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Abstract

pathway network or the correlation between them.

methods relying only on marginal effect size cannot.

recommendations for prioritizing causal hubs.

Background: To identify and prioritize the influential hub genes in a gene-set or biological pathway, most analyses
rely on calculation of marginal effects or tests of statistical significance. These procedures may be inappropriate
since hub nodes are common connection points and therefore may interact with other nodes more often than
non-hub nodes do. Such dependence among gene nodes can be conjectured based on the topology of the

Results: Here we develop a pathway activity score incorporating the marginal (local) effects of gene nodes as well
as intra-network affinity measures. This score summarizes the expression levels in a gene-set/pathway for each sample,
with weights on local and network information, respectively. The score is next used to examine the impact of each
node through a leave-one-out evaluation. To illustrate the procedure, two cancer studies, one involving RNA-Seq from
breast cancer patients with high-grade ductal carcinoma in situ and one microarray expression data from ovarian
cancer patients, are used to assess the performance of the procedure, and to compare with existing methods, both
ones that do and do not take into consideration correlation and network information. The hub nodes identified by the
proposed procedure in the two cancer studies are known influential genes; some have been included in standard
treatments and some are currently considered in clinical trials for target therapy. The results from simulation studies
show that when marginal effects are mild or weak, the proposed procedure can still identify causal nodes, whereas

Conclusions: The NetworkHub procedure proposed in this research can effectively utilize the network information in
combination with local effects derived from marker values, and provide a useful and complementary list of

Keywords: Direction regularization, Intra-network, Neighbor correlation, Pathway activity score, Topology measure

Background

In a disease-associated biological pathway containing nodes
such as genes, proteins and other chemical compounds, the
detection of nodes that are crucial to this pathway activity
may help elucidate the molecular mechanism influencing
the response of interest. The prioritization of nodes in this
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association pathway may provide useful information for
follow-up experimental validation and thereby facilitate the
search for drug target molecules [1, 2]. In the medical
genetics community in recent decades, the prioritization of
a set of genes has been an important issue, especially when
the research focus is on identification of genes for drug dis-
covery [3, 4].

Current methodology for such prioritization can be
grouped into three categories, depending on what informa-
tion is utilized in the procedures of modeling and ranking.
The first group is more traditional; these methods rank the
genes in a previously identified gene-set or pathway based
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only on marginal marker values, such as the fold-change,
the t-statistic, or a function of the t-statistic, if gene expres-
sion data are involved. These methods are straightforward
to carry out and can quite effectively reduce the enormous
number of genetic markers to one that is easier to handle.
However, these methods may not be proper with the
underlying assumption that these genes are independent, as
noted in many gene-set analyses [5—9]. Through correlation
sharing or through de-correlation such as in the shrinkage
correlation-adjusted-t (shrinkage cat) score [10], several
modifications to this group of tests have been proposed.
Another inappropriate assumption is that of exchangeabil-
ity, which assumes all candidate genes are equally import-
ant a priori, regardless of whether they are hub genes or
not. This assumption ignores the fact that some genes, such
as hubs, interact with relatively more other genes.

Unlike the above methods which use only expression
data in their prioritization analysis, the second group of
approaches utilizes information from networks that are
established based on research findings from the literature
and data from multiple sources to define seed genes, calcu-
lates similarities between the seed and each of the candi-
date genes, and then ranks the candidate genes based on
the similarities. This concept is usually called guilt-by-
association. Examples include Endeavour, ToppGene and
GeneDistiller [11-13]. These methods depend heavily on
the information available and would be helpful for investi-
gating reproducibility. However, they assume the network
to be static, which may inflate false positive results, and
some of them do not account for the marginal effects [14].

