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Abstract

however, remains a challenge.

areas of biology.

Background: Network motifs are connectivity structures that occur with significantly higher frequency than chance,
and are thought to play important roles in complex biological networks, for example in gene regulation, interactomes,
and metabolomes. Network motifs may also become pivotal in the rational design and engineering of complex
biological systems underpinning the field of synthetic biology. Distinguishing true motifs from arbitrary substructures,

Results: Here we demonstrate both theoretically and empirically that implicit assumptions present in mainstream
methods for motif identification do not necessarily hold, with the ramification that motif studies using these
mainstream methods are less able to effectively differentiate between spurious results and events of true
statistical significance than is often presented. We show that these difficulties cannot be overcome without
revising the methods of statistical analysis used to identify motifs.

Conclusions: Present-day methods for the discovery of network motifs, and, indeed, even the methods for
defining what they are, are critically reliant on a set of incorrect assumptions, casting a doubt on the scientific
validity of motif-driven discoveries. The implications of these findings are therefore far-reaching across diverse
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Background

A network motif is a particular connected pattern of nodes
and edges that appears in a network significantly more fre-
quently than would be expected by chance. The pattern is
described by the nature of the edge or lack of edge connect-
ing each pair of nodes, making these, in mathematical ter-
minology, “connected, induced subgraphs”. It is hypothesized
that network motifs play a more important role in network
function than arbitrary substructures. Since the concept was
popularised in 2002 by Milo et al. [1, 2], much effort has
been devoted to identifying network motifs in the hope that
doing so will yield insights into network behaviour [3-5].
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Network motif identification plays an important role in mo-
lecular and cell biology research, notably the study of gene
regulation [3] (which describes regulatory relationships be-
tween transcription factors and their target genes), interac-
tomes [6] (which describe protein-protein interactions), and
metabolomes [7] (which describe the complete set of small
molecules within a cell).

In the study of network motifs, it is critical to be able to
determine whether a particular subgraph H (ie. a specific
connected pattern of nodes and edges) observed in a net-
work G is in fact a motif, or merely a chance occurrence. In
order to determine whether H is a motif of G, the following
procedure (or a close variant thereof) is typically followed [8]:

o Step I: Define S(G) to be the set of all networks
similar to G, in the sense that they have the same
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set of vertices, each with the same number of
incoming, outgoing and bi-directional edges.

e Step 2: Count the number ng(H) of times that the
putative motif H occurs in G.

e Step 3: Estimate the probability that a network
selected uniformly at random from the set S(G) will
contain at least ng(H) copies of H, typically by use
of an edge-switching algorithm [9]. (See the
Methods section for more information about edge
switching algorithms.)

e Step 4: If the estimated probability of at least ng(H)
copies of H occurring by chance is less than some
user-defined threshold, declare H to be a motif of G.

While the precise algorithms used to implement these
steps differ between implementations, this underlying
methodology is adopted by popular network motif soft-
ware tools such as FANMOD [10], Mfinder [8], and
MAVisto [11], and is widely used for identifying network
motifs in a diverse range of biological systems. For ex-
ample, Zhao et al. [12] identified 12 types of three-node
motifs in chromatin-state transcriptional regulatory net-
works in four human cell lines. They first generated a set
of 500 similar networks S(G) using the FANMOD tool,
and then declared a candidate to be a motif if its frequency
in the original network G was significantly greater than in
the set of similar networks, using a significance threshold
(p-value) of 0.05. We note that these are 12 identified mo-
tifs out of only 13 motif candidates of that size in total.
FANMOD was also used in identifying four types of
three-node motifs in a microRNA-transcription factor
(TF) co-regulatory network in non-small cell lung cancer,
in this case with a candidate declared to be a motif on the
basis of a 0.01 p-value threshold [13]. In a third example,
Vinayagam et al. [14] analysed a protein-protein inter-
action network of Drosophila melanogaster, finding seven
types of 3-node motifs using FANMOD to generate ran-
dom sets of 1000 similar networks, with the significance
of motifs evaluated using Z-scores.

