which is equivalent to say
that Sv = 0 in our notation.
We refer to any solution of Sv = 0 such that vi ≥ 0

for all Ri ∈ I as a steady-state flux distribution. We call
Ri ∈ R a blocked reaction if vi = 0 for all the steady-
state flux distributions, and unblocked otherwise. We call

a metabolic network with no blocked reactions a flux
consistent metabolic network [23].
In this paper, we present an algorithm that given a flux

consistent metabolic network and the subset C ⊂ R of
core reactions as input, computes a flux consistent subnet-
work N ⊆ R such that C ⊆ N as output. Ideally, we are
interested to find a sparse subnetwork, and accordingly,
we search to minimize the size ofN .

Related works
A closely related problem to the context-specific recon-
struction is to check the flux consistency of a given
metabolic network by detecting the blocked reactions.
FASTCC [22] which is based on the same ideas as used for
FASTCORE, is currently the fastest algorithm dedicated to
this task.
As a simple observation, all the irreversible reactions

in I are unblocked if and only if we can find a flux
distribution v such that

Sv = 0
vI > 0, (1)

where vI > 0 is the shorthand of vi > 0 for all Ri ∈ I .
Assuming that such a flux distribution v exists, an arbi-
trary (possibly reversible) Rj ∈ R is unblocked if and only
if there exists u such that

Su = 0
uj �= 0, (2)

since if c > 0 is large enough, then uj + cvj �= 0 and u +
cv would be a steady-state flux distribution in which Rj is
active.
Quantitative flux coupling analysis (QFCA) [24] uses

this observation to develop a consistency checking tech-
nique which we call SWIFTCC in this paper. However, this
is presented as only a preprocessing step in the origi-
nal paper instead of a separate algorithm. For the sake
of completeness, we have also compared SWIFTCC as
implemented in the QFCA against FASTCC. Addition-
ally, we have benchmarked FASTCC++ and SWIFTCC++
which are the original algorithms plus the preprocess-
ing step explained in the Appendix. Later on, we extend
the ideas of SWIFTCC to develop an analogous method
for the context-specific reconstruction problem with the
same order of speed-up which SWIFTCC offers.

Methods
By similar arguments to the previous section, we con-
cluded that a subnetwork N is flux consistent if and
only if
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1. there exists v in analogy to (1) such that

Sv = 0
vI∩N > 0
vR\N = 0,

2. and there exists a set {uk}Kk=1 in analogy to (2) such
that

Suk = 0
ukR\N = 0, (3)

holds for all 1 ≤ k ≤ K . Furthermore, for any
Rj ∈ N \ I , ukj �= 0 holds for at least one 1 ≤ k ≤ K .

We start by finding a v which is sparse in R \ C by
minimizing the l1 norm [25]

minimize
∥
∥vR\C

∥
∥
1

subject to Sv = 0
vI∩C > 0
vI\C ≥ 0,

and setting the initial N to be the non-zero indices of v.
Consequently, the optimal v satisfies 1 for thisN .
This homogeneous problem is equivalent to the follow-

ing linear program (LP)

minimize 1Tw
subject to Sv = 0

vI∩C ≥ 1
vI\C ≥ 0
w ≥ vR\C
w ≥ −vR\C ,

(4)

by scaling v if necessary, so that the nonzero entries of
vI∩C are greater than or equal to one.
We define the set B = N \ I to be the reactions in N

which have not been verified to be unblocked yet. When-
ever we find a uk which satisfies the conditions of (3), we
update B by removing the reactions Rj for which ukj �= 0,
and we also updateN by adding the same reactions to it if
they are not already included.
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Fig. 1 SWIFTCORE requires to solve at most 22 LPs on Recon3D with n = 10600
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Let SN denote the matrix consisting of the columns of S
which correspond toN . We initialize {uk}Kk=1 to be a basis
for the set of vectors satisfying (3). Note that, this can be
obtained by the singular value decomposition (SVD) of SN
since it is a basis for the null space of SN padded by zeros
for the indices corresponding to R \ N . This step is not
required and can be skipped to decrease the runtime.
In order to generate the next uk , we consider the solu-