The third group of analyses integrates both the gene ex-
pression data regarding the phenotype of interest and the
network information. For instance, PINTA [15, 16] priori-
tizes candidate genes by combining the protein association
network from STRING [17], the disease expression data,
and a kernel for distance. The network gene prioritizer
(NGP) proposed by Wu et al. [14] uses the correlation
under the network rewiring (NR) model or networked dif-
ferential expression (ND) model to construct a network for
each candidate gene, and then carries out gene set enrich-
ment analysis (GSEA) [18] to determine the importance of
the genes, called NGP-NR and NGP-ND respectively.
These approaches incorporate the network information
through correlations. In contrast, with pathways defined in
KEGG [19], Lin et al. [20] included expression levels, corre-
lations and degree of the nodes in their Bayesian probabilis-
tic prioritization procedure. The degree they included in
their method provides the information about the pathway/
network structure and topology.

When a pathway is represented as a network, the
structure may provide useful information. For instance,
in the network plot, any two nodes having a direct mo-
lecular interaction, whether inhibitory or activating, are
immediate neighbors of each other; while nodes that
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have not been found to interact will not be directly con-
nected in the pathway network. A node with a large
number of neighbors is considered as a hub gene node.
A hub may be more crucial than other nodes, since its
absence can disrupt the pathway function and isolate
other gene nodes [14, 21-25]. The number of neighbor-
ing nodes of a gene is called its degree, which can be de-
rived from the adjacency matrix of the network [26]. In
other words, the observed degree distribution or the ad-
jacency matrix of this network can provide a description
of the structure of the pathway. Such an affinity measure
for the network topology may offer useful information in
ranking gene nodes and in summarizing the collective
enrichment of a pathway. Similar ideas have been
adopted in testing the association of a network/pathway,
but not in ranking gene nodes [27-29]. Although these
topology-based methods include information about the
pathway structure, such an affinity measure has not been
utilized in identifying influential hub gene nodes.

In this analysis, we propose to construct the intra-
network information that each node carries in the path-
way, calculate the local effect from the marginal influence,
weight the local and network information separately, and
combine them to formulate a pathway activity score. The
intra-network information is composed of the pairwise
affinity measures of correlation and distance. Based on the
adjacency matrix of the network, the shortest distance
between two nodes is called the path length, where the
length can represent the efficiency of information trans-
mission in this network. The resulting pathway activity
score for each sample is next used to prioritize the gene
nodes, particularly the hub nodes. We call the method the
NetworkHub procedure (Fig. 1).

The rest of the article is organized as follows. The
methodology and the underlying rationale will be ex-
plained in the Methods section. In Results, applications
and simulation studies are conducted to evaluate the
performance of the proposed procedure and to compare
it with other existing methods, including ones that
prioritize with and without correlation, such as the
shrinkage cat and t tests, and ones that prioritize with
and without network information, such as Endeavour,
PINTA, NGP, and Lin’s method. We then conclude with
the Discussion section.

Results

Breast cancer with DCIS (RNA-Seq)

The first application considered for illustration is a study
of high-grade ductal carcinoma in situ (DCIS), a subtype
of breast cancer [30]. This study collected RNA-Seq data
from 10 unaffected subjects and 25 breast cancer pa-
tients, which can be downloaded from the NCBI GEO
database (accession number GSE69240). The download-
able data set was examined with procedures for quality
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control and normalization, as described in the original
report of the study [30]. Four pathways defined in KEGG
[19], P53, mTor, Estrogen, and JAK-STAT, are selected
here as networks for demonstration. These pathways
have been reported to associate with breast cancer [31],
and have passed the global test [32], GSEA [18], Fisher’s
test, SPIA [33] and the Bayesian association test in Lin
et al. [20]. For each pathway, the plots of L; and §;
against path length in Figure S1 show that the local
weight of each node neither associates with nor reflects
the magnitude of its degree, whereas the topology weight
does increase slightly with the degree of the node. The
NetworkHub procedure is used to rank the gene nodes
inside each pathway network, respectively, with the
leave-one-out evaluation.