These mainstream methods of motif-searching involve
testing a very large number of hypotheses in parallel,
with an associated high risk of false positive results. For
example, the total number of possible 6-node motif can-
didates is over 1.5 million, meaning that if all are tested
for, roughly one such candidate motif will be expected
to receive a p-value of 10°° or less purely by chance. If
meaningful results are to be obtained, it is therefore crit-
ical to be able to reliably differentiate between very small
p-values, such as between a p-value of 107 (likely to be
a false positive in this example) and 107'° (likely to be a
true positive in this example). Reliably distinguishing be-
tween such small p-values based on empirical frequen-
cies alone unfortunately often requires a sample size that
is prohibitively large; for instance, a sample size on the
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order of 10 billion would be required for events with p-
values at the 107 level to be sampled at all. As such, in
order to directly evaluate the probability that a given
motif candidate will occur in a network by chance, it
would be necessary to generate a much larger set of
similar networks from S(G) than is practical using
current methods. Without accurate calculation of such
probabilities, however, steps 3 and 4 of the mainstream
approach to motif detection cannot be performed. The
customary solution to this problem has been to assume
that the motif frequency ng(H) is normally distributed,
thereby enabling p-values to be easily calculated from
the corresponding Z-score, which does not require un-
realistically large samples [9].

In order to explore the assumptions inherent in these
mainstream methods of network motif detection, we ana-
lysed three real-world networks: the E. coli TF network, the
S. cerevisiae TF network and the E. coli metabolic network.
Both organisms are the best known and characterized gen-
ome model organisms. The mainstream methods outlined
above were used in the analysis of both TF [15, 16] and
metabolic networks [17, 18]. Drawing upon these empirical
analyses and additional theoretical results, we investigate
two assumptions that are inherent in practical implementa-
tions of this approach, namely the assumption of a normal
distribution and the assumption of independence between
candidates. We show that there are cases in which both of
these assumptions are drastically violated, and that this has
serious ramifications for present-day mainstream motif
identification techniques. The final sub-section of the re-
sults discusses the problem of failing to properly distinguish
motif frequency from concentration, and the implications
of this distinction for motif detection methods. We con-
clude by arguing that these assumptions are inappropriate
for the analysis of biological network motifs, as they cannot
be assumed to be even approximately valid in all cases.

Results

The normality assumption

Although motifs are commonly assumed to follow a nor-
mal distribution, as Picard et al. have observed, the nor-
mal distribution can be a poor approximation of the true
motif distribution [19] (See also SI section S2.6 for other
previous criticisms of motif detection methods). To illus-
trate this phenomenon in a wider range of cases, in Fig. 1
we explicitly identify three synthetic examples of net-
works and associated motif candidates that follow three
completely different distributions: Poisson, binomial, and
a multimodal distribution. (Detailed explanations of the
example networks and proofs of the stated asymptotic
distributions appear in SI sections S2.2-S2.4, and also
Fig S1.) Strikingly, in this example a single subgraph fol-
lows different distributions in different networks, with
the same subgraph following a binomial distribution in
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Poisson distribution Binomial distribution Multimodal distribution

Fig. 1 Examples of network motif distributions. Three examples of classes of synthetic networks and corresponding motifs that exhibit non-normal asymptotic
frequency distributions. Top row: An illustrative network from each class. Middle row: A motif candidate. Bottom row: The form of the frequency distribution of
the given motif candidate, calculated for networks drawn from the corresponding class. For full details see SI S2.2 for discussion of the Poisson distribution

example, 523 for discussion of the binomial distribution example, and 524 for discussion of the multimodal example

one class of networks (middle column) and a multi-
modal distribution in a different class of networks (right
column). In such circumstances, assuming a normal dis-
tribution will lead to misleading p-values, which in this
case will be highly significance-inflated. Since in these
cases the underlying distribution itself is non-normal,
use of improved sampling methods would not resolve
these problems.

Furthermore, the usual definition of the p-value
(the probability under the null hypothesis of obtaining
results at least as extreme as what is actually ob-
served) implicitly assumes that more extreme results

are correspondingly less likely to occur. While this
holds for the normal distribution, for severely multi-
modal distributions more extreme results can actually
be more likely to occur than less extreme results,
meaning that in such cases p-values calculated from
Z-scores have no clear statistical interpretation (For
an illustration, see Fig S2).