tion of

minimize xTuB + ∥
∥uR\N

∥
∥
1

subject to Su = 0
‖uB‖∞ ≤ 1,

where x is a random vector generated from the zero-mean
normal distribution with variance σ 2. This problem tries
to find a u which is sparse in R \ N by minimizing the l1
norm, and which is dense in B by the l∞ norm constraint
[26]. The choice of the variance σ 2 manages the trade-
off between these two objectives and is set by a simple
rule which doubles σ whenever uB is not dense enough,

for instance whenever the size of B is not reduced by
more than half. In addition, we have tried several other
heuristics, however, SWIFTCORE is robust across a wide
range of σ .
Finally, this problem is equivalent to the following LP

minimize xTuB + 1
σ
1Tw

subject to Su = 0
uB ≤ 1
−uB ≤ 1
uR\N ≤ w
−uR\N ≤ w,

(5)

where x is sampled from the standard normal distribu-
tion.More generally, 1

σ
1 can be substituted by any positive

weight vector ω to customize the loss corresponding to
each reaction. In the current work, we have only experi-
mented with ω = 1

σ
1 for different values of σ . However,

the accompanying package supports any positive weight
vector ω.
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Fig. 2 SWIFTCORE is 6× faster than FASTCORE on average over these 105 iterations of varying sizes
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Subsequently, we keep iterating over k until no reaction
remains in B. Therefore, we will eventually arrive at a set
{uk}Kk=1 which satisfies 2 for the final N , thus together
with the prior v, they imply thatN is a flux consistent sub-
network. Note that, we can also impose lower and upper
bound constraints on the feasible flux distributions by
adding the corresponding inequalities to (4) and (5) for the
general case.
Altogether, this algorithm is based on linear program-

ming, and hence, SWIFTCORE is ultra-fast in comparison
to nonlinear methods such as the model-building algo-
rithm (MBA) [5] which are orders of magnitude slower.
Focusing on computational efficiency, the only real con-
tender is the FASTCORE algorithm which is again based
on linear programming but is still several times slower,
mainly due to flipping the signs of the columns of the
stoichiometric matrix that correspond to the reversible
reactions. We refer the interested reader to the associated
paper [22] for more details on this technique which we
have avoided in SWIFTCORE in the way explained below.

Whether it is a binary variable in a mixed-integer lin-
ear program (MILP) corresponding to the direction of
a reversible reaction or two separate iterations over the
forward and reverse directions like in the FASTCORE, a
common way of dealing with reversible reactions is to
iterate over instances of the metabolic network with a pre-
determined direction for that reversible reactions. Instead
of determining a direction for the reversible reactions,
signs of the different entries of xmerely encourage one of
the two possible directions in a “soft” manner instead of
a “hard” constraint. The objective function of (5) is min-
imized when most of the entries of uB have the opposite
sign to the corresponding entries of x. However, it may
not be the case for some entries of the solution, espe-
cially entries with small absolute values. In this sense, even
though the sampled x assigns random preferences to the
direction of every reversible reaction in B, the optimal u
might have different signs in a few entries. As a result,
the search for a sparse u is conducted over a much larger
feasible set, and B vanishes in fewer iterations.
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Fig. 3 Benchmark of SWIFTCORE against FASTCORE on Recon3D
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As a side note, SWIFTCORE also preprocesses the orig-
inal metabolic network by merging the pairs of reactions
which are fully coupled to each other by a metabolite with
no other adjacent reaction (cf., Figure 1 in [27]). How-
ever, this optional subroutine can be skipped safely and
only affects the runtime. Besides, we can repeat the whole
algorithm with the same core reactions C but replace the
original metabolic network by N to further shrink the
subnetwork until its size is no longer reduced.