For the P53 pathway, its network plot is shown in Fig. 2a.
In the scree plot in Fig. 2b, the gene nodes on the X-axis
are ordered according to their importance with bold red
font used to indicate hub nodes, while the grey bars
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represent the magnitude of negative log-p-values. Several
interesting findings are indicated when the NetworkHub
procedure is implemented. First, note that the top-ranking
node IGF1I in this pathway indeed is known to have cross-
talk with estrogens; anti-estrogens such as tamoxifen have
served as a routine treatment for breast cancer in many
countries [34]. The use of IGFIR inhibitors as molecule tar-
gets has been considered in several recent clinical trials, in-
cluding a phase Ib/II trial (NCT02123823) of the drug BI
836845 and a phase II study of BMS-754807 combined with
letrozole (NCT01225172). More reviews can be found in
[34]. This top-ranking gene node has a significant marginal
effect and therefore it is not surprising that it has been
included in several clinical investigations. This gene node
is, however, overlooked when some other methods are ap-
plied. For instance, as seen in Fig. 2¢, IGF1I is not in the top
25% under Endeavour, PINTA, NGP-ND and NGP-NR;
but it ranks second under the shrinkage cat and tenth
under the shrinkage t methods. In Fig. 2d, an alternative

[ Input pathway network structure ] [ Input gene expression data ]

!

!

Construct adjacency matrix

Obtain node information
ID type name
0123 gene STAT1
6358  compound  C2001

2 v

[ Prepare expression data for each node ]

v

Compute
1. Path length d,
2. Topology measure S,

Compute
1. Weight L, of local effect per node
2. Correlation ;. between paired nodes

v

D

for each group

1. Calculate PAS 7, for each sample
Calculate average PAS for each phenotypic group
3. Calculate the standardized difference in the average PAS

/

AN

Define the difference as 7, if the
adjacency matrix contains all
nodes

Define the difference as 7, if the
adjacency matrix does not contain
the j-th node

find inflection point.

Rank O, =[%,, —t_; | for all js, and

Fig. 1 Flowchart of the NetworkHub analysis




Chang et al. BMC Bioinformatics (2020) 21:101

Page 4 of 11

Ranking methods (p53 pathway)
Nttt shiiage ¢ oeuaner Bt oup Woe D NGENR b

1GF1

o

ZMAT3 I

s I — —

o —

ol

o

GTSI

CDKN2A '

gz

5 _- —

o

CD82 I

f

i —

SIAHT I

S}-.(rlgg.z) I
&b —
3 5722;% —
s
-g PTEN - Ranks
o
ﬁ CCNEiR‘ I I ﬂ . first 25%
§  SESN3' others
o THBS1

o —

it

A

PMAéPs I L

;

CHEK2 '

e —

e

CCNE1* r

CASP9 —

el

ot — ——
SRR

i

i

Rervt

!