Given the variety of behaviours we observe in these sim-
ple examples, we hypothesize that real-world networks fea-
ture an unpredictable hodgepodge of behaviours governing
the distribution of subgraph frequencies in a set of similar
networks. Analysis of E. coli TF networks indeed shows this
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Fig. 2 Non-normal motif-candidate frequency distributions. Example frequency distributions of the number of copies ns(M) of the candidate
motif M found in networks similar to four bacterial transcription factor networks, as approximated by drawing 10,000 comparison networks from
each S(G). The actual frequency ng(M) of the candidate motif M in the original network is also shown for comparison
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to be the case (Fig. 2; see also SI Fig S3 for more examples).
While these examples all exhibit drastic departures from
the normal distribution over the displayed domain, the syn-
thetic examples from Fig. 1 complement these real-world
data by showing that such non-normality can continue far
into the tail of the distribution, beyond those regions which
can be easily sampled.

In some cases, instead of computing p-values, Z-
scores are used directly for significance testing [20].
For example, Kashtan et al. argued that “for large net-
works and subgraphs, a high cutoff of Z = 5 or 10
can be used to detect significance using the sampling
algorithm. Setting the Z-score cutoff to high values is
important also for avoiding false positives” [8]. While
not explicitly requiring that motifs are normally dis-
tributed, this approach amounts to an implicit as-
sumption of normality, because if the underlying
distribution is not approximately normally distributed
then there is no guarantee that high Z scores corres-
pond to especially unlikely outcomes. Such misappli-
cation of Z-score tests can give rise to grossly
inaccurate results. For example, Vinayagram et al. re-
port some extremely high Z-scores of up to 2011.9,
which assuming a normal distribution corresponds to
a p-value of approximately 1077%9%°, However, using
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a crude lower bound for p (See SI Section S2.1 for
full details), any motif from the network in question
must have p >1072%°*%, The implied p-value therefore
falls below this lower bound by at least 858,421 or-
ders of magnitude, indicating that for this example
the implicit assumption that candidate motifs follow a
normal distribution cannot possibly hold. In such
cases where the normality assumption fails to hold,
Z-scores cannot be used to evaluate statistical
significance.

In addition to not always following a normal distribu-
tion, frequency distributions of candidate motifs are not
necessarily even reproducible over repeated runs. The
switching method algorithm, which forms the basis for
many of the most common software packages used in bio-
logical research (including FANMOD) to generate sets of
similar networks, is known not to sample uniformly or in-
dependently [21], but is still commonly used because it is
fast. The implicit assumption is that if sufficiently many
similar networks are sampled from S(G), then these draw-
backs have little practical effect. We show, however, that
this is not always the case, as four separate runs of the
switching method on the E. coli TF network each produce
distinctly different results (Fig. 3). Not only are the four
histograms dissimilar, the estimated p-value for the
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network. The actual frequency ng(2) of the candidate motif Z in the original network is also shown, for comparison
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indicated motif candidate ranges from 0.011 (not signifi-
cant) to 107>° (highly significant). Such widely divergent
results from one run to the next render any reported p-
values in such examples effectively impossible to interpret.

The independence assumption

A persistent problem with multiple hypothesis testing is
that hypotheses are tested individually, not jointly, with
the same search procedure simply repeated for each pos-
sible motif candidate [8, 9]. Such independent testing of
multiple hypotheses is only valid under the assumption
that different motif candidates are distributed independ-
ently in the underlying family of similar networks S(G).
We show, however, that there are many circumstances in
which this assumption fails to hold, and the occurrence of
one motif is correlated with one or more others. To illus-
trate such correlation in a synthetic example, consider a
network which contains three types of nodes: ‘source
nodes’, with one outgoing edge and no other types of
edges; ‘sink nodes’, with one incoming edge and no other
types of edges; and ‘pipe nodes’, with exactly one incoming
and one outgoing edge and no bidirectional edges. The
class of networks considered here has a source nodes, b
pipe nodes linking the source nodes to the sink nodes,
and a sink nodes. Cyclic paths (loops) can occur among
sets of pipe nodes, but not among source or sink nodes.
An example of one such network is shown in Fig. 4. In
this example we consider the putative motif structure L,
which is simply a 3-edge-long path.