Implementation
We have implemented both SWIFTCC and SWIFTCORE in
an open-source package freely available for academic use
on GitHub. It is written in MATLAB® with zero depen-
dencies, though it supports Gurobi™ or CPLEX™ optimizer
for improved performance. Additionally, if any other LP
solver has been set up for the COBRA toolbox v3.0 [28],
it can use that as well by calling the LP solve function of
COBRA.
The partitioning preprocessing step described in the

Appendix is also included in this package. Despite the

fact that in our simulations it does not improve the per-
formance directly, we suggest exploiting its potential to
develop parallel consistency checking methods as the par-
titioned subnetworks can be analyzed independently. We
did not investigate how much this might improve the
efficiency of either SWIFTCC or FASTCC none of which can
readily be parallelized in an obvious way and this direction
is left for future research.
Last but not least, the benchmark codes to reproduce all

the figures in this article are also publicly available in the
same GitHub repository.

Results and discussion
To assess the performance of SWIFTCORE, we have
benchmarked both SWIFTCORE and FASTCORE on the
flux consistent part of the Recon3D model [29] with
randomly selected core sets of varying sizes over the
range of 1 to the number of reactions n = 10600.
All simulations were performed on a desktop PC
with AMD Ryzen™7 1800X eight-core processor and
16 GB of memory, and the CPLEX™ optimizer was
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Fig. 4 The number of solved LPs changes proportional to the logarithm of the scaling factor
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Fig. 5 The variation in runtime is relatively smaller for SWIFTCORE compared to FASTCORE

employed as the LP solver. Furthermore, in the pub-
lished benchmark code we double check if the recon-
structed subnetwork is flux consistent and contains the
core reactions and SWIFTCORE always passes these sanity
checks.

In Fig. 1, the difference between the two versions of
the algorithm is that in the SWIFTCORE with reduction
version we have included the SVD and full coupling reduc-
tion techniques described before in contrast to the other
vanilla version which excludes them. In spite of the fact
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Fig. 6 The difference in sparsity is less than 1% for all algorithms
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that the vanilla version solves more LP problems, it is
actually more efficient nonetheless (see Fig. 2).
Figure 3 shows that the sparsity of the outputs of all

three algorithms is nearly identical. Moreover, the inter-
section of the three solution subnetworks usually accounts
for about 95% of the reactions which means the subnet-
works are almost the same.
Regarding the impact of the weights, Figs. 4, 5, and 6

demonstrate that the number of solved LPs, the runtime,
and the sparsity of the output subnetworks is pretty robust
with respect to the variations of weights. In these figures,
we randomly sample half of the reactions in the network
and run both algorithms with the weight vectors 2k1 for
k = 0, 1, . . . , 15. Note that the magnitude of the largest
weight vector is 32768 times themagnitude of the smallest
one yet again, as claimed before, SWIFTCORE is robust to
the choice of σ .
In the end, we have also benchmarked SWIFTCC against

FASTCC on the flux inconsistent version of the Recon3D
model and its randomly selected subnetworks. In Figs. 7
and 8, SWIFTCC’s runtime is 8% of FASTCC’s runtime on

Recon3D model averaged over sampled subnetworks of
different sizes from 1 to n = 13543.
In a second setting, we evaluated both algorithms by

the reconstruction of a liver model previously studied
in the original MBA and FASTCORE articles [5, 22].
All simulations were performed on a laptop with Intel©
Core™i7-5500U CPU @ 2.40GHz ×2 and 16 GB of mem-
ory, and the Gurobi™ optimizer was employed as the LP
solver. Figures 9 and 10 are consistent with our previous
findings.
Since FASTCORE is a deterministic algorithm, we see

a corresponding flat line in Fig. 11 because of the same
hepatocyte-specific core set used in every iteration. On
the other hand, the randomly selected x in (5) makes
SWIFTCORE a stochastic algorithm which samples the
space of alternative optimal subnetworks. It has been
proposed that a careful balance between model sparsity
and metabolic functionality helps in reducing the ambi-
guity of context-specific metabolic network predictions
[17, 30]. In order to do so, we have tested all reconstruc-
tions by the list of data-inferred metabolic tasks recently
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Fig. 7 SWIFTCC is more than 12× faster than FASTCC on average over these 467 iterations of varying sizes
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Fig. 8 FASTCC++ is only 4% faster than FASTCC on average

published in [19]. As we can see in Fig. 12, both ver-
sions of the SWIFTCORE algorithm sometimes pass an
additional task which can be a guidelines to obtain a
more biologically relevant reconstruction from the sam-
pled alternative optima.