R —

BBC3 I

e

GORAB

indicates the degree of the node. d Ranking list

p53 signaling pathway
e
2
m -@ absolute difference
@ - -log(p)
° e
® m ]
g, : .
g o [} ul
£ e m n a
kil m . F& ©
L = » - K-
3 e M o :
3
@ ‘.
< . "9”000 Fe
° } : o] *ees
s - Wm0 rJf ” il L.
5
5
2
]
3
rank NetworkHub degree _test shrinkage_cat shrinkage_t ~ Endeavour PINTA NGP_ND NGP_NR Lin
1 IGF1 1 CDK1 SFN CDK1 CDKNIA BBC3 BAIl MDM4 GTSE1
2 SFN 3 RRM2B* IGF1 SFN TP53 PMAIP1 RRM2B* SIAH1 CHEK1
3 ZMAT3 1 CDKNIA CDKI1 TNFRSF10B ATM SFN CASPY IGF1 CCNBI1*
4 TP53 38 PMAIP1 BBC3 RRM2B* MDM2 SERPINBS TSC2 THBSI BBC3
5 MDM2 3 GTSEl RRM2B* CDKNIA CHEK2 CDKNIA CCNEI* CCNBI* CDK1
6 FAS 1 TP73 SERPINE1 ~ SERPINE1 PTEN SERPINEI BID CHEK1 BAX
7  GADD45G* 3 TNFRSF10B TNFRSF10B BBC3 CDK4* TNFRSF10B CASP3 CCNE1* CCNDI*
8 RRM2B* 1 CCNBI1* PMAIP1 GADD45G* CHEK1 GADD45G* CDK1 CHEK2 CASP8
9 GTSE1 1 SFN GTSE1 PMAIPL CDKN2A TP53 IGFBP3 GTSE1 SHISAS
10 CDKN2A 1 FAS DDB2 IGF1 CCND1* CD82 ZMAT3 SERPINE1 IGF1
11 IGFBP3 2 SERPINEI  CDKNIA GTSEI CDK2 BID RCHY1 CDKNIA TP53
12 CDK1 3 SERPINBS CDKN2A FAS CASPY 1GFBP3 FAS SESN3* STEAP3
13 BAIl 1 GADD45G* TP73 CCNBI* MDM4 CYCS CCNBI1* CDK2 TNFRSF10B
14 CD82 1 CCNEI*  GADD45G* TP73 APAF1 ZMAT3 CCNDI1* PPMID ATM
15 PERP 1 IGF1 SERPINBS CHEK2 TSC2 THBS1 CHEK1 BBC3 APAF1
16 CCNG1* 1 BAX SIAHI BAX TP73 RCHY1 CDK4* PIDD SFN
17 CYCS 4 BBC3 FAS SERPINBS ATR CDK2 GTSE1 CDK1 CD82
18 DDB2 1 CASPY SESN3* CCNE1* GTSE1 PERP CDKN2A CASP8 PMAIP1
19 ATM 2 CHEK1 CASPY CASP9 CASP8 CASP3  TNFRSFI0B  SHISAS SERPINEI
20 SIAH1 2 CHEK2 CASP8 CASPS PPMID CCONG1* BBC3 PTEN CDKNIA

Fig. 2 P53 pathway of the breast cancer study. a Network plot. Nodes in red are hubs with degree 23, nodes in yellow are of degree 2, and
nodes in light blue are of degree <1. b Scree plot (blue dots) of the relative influence of gene nodes (left Y-axis). The right Y-axis is the negative-
logarithm-p-value (grey bar). The dashed red line corresponds to p =0.05, and the solid red line to 0.05 divided by the number of nodes inside
the pathway. The X-axis label indicates the gene node. A name followed by an * indicates more than one gene is contained inside this node. The
number in parentheses is the ranking determined by p-value. ¢ Heatmap for comparing rankings under different methods. Gene nodes ranked
among the first 25% are colored in grey. The nodes considered hubs are denoted in red. The number in parentheses after the gene symbol

representation lists the top 20 gene nodes under each
method. The complete list is in Supplementary Table S1.

A similar pattern can be observed in the gene that
ranks second, the SEN gene. Its marginal effect is statis-
tically significant, as is identified by most t-statistic type
methods and PINTA (Fig. 2b-d). Previous studies have
reported its ability to increase cell death in breast cancer
lines and found that its hypermethylation is related to si-
lencing of the 14—-3-30 protein in epithelial breast cancer
tumors [35-37]. Its property as a hub node (Fig. 2a & b)
corroborates the importance of the SFN gene.

The next ranking gene, ZMATS3, also known as Wig-1, is
identified by NetworkHub as the third-ranking gene node
and by NGP-ND as the tenth (Fig. 2d). However, it is not
marginally significant and not selected in the top ten by
other methods (Fig. 2b). Nevertheless, the chromosome

region where it is located is amplified in many tumors
including breast cancer [38]. It has been reported to be a
direct target of TP53 [39], to be associated with other
targets of TP53, such as FAS and 14-3-30 protein, and to
regulate the mRNA stability of TP53 [39, 40].

Another gene worth mentioning is the well-known
tumor suppressor TP53, the guardian of the genome [41,
42]. Since its discovery in 1979, many studies have been
devoted to the investigation of its germline/somatic muta-
tions, its sequence context, and its impact on and associ-
ation with human cancers [43, 44]. Its role in the etiology
of breast cancer is beyond doubt, and yet it was not identi-
fied in the top 20 under most methods (Fig. 2c and d) due
to its non-differentiability in gene expression levels. The
only methods that did identify it this highly were Networ-
kHub as fourth, Endeavour as second, PINTA as ninth
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and Lin’s method as ninth. It was ranked fourth by Net-
workHub because it is a hub node connecting to most
gene nodes in this pathway.