The paths found in this network can be divided into
three classes: non-cyclic (NC) paths which link source to
sink via some number of pipe nodes, cyclic (C) paths
which do not involve source or sink nodes, and source-
sink (S) paths in which a source node connects directly
to a sink without passing through any intermediate pipe
nodes. We use s to denote the number of S-paths. Each
NC-path having [ pipe nodes contributes /-1 copies of
the L; motif, while each C-path of length [/ (denoted C))
contributes / copies of the same motif as long as />4
(and zero otherwise). We also know there are a — s NC-
paths: one for each of the a source nodes, minus one for
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each of the s S-paths. Hence, the total number of copies
of the Lz motif in networks of this form is:

Vlg(Lg) =b-a+ S—Bl’l(.;(C3)—4l’l(.;(C4)

where Cj is the motif that is the cycle of length 3 and C,
is the motif that is the cycle of length 4.

Given the linear relationship between ng(Ls), ng(Cs),
and ng(Cy), it is clear that the number of occurrences of
candidate motifs L3, C3, and C, in this type of graph is
far from independent of one another. Such correlations
are commonplace in real-world data, including the S.
cerevisiae TF network (Fig. 5a) and also the E. coli TF
network (Fig. 5b).

While it has been argued that such correlations are
“artifacts of the algorithm used to generate the ensemble
of randomised networks” [22], we show theoretically that
this is incorrect, as correlations can occur even with uni-
form sampling. Whenever such correlations occur,
methods which attempt to test for the existence of a
wide range of different motifs without taking correla-
tions into account will fail to deliver accurate results.

Frequency vs. concentration

Thus far we have discussed p-values computed on the
basis of the frequency of occurrences of subgraphs in a
network. Many available network motif detection pack-
ages, however, instead compare subgraphs based on
their concentration in a network [9]. Concentration is
calculated as the number of occurrences of subgraph H,
ng(H), divided by the total number of connected sub-
graphs with the same number of nodes. In many cases
this is easier to compute than the raw frequency, since
concentration can be estimated by randomly sampling
the network’s subgraphs, a task that does not require
computing their total number. Often in the literature lit-
tle distinction is made between these methods: even
though the theory of network motifs largely revolves
around motif frequency, concentration results are re-
ported as though they were frequency results because
this is what is most often calculated by motif-searching

a sources

b pipes

Fig. 4 Example network showing correlated motifs. One member of a class of networks that exhibits correlation between the occurrence of different motifs

a sinks
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software. In Fig. 6, however, we present a number of
cases from the E. coli metabolic network in which fre-
quency and concentration statistics differ dramatically,
illustrating that the choice of which method to use can
drastically affect the results obtained.

For a synthetic example in which frequency and con-
centration statistics are contradictory, we consider a net-
work G with k nodes that have exactly three outgoing

and no other types of edges and 3k nodes that have
exactly 1 incoming edge, possibly one additional bidirec-
tional edge, and no outgoing edges. In total, the network
will have m bidirectional edges, with m <4k/5. One ex-
ample of such a network is given in Fig. 7. We show that
for any two graphs selected from the set S(G), the con-
centration of the subgraph T (shown in Fig. 7) is higher
if and only if the number of occurrences of T is lower
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Fig. 6 Differing frequency and concentration results. Some examples of putative motifs from the E. coli metabolic network where the computed
frequency p-value p and computed concentration p-value p<°" differ considerably

(See SI Section S2.5 for full details). Thus, T can be a
motif according to its p-value only if it is an anti-motif
(meaning that it occurs less often than expected in the
set S(G)) according to its p“"“-value, and vice versa.
Which type of p-value to use is therefore not merely a
matter of computational convenience, but can have sub-
stantive effects on the outcome of motif analysis.

Discussion
The ability to reliably identify network motifs is critical for
understanding the complex regulatory networks that gov-
ern gene transcription and regulation, particularly in re-
search concerning the prediction, organisation, and
linking of transcription factors, binding sites, and pro-
moters. Network motif identification can aid in overcom-
ing the critical genomics bottleneck of processing
increasingly enormous amounts of newly generated data.
In addition, network motifs will play a pivotal role in the
rational design and engineering of complex biological sys-
tems underpinning the field of synthetic biology. Given
their importance, it is crucial that methods of identifying
network motifs are statistically robust. However, we have
demonstrated both theoretically and empirically that a
collection of implicit assumptions present in mainstream
network motif studies do not always hold, with the ramifi-
cation that results from motif studies are not as mathem-
atically unambiguous as is often presented.