Conclusions
Here, we have presented SWIFTCC and SWIFT-
CORE and one can easily implement a corresponding
SWIFTGAPFILL by substituting the subroutine calls
to FASTCC and FASTCORE in the FASTGAPFILL [31].
We have demonstrated through a real-world genome-
scale model that the SWIFTCORE family improves
the efficiency of metabolic network reconstruction
significantly.

Availability and requirements
Project name: SWIFTCORE
Project home page: https://mtefagh.github.io/swiftcore/
Operating system(s): Platform independent
Programming language:MATLAB®

Other requirements: The COBRA and Bioinformatics
toolboxes for MATLAB; use of Gurobi™ or CPLEX™ is
optional for improved performance (free academic
licenses are available for both)
License: SWIFTCORE is distributed under the GNU GPL
v3.0.
Any restrictions to use by non-academics: licence
needed

Appendix
To the end of this Appendix, without loss of generality we
assume that all the reactions are irreversible, i.e., I = R.
If this is not the case, we can replace each reversible reac-
tion by a pair of irreversible reactions corresponding to its
forward and reverse directions.
We define the skeleton digraph of a metabolic network

as G = (M,A) where M is the set of metabolites and
A is the set of ordered pairs of metabolites (Mi,Mj) for
which there exists a reaction Rk ∈ R whose reactants and
products includeMi andMj, respectively.
We define the mapping f : R −→ P(A) by

https://mtefagh.github.io/swiftcore/
http://www.gnu.org/copyleft/gpl.html
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Fig. 9 SWIFTCORE requires to solve at most 18 LPs for the hepatocyte-specific reconstruction

f (Rk) = {(Mi,Mj) | Sik < 0, Sjk > 0},

where P(A) denotes the power set (the set of all the sub-
sets) ofA. Moreover, we define its extension f̃ : P(R) −→
P(A) by

f̃ (R̃) =
⋃

Rk∈R̃
f (Rk).

Note that, f̃ (R) = A. Intuitively, f̃ of a subset of reac-
tions R̃ ⊆ R is the corresponding directed arcs in A by
breaking any hyperarcs in R̃ into directed arcs.
LetA = {A1,A2, . . . ,Aa}, and Sk denote the kth column

of S. Suppose that 1TS = 0. Then for any Rk ∈ R we can
define

Ck = −
∑

Sik<0
Sik =

∑

Sjk>0
Sjk = 1

2

m
∑

l=1
|Slk|,

and we have that

Sk =
∑

Sik<0
Sikei +

∑

Sjk>0
Sjkej

=
∑

Sik<0

∑

Sjk>0

SikSjk
Ck

ei −
∑

Sjk>0

∑

Sik<0

SikSjk
Ck

ej

=
∑

Sik<0,Sjk>0

−SikSjk
Ck

(ej − ei).

Therefore,

S = ∂F ,

where ∂ is the incidence matrix of G and F is the nonneg-
ative l × nmatrix whose entries are

flk = −SikSjk
Ck

,

if Al = (Mi,Mj) ∈ f (Rk) and flk = 0 if Al /∈ f (Rk).
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Fig. 10 SWIFTCORE is more than 5× faster than FASTCORE on average over these 100 iterations