The top-ranked nodes for the other three pathways,
mTor, Estrogen, and JAK-STAT, are IGFIR-INSR, ESR-
node (denoted as ESR*), and STAT-node (STAT*), respect-
ively. In the mTor pathway, IGFIR-INSR has similar roles
as top-ranked IGF1 does in the P53 pathway (details in
supplementary Figure S2 and Table S2). The top-ranking
node ESRI* in the Estrogen signaling pathway contains the
ESRI gene (Figure S3). Research indicates that ESR1 muta-
tions emerge during both metastatic breast cancer treat-
ment and tumor evolution, and thus the need for a better-
personalized treatment with aromatase inhibitor therapy
that sequentially monitors and targets ESR1 mutations has
been suggested [45]. ESRI* also ranks among the top 25%
with Lin’s (second), NGP-NR (seventh), Endeavor (first),
and the t-test (ninth) methods (Figure S3 and Table S3).

The top-ranking node, STAT-node, in the JAK-STAT
pathway contains the family of STAT genes (Figure S4),
which are important for mammary cell survival and
tumorigenesis [46]. The expression levels of these genes
are associated with breast cancer subtypes and gene
STATI is known to transmit information from extracellu-
lar signals to the cell nucleus [47]. Interrupted or dysregu-
lated function of STATI-STAT3 can cause immune
deficiency or development of cancer [48]. Recently, sug-
gestions have been made for using the anti-psychotic drug
pimozide to inhibit STAT3 and STATS in breast cancer
patients [49, 50]. The degree of STAT-node is 17 and thus
it is clearly a hub node. The NGP-ND and NGP-NR
methods also recognize this property, ranking it among
the top 25%. NGP-ND ranks it fourth and NGP-NR third
(Figure S4 and Table S4), whereas with the t-test it ranks
19 out of 32 nodes and is not statistically significant.

Epithelial ovarian carcinoma (array expression)

To demonstrate the utility of the approach using micro-
array expression levels, we consider here an ovarian serous
cystadenocarcinoma study with data retrieved from The
Cancer Genome Atlas (TCGA). After data processing and
management (quality control, outlier detection, and
normalization) and filtering with clinical information
(tumor type, cancer stage, and ethnic group), 282 patients
with complete node expression values were obtained.
Among them, seventy-two did not survive over two years
and were categorized in the poor prognosis group.

The same four pathways were examined and only the
mTor pathway passed the global, Fisher’s, and ¢,; gene-set
association tests (Table 1). This pathway also has the high-
est posterior probability of association among the four,
based on the Bayesian approach in Lin et al. [20]. The
gene nodes in this pathway were then examined and
ranked, as displayed in Fig. 3a and b. The top-ranking
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Table 1 P-values under the first five gene-set analyses and
posterior probability under the Bayesian approach for the
ovarian cancer study

Network-guided  Global GSEA  Fisher's SPIA  Bayesian
JAK-STAT 076 0.24 069 007 088 067
P53 053 033 024 036 041 071
mTor 0.01 0003 066 001 054 079
Estrogen 0.73 024 043 018 098 073

gene node is glycogen synthase kinase 3 beta (GSK3B),
also a hub node, which functions in cellular processes
such as proliferation and survival. This gene has been as-
sociated with drug resistance in cancer chemotherapy
[51]. Higher levels of GSK3B are often observed in tumor
tissues and overexpression of GSK3B can enhance tumori-
genicity [52, 53]. An ongoing clinical trial (NCT03678883)
is testing a GSK3B inhibitor, 9-ING-41, for treating pa-
tients with advanced cancers, including ovarian cancer.

When compared with other methods, Lin’s and Endeav-
our also rank GSK3B among the top 25% (Fig. 3c); the
ranks are 14 by Lin’s method and 4 by Endeavour (Fig.
3d). However, the ranks obtained by t-test, shrinkage t,
shrinkage cat, PINTA, NGP-ND, and NGP-NR are not
high, possibly due to the fact that GSK3B is not marginally
significant. Similar patterns can be seen in the following
three gene nodes, IKBKB, AKT3* and MTOR, which are
all hub nodes and rank higher, but are not differentially
expressed genes (more details are in Table S5).