All approximations used in science should be tested to
determine that making these approximations does not
substantively affect the results obtained. In the paper we

subject typical assumptions of normally distributed
motif frequencies and independence of motifs to both
empirical and mathematical scrutiny, and show that
they are not merely rough approximations, but grossly
misleading assumptions that can lead to entirely
spurious results. In particular, we showed that the as-
sumption of normality does not always hold, and that
non-normality results in materially inaccurate p-
values, invalidating the standard methods of inferring
that a given network structure is present at above-
chance levels and thereby constitutes a true motif.
We showed that the frequencies of different motif
candidates are not always independent of one another,
and that such lack of independence invalidates
methods which test for the presence of large numbers
of motifs independently of one another. Finally, we
showed that motif frequency and motif concentration
are not interchangeable, and that the choice of which
to use can have substantial effects on the outcome of
any analysis.

It is critical to emphasise that none of these results are
simply the product of shortcomings in the sampling
method being used. These faulty assumptions relate to the
nature of the distribution of subgraphs, not the method by
which this distribution is being sampled, and so our re-
sults hold even with perfect sampling. We conclude that
current mainstream network motif identification methods
cannot distinguish between spurious results and events of
true statistical significance — a basic requirement for a
mass-hypothesis testing tool.

3k

motif only if it is a frequency-based anti-motif, and vice versa

Fig. 7 An inversion of concentration-based and frequency-based motif counting. In this network, the subgraph T can be a concentration-based
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Future perspectives

The promise of network motifs is that sub-structures of
biological relevance can be isolated purely from the
structure of the network when their frequency is larger
than can be explained by pure randomness, and that
such a process can therefore be automated and acceler-
ated. Underlying assumptions of this premise have been
challenged multiple times in the literature (See SI S2.6.).
For example, using a richer network description and fol-
lowing biologically-driven methods, Defoort [23] showed
that structures in the network are related to the evolu-
tionary age of the various edges, and less to their
present-day topology. This echoes the results of other
analyses [24-27], where it was demonstrated that the p-
values associated with network motifs in the standard
motif framework are unstable under evolutionary pro-
cesses, and no evolutionary pressure for preferential se-
lection can therefore occur on them.

While biologically-based methods are without a doubt
superior to motif search that is based on frequency
alone, they still do not address the need for an automatic
mechanism that can be used to detect unusually fre-
quent substructures across the burgeoning biological
data. Furthermore, even given rich information for both
nodes and edges, one would still hope for a statistically-
defensible criterion that can reliably distinguish mean-
ingful phenomena from statistical noise.

It is not practical within the space of a single paper
to do justice to the topic of critically-analysing
present mainstream network motif identification
methods, and also to the separate topic of presenting
viable alternatives. Nevertheless, to show that such
statistically-defensible methods do exist and that im-
provements over existing methods are possible, in
S$2.7 we introduce multiple statistics regarding poten-
tial over-abundance of motifs which can all be calcu-
lated using sound statistical methods, and show that
using these we are able to separate abundant motifs
from non-abundant ones. These methods all relate to
an idea we refer to as anchored motifs. An anchored
motif is a motif with one vertex designated as an an-
chor. The anchored motif method is the method of
separating the count of occurrences of each anchored
motif into sub-counts that are based on the choice of
vertex in the network in which the anchor is posi-
tioned. We show, with a simplistic null hypothesis
and in an analysis restricted to 3-node motifs (which
are by far the most frequently investigated in the lit-
erature) that the distribution of each sub-count is sta-
tistically well-understood, and its p-values can be
calculated reliably without resorting to additional as-
sumptions. Furthermore, the same method makes any
correlations between motifs predictable, eliminating
the second problem pointed to in this paper.
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Additionally, the use of anchored motifs allows us to
slacken the edge-degree restrictions used in standard
motif methods, which are at the root of many of the
unintuitive phenomena investigated in this paper. The
less restrictive model makes our calculations more stable
in the face of slight perturbations of the network, and so
more resilient to uncertainty, to experimental error, and
across evolution. It even addresses the concern by
Defoort et al. [23] that the standard method limits the
randomisation in generated network topologies. While
the statistical behaviour of the total motif count is not as
easy to model, we show multiple methods by which the
various sub-counts can be combined, still yielding results
that are statistically defensible.