The support of a vector v ∈ Rn, denoted by supp(v), is
defined to be the set of its nonzero indices. With a slight
abuse of notation, this is also used to show the set of
reactions inR which are active in a flux distribution, i.e.,

supp(v) = {Ri ∈ R | vi �= 0}.
Suppose that 1TS = 0. We claim that f̃ (supp(v)) is a
strongly connected subgraph ofG for any steady-state flux
distribution v. The sketch of the proof is to first note that

f̃ (supp(v)) =
⋃

vk �=0
f (Rk) =

⋃

vk �=0
supp(Fk) = supp(Fv)

but then ∂(Fv) = Sv = 0 and hence supp(Fv) is strongly
connected and so is f̃ (supp(v)).
This observation gives rise to a preprocessing step for

any flux consistency checking algorithm by partitioning
G into its strongly connected components, and any reac-
tion which is not inside a strongly connected component
would be blocked. Then the flux consistency checking
algorithm is called on each one of them to get the rest

of blocked reactions. It only remains to show that the
assumption 1TS = 0 holds for a broad class of metabolic
networks with a slight modification to internalize their
boundary reactions but without changing their steady-
state flux distributions.
The boundary reactions RB ⊆ R, as the name sug-

gests, lie on the boundary of a given metabolic network,
e.g., exchange reactions with extracellular metabolites,
and all the reactants utilized or all the products formed by
these reactions are external, i.e., their corresponding stoi-
chiometric vectors are either nonnegative or nonpositive.
Consequently,

f̃ (RB) = ∅.

On the other hand, internal reactions RI are the sub-
set of R which only comprise internal metabolites in M,
hence the name internal. Next, we will see that this dis-
tinction is necessary for the stoichiometric consistency
analysis where we restrict our attention to the internal
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Fig. 11 SWIFTCORE with reduction is 4% less sparse and without reduction is 1% sparser than FASTCORE

reactions. Otherwise, the missing information on extra-
cellular metabolites can be misinterpreted as stoichiomet-
ric inconsistency in the metabolic network.
Let SI denote the submatrix of S restricted to the

columns indexed by RI , and w ∈ Rm denote the pos-
itive vector of the molecular masses of M. By the law
of mass conservation in a stoichiometrically consistent
metabolic network, the sum of molecular masses of M
weighted by their associated stoichiometric coefficients
in any arbitrary Ri ∈ RI must be equal to zero. There-
fore, any w > 0 which fulfils the mass conservation law is
assumed to satisfy wTSI = 0 by our earlier convention. A
metabolic network is called stoichiometrically consistent
if there exists at least one molecular mass vector w such
that

STI w = 0
w > 0, (6)

and stoichiometrically inconsistent otherwise [32]. We
note that, determining whether a metabolic network is
stoichiometrically consistent or not by (6) is the same

feasibility problem as (1) by replacing S and I with STI and
M.
Consider the following stoichiometric matrix

S′ =
[

WS
−wTS

]

where w > 0 is an arbitrary molecular mass vector and
W is the diagonal matrix whose diagonal entries are w.
We associate the additional row with a fictitious extra-
cellular metabolite Mm+1, and because of wTSI = 0, the
stoichiometry of the internal reactions do not involve this
newly added metabolite. Since the last row of S′ is a lin-
ear combination of the other rows, we have S′v = 0 ⇔
Sv = 0. Therefore, we can replace S by S′ and the set of
the steady-state flux distributions does not change. Fur-
thermore, if Si is either nonnegative or nonpositive, then
the ith entry of −wTS has the other sign and hence with
respect to S′ all reactions are internal, i.e., S′

I = S′. The
boundary reactions which were previously defined to have
either nonnegative or nonpositive stoichiometric vectors
correspond to the reactions which involve the fictitious
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Fig. 12 SWIFTCORE with reduction passes 2.12 and without reduction passes 1.44 more tasks than FASTCORE on average

metaboliteMm+1 in this new setting. Eventually,

1TS′ = 1T
[

WS
−wTS

]

= 1TWS − wTS = 0.

As a final remark, we recall that in order to construct G
and f we only need to know the signs of the elements of S′,
thus this can be done without computingw explicitly. Even
when we do not know whether the metabolic network is
stoichiometrically consistent or not, we can still construct
G, and if it is not strongly connected, we conclude that
the metabolic network has either stoichiometric or flux
inconsistencies.
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