Simulation studies for ranking hub gene nodes

The following simulation studies were designed to evalu-
ate the performance of NetworkHub in ranking the hub
gene nodes. The structure of JAK-STAT pathway con-
taining 32 nodes was considered as a prototype of the
network, where two hub nodes and eight non-hub nodes
were chosen as causal genes of different effect sizes.
These causal nodes were then examined to see how well
the procedure could prioritize them. In order to main-
tain the inherent biological relationship among gene
nodes, sample individuals were randomly selected from
the above ovarian cancer study subjects and their corre-
sponding array expression levels were included for ana-
lysis and for generating disease status via a logit link

10
function logit(p;) = B, + >_ B;Gy, where p; is the disease
j=1

probability of the binary disease status of this i-th sub-
ject. The effect sizes Bi, .., Bi1o under each of the four
scenarios (A-D) are displayed in Table 2, including hub
nodes with strong (B;=1), moderate (5;=0.5), or weak
effect (8;=0.1). Under each scenario, 1000 replications
were performed. In each replication, the number of sub-
jects was 100 with 50 cases and 50 controls. Once the
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Fig. 3 The mTor pathway for the epithelial ovarian carcinoma study. a Network plot. Nodes in red are hubs with degree 23, nodes in yellow are
of degree 2, and nodes in light blue are of degree <1. b Scree plot (blue dots) of the relative influence of gene nodes (left Y-axis). The right Y-
axis is the negative-logarithm-p-value (grey bar). The dashed red line corresponds to p=0.05, and the solid red line to 0.05 divided by the
number of nodes inside the pathway. The X-axis label indicates the gene node. A name followed by an * indicates more than one gene is
contained inside this node. The number in parenthesis is the ranking determined by p-value. ¢ Heatmap for comparing rankings under different
methods. Gene nodes ranked among the first 25% are colored in grey. The nodes considered hubs are denoted in red. The number in
parentheses after the gene symbol indicates the degree of the node. d Ranking list
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disease status and expression values were available, the
NetworkHub procedures were carried out. Since most
prioritization methods require literature mining and are
not suitable for simulation studies, here we can only com-
pare NetworkHub with three simple methods, the t-test,
shrinkage cat, and shrinkage t [54]. This comparison can
demonstrate the advantages when network information is
included, but does not allow comparison with other
network-based methods described in earlier sections.

Two criteria were considered for performance evalu-
ation. The first one focuses on the ability to detect causal
hub nodes, the hub ranking rate (HRR). This rate is the
proportion of causal hub nodes whose rankings are less
than x among the top x gene nodes: HRR = {no. of [ran-
k(hub) < x]} /x, where x is a predetermined decision point
representing the number of influential nodes. Figure 4a
shows the proportions under Scenarios A-D when x=3.

With the inclusion of network information, the resulting
HRR is higher than the HRR obtained under other
methods that do not allow inclusion of network informa-
tion. This advantage is consistent across four scenarios.
When no node is causal (Scenario D), the proposed
method still selects the hub nodes prior to other nodes,

Table 2 Number and effect size of the causal hub nodes and
causal non-hub nodes under each scenario

Scenarios  Causal nodes

Hub nodes Non-hub nodes

number  effect size number  effect size
A 2 strong (B;=1) 8 weak (3;=0.1)
B 2 moderate (3;=05) 8 weak (3;=0.1)
C 2 weak (8;=0.1) 8 weak (8;=0.1)
D 0 null (8;=0) 0 null (8;=0)
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which is expected because it is the network information
that now dominates. The other three methods do not have
the same tendency; their HRRs are between 16 and 19%,
close to the rate expected by chance only (18.1%). Further-
more, when x ranges between 1 and 32, NetworkHub
remains advantageous for Scenarios A-C, respectively, for
strong, mild, and weak effects (Fig. 4b).