Even though this analysis is done in a simplistic set-
ting, we believe that the general method of anchored
motifs provides a viable and statistically defensible alter-
native to present-day network motif detection methods.
We leave it to follow-up research to present methods
that combine such statistical robustness with an im-
proved biological network model.

Methods

Graph definitions

Formally, a network (or graph) is a collection of nodes
(or vertices) together with a collection of edges joining
pairs of nodes. Typically, graphs are denoted G = (V, E)
where V= V(G) is the set of nodes and E = E(G) is the
set of edges. We consider directed graphs, where the
endpoints of edges have an order, that is, an edge (i, /) €
E(G) is different from (j, i) € E(G). If both edges (i, ) and
(j, ©) occur in G, we describe them together as a bidirec-
tional edge. An (i, i) edge, from a node to itself, is known
as a loop or a self-loop. Usually, in network motif stud-
ies, input networks are considered after all self-loops are
discarded.

A subgraph of G=(V,E) is a graph H=(V,E) for
which V' ¢V and E CE and the edges in E have end-
points in V. A subgraph is called induced if E’ = {(i, /) €
E:ieVand je V}, that is, it includes every edge in the
original graph whose endpoints are both in V'. A graph
is called connected if there is a path between any two
vertices (ignoring edge directions).

Note that in our analysis we exclusively consider in-
duced subgraphs, since although some methods (such as
MODA and NeMo as noted below) are capable of sam-
pling non-induced subgraphs, most widely-used
methods [28, 29], including Mfinder, FANMOD [9], and
NetMODE [30] sample only induced subgraphs.

Datasets
The following networks are included in this work.

e Transcription factor (TF) networks:
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E. coli (sourced from RegulonDB [31]); 1620
non-isolated nodes, 3885 directed edges.

S. cerevisiae (yeast) TF network (sourced from
Uri Alon’s website http://www.weizmann.ac.il/
mcb/UriAlon/); 688 non-isolated nodes, 1079 di-
rected edges.

e The E. coli metabolic network (We use the version
packaged with Kavosh [32], where it is attributed to
Kyoto Encyclopedia of Genes and Genomes (KEGG)
[33]); 672 non-isolated nodes, 1273 directed edges.

Network motif detection software

Many packages have been developed that enable some
kind of motif detection. Mainstream packages can per-
form (what is sometimes called) a k-node subgraph cen-
sus, that is, they can perform Steps 1-3 of the algorithm
described in the Background section simultaneously for
all k-node subgraphs. These packages include Mfinder
[8], MAVisto [5, 11], FanMod [10, 34, 35], Kavosh [32],
G-Tries [36], and NetMODE [30].

FanMod and Mfinder are packages that are widely
used for biological research today, although it is also
commonplace for researchers to write their own
purpose-built software; see, e.g., [37, 38]. Usually input
networks are assumed to be loop-free directed graphs,
and a search through all (or a sample of) induced k-node
subgraphs is performed in both the input network and
the ensemble of comparison networks.

Variations of the subgraph census theme are common.
For example, NeMoFinder [37] and MODA [39] only
treat undirected graphs; MODA and NeMo [40] can per-
form a k-node subgraph census for non-induced sub-
graphs; RAGE [41, 42] focuses on 4-node subgraphs.

All experiments in this paper were performed using
NetMODE, whose method for allotting Q is as described
in the Background section. In all cases, we used |Q | =
10,000. The reason we use NetMODE is because it has a
“verbose mode” which allows studying the intermediate
results (along with the final Z-scores, etc).

Generation methods for random similar graphs

The configuration model

The configuration model (sometimes called the “stubs
method”) is an algorithm for sampling uniformly at ran-
dom from S(G) that works by sampling uniformly at
random from a superset 72 S(G), then sampling again if
the original sample does not belong to S(G) (See, e.g.,
[70, Ch. 13]). The method begins with a graph G with m
edges and n nodes, whose degree sequence is D = {(c;,
d;)}, where ¢; and d; are respectively the out-degree and
in-degree of node i€ {1, 2, ..., n}. The aim is then to gen-
erate a new graph G which is sampled uniformly from S
(G). The algorithm achieves this as follows:
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Step 1: Allot a random permutation 5 of {1,2, ..., m }.
e Step 2: Create a bipartite graph B with m + m nodes
given by the bipartition {i}, iy, ..., i} U {1, J20 -+ )
and edges determined by S such that for each
v € {1,2,...,m}, an edge is added from i, to j. '
e Step 3: From B, generate a candidate target graph G
by identifying the following vertices based on the
input degree sequence D:
il, ig, coey icl and j17j2’ ”"jdl.
ley 115 ey 12, s bey ey A0 Jg 15 Jag 00 oo Jay 1y
and so on.
e Step 4: Repeat Steps 1-3 until G €S(G)
e Step 5: Return the target graph G .