Alternatively, we focus on causal nodes including both
hubs and non-hubs and evaluate the false discovery rate
for these causal nodes (FDR) and the true detection rate
for causal nodes (TDR) among the leading x gene nodes.
In Figs. 5a-c, note that when only the top 5 or fewer (x <5)
genes are of interest, NetworkHub does detect the causal
ones, with a lower error rate, regardless of the effect size
ranging from strong (Scenario A in Fig. 5a) to mild (Sce-
nario B in Fig. 5b), and to weak (Scenario C in Fig. 5¢). For
TDR, the shrinkage t-test performs the best when the ef-
fect size is strong; while others have similar rates (Scenario
A in Fig. 5d). This is not surprising because we assumed
only marginal effects in simulating the data. Such advan-
tage disappears, however, when the effect size is moderate
or weak (Scenarios B and C in Figs. 5e-f). In that case, all
four methods performed similarly.

Discussion

Pathways are biological systems connecting genes, proteins,
and chemical substances that participate together in a mo-
lecular function. It is known that nodes inside a pathway
are dependent on each other, and some nodes like hub
nodes may serve as gate keepers that can maintain or
disrupt this biological function. Such relationships should
be considered if the aim is to rank gene nodes in the same
pathway. The proposed pathway activity score integrates
gene expression values, takes into account their differential
status as well as their dependence, and includes available
network information. In the breast and ovarian cancer
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applications we demonstrated that the proposed procedure
NetworkHub can identify genes that have been incorpo-
rated in current standard treatments or are being evaluated
in ongoing clinical trials. This procedure can provide a
complementary tool when ranking a set of genes in a net-
work structure where hub nodes are present.

Some details should be noted, however, when applying
this procedure. First, when incorporating the network in-
formation, the threshold as is used to flexibly include or
exclude nodes in the pathway. It has been set at the default
value 1 in all the analyses. Other choices of this value
change the results only slightly. In Figure S5A we calculate
the HRR at different values of as. Note that the HRR main-
tains a satisfactory level even when ag is set at 0.05,
remaining above 60% under Scenarios A and B. Second,
the proposed ranking procedure can be applied before or
after the pathway association has been tested. In Figure
S5B we display the HRR based on the same simulations as
in Figure S5A, but only for significantly associated path-
ways. The HRR becomes slightly larger, indicating little
gain if a pathway association test is conducted a priori. The
third issue is about the network information. The network
information included in NetworkHub involves the correl-
ation and path length dj;. The path length is not a measure
of Euclidean distance, but rather one that is comparable to
the likelihood of molecular interaction between two nodes.
A smaller dj implies a larger chance of interaction.

There are issues involved in this procedure worth
further investigation. First, we considered here only one
dataset from a breast cancer study and one from an
ovarian cancer study to demonstrate the procedure. If
one aims at unraveling genetic causality for a specific
disease, then the proposed NetworkHub should be ap-
plied to other datasets containing comparable diseased
subjects or the integrative analysis of multi-omic data
should be implemented. Second, the simulation studies
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conducted here only compared NetworkHub with 3 t-
statistic-type tests, where sampling variation is
accounted for, but no network properties are included,
in the ranking procedures. This comparison did not
cover other network-based methods because their exe-
cution does not include sampling variation. For in-
stance, Endeavour does not incorporate information
about gene expression, which leads to the same list of
rankings in every replication across all scenarios of
simulation. PINTA reads the input expression data
from a dialog box online, which requires manual input
and thus is not practical for simulation studies. A simi-
lar problem exists for NGP-ND and NGP-NR. There-
fore, we can compare all nine methods in the two cancer
studies, but not in simulation studies. Further studies may
focus on modifications of those algorithms, or on other
disease datasets, for broader applicability. Third, the defin-
ition of pathways in different sources may vary. The use of
multiple pathway databases has been suggested because
the choice of the database could impact the enrichment
analysis and predictive model [55]. The need to name and
annotate the pathway with a unique identification number
has been called for in a comparison review of twenty-four
human cell signaling pathway databases [56]. Here we
adopted KEGG [19] simply for demonstration and other
platforms such as String with protein-protein interaction
[17] or even a user-defined pathway network can be ap-
plied straightforwardly. The codes stored in GitHub
(https://github.com/Hung-Ching-Chang/NetworkHub)