Steps 2 and 3 are illustrated in an example in Fig S9.
The configuration model ensures that networks are sam-
pled uniformly and independently, but in most real-
world instances it is impractically slow.

The switching method

The switching method generates an ensemble, (), from a
graph, G. At its core is the function described below,
which generates a graph G from a graph G, such that
G is in S(G). We use the notation x€,,.X to indicate
that x is sampled uniformly at random from the set X.

function GraphSwitch(G)
V< V()
E <« E(G)
foralla € V do
b €yar V\{a}
N, < {x: (a,x) € E}\ {b}
N, < {x: (b,x) € E }\ {a}
if N, # @and N, # @ then
¢ Euar Nu; d Euar Nb
if {(c,a), (d,b),(a,d),(b,c),(d,a),(c,b)} NE = @ then
E<Eu{(a,d), (b c}\{(a0) b d}
else if {(c,a),(d,b) } € E and {(a,d), (d,a), (b,c), (c,b)} N E = @ then
E<Eu{(ad),(da), o) (ch}\{(ac0)(ca) b ad,(db}
end if
end if
end for
G' < (V,E)
return G’
end function

A single iteration of the main loop in GraphSwitch
performs the switch illustrated in Fig. 8. This is then re-
peated per each vertex in G, until creating G . In order
to create an ensemble, we take the network G, to be G,
the network G; to be the output of GraphSwitch on Gy,
the network G, to be the output of GraphSwitch on G,
and so on. The ensemble Q is chosen to be {G5p003,
G30006: G30009s ---}, with the index of the last element
chosen according to the desired size of Q. This algo-
rithm, with the constants described here, is implemented
in both Kavosh and NetMODE. The algorithm used in
FanMod is similar, but instead of attempting a switch
per vertex, it attempts a switch per edge.
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Before a switch After a switch

Fig. 8 Example of a switch. The switching method, the most
commonly used method for generating random graphs with a
given degree sequence, utilises a Markov chain Monte Carlo (MCMC)
edge switching algorithm. Given a network G, we choose two
edges, (a,¢) and (b, d), at random and switch them as depicted,
provided no loops or parallel edges are generated. To sample from
S(G), we simply perform this operation a large number of times

The switching method is practical for real-world in-
stances, but, unlike the configuration model, it does not
result in a uniform sample from S(G), does not guaran-
tee independence between elements of Q) and, in fact,
does not always provide a positive sampling probability
for all elements in S(G) (See [21] for further discussion).
Figure 3 demonstrates that these drawbacks are not
merely theoretical, but have wide-ranging implications
on practical use of the method.

As discussed in the Results section, the outputs of
the switching method are frequently not reproducible
across trials. To illustrate why this is the case, con-
sider a graph G = (S(G),{(x,y) : »eS(G) and y is a
possible output of GraphSwitch(x)}). This graph de-
fines the topology over which GraphSwitch performs
a random-walk. It is clear that sequentially allotted el-
ements of Q are highly correlated because they are
close to each other in the distance metric implied by
G. A more subtle point is that the topology of G may
be replete with small clusters that have little inter-
connectedness with other clusters. When this is the
case, GraphSwitch will tend to sample all of Q from
only a handful of clusters. In such a case, the high
correlation between elements in Q will not be re-
stricted to sequential elements, but will also manifest
itself in elements separated by many switches. This
tendency explains the significant divergence between
the histograms in Fig. 3.

Even with |Q]| =10000, histograms of np(H) are
demonstrably non-repeatable, with the estimates of y
and o varying widely between runs. In the figure, the
p-value for ng(Z) is estimated once at 0.011 and once
at 107, The reason for this is that although the ex-
pectation of the p-value is the same whether or not
the samples are independent, the correlation between
draws makes the effective size of  much smaller
than 10,000, so the variance of the p-value estimate is
unusably large.
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