currently work for input from KEGG only and we are

working on inclusion of other types of input. This also re-
lates to the fourth issue, namely, when NetworkHub is to
be applied in situations where a large user-defined gene-
set is provided, instead of a known biological pathway.
This case can arise in analysis that explores unknown rela-
tionships among gene nodes. Since the network structure
is not clear in such a set, a fully connected network where
all nodes are linked directly to each other may be con-
sidered. Further investigations are warranted to exam-
ine if any unnecessary edges between nodes affect the
final conclusion.

Conclusions

In summary, we proposed a network-based procedure,
NetworkHub, to prioritize the gene nodes, especially the
hub nodes, contained in a biological pathway network.
This procedure first constructs a pathway activity score
based on gene expression value, marginal effect, and net-
work information. The network information, also termed
as the intra-network association, is a function of Pear-
son’s correlation and minimum path length between all
possible pairs of nodes, subject to a user-defined thresh-
old for nodes to be included in this calculation. This
pathway activity score was next used in a leave-one-out
evaluation to prioritize the importance of the gene
nodes. The application of this procedure to two cancer
studies identified several important genes that have now
been used in standard treatment or currently considered
in clinical trials for target therapy.


https://github.com/Hung-Ching-Chang/NetworkHub
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Methods
For each sample i (i= . N), the pathway activity
score T7"" combines the local effect through the

weight L; and the topology information S; derived
from the j th gene node (j=1, .., M) for all M nodes
in the same pathway as

M
= E gt’/’ X
=1

This score summarizes the information contained in
this group of genes with three measurements: the
expression level of genes g;, the information L; about
whether the gene is differentially expressed, and the
network topology information S; carried by the j th
gene in the network. The details of the last two are
as follows.

Summarizing the local effect and network information
Weighting the local effect

The weight of the local effect L; for the j th gene is a
weight based on its negative logarithm of p-values

- logp; x I(p/ < aL)

Z[_ lngm X I(pm < {XL)]

m=1

L=

This p-value results from a single-marker test such
as a t-test on gene expression levels between two
phenotypic groups. The indicator function I(p;<a;)
determines which p-values are included in the weight-
ing system, where a; is the threshold for differential
expression. In other words, this local effect assigns
larger weights, on an exponential scale, to genes that
are statistically significant at the significance level a;.
The default is a; =0.05. When a; =1, the summation
of all L; becomes the scaled test statistic of Fisher’s
method for gene set analysis [7, 57]. Note that the
denominator is included so that the local effect
weights sum to 1.

Weighting network information
The topology information measure S; at the j th node is
defined as

M
2; |p’l;|><1<dk<Dp]<a5)

/

f:{ i |pmk|X1(dmk<DPm<0(s)}

m=1 k=1, Ak

S; =

This measure contains three elements: (1) the pairwise
absolute Pearson’s correlation |pj| between the current
node j and the rest of the nodes, (2) the path length dj
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for the closeness between nodes j and k, and (3) the
threshold D which controls the size of the topology
influence. The closeness dj here is defined as the
minimum steps/edges between two nodes in the net-
work. It is used to balance the effect of correlation.
For example, when two nodes are highly correlated
but distant, it implies they are less likely to interact
directly, and therefore the correlation is down-
weighted by the path length.

The third component, the threshold D, regulates the
type and size of the topological influence. It can be a
very large number so that all gene nodes contribute to
this measure. Alternatively, it can be determined to in-
clude only first-degree neighbors such as the immedi-
ately adjacent up- and down-stream genes, or genes
whose coding protein is being directly regulated.

The number ag in S; also serves as a gatekeeper to
control the number of genes involved in the topo-
logical contribution. When the default value ag=1 is
used, all other nodes, whether differentially expressed
or not, will contribute to the topological influence of
this gene. If one chooses a small value for as say
0.05, then only differentially expressed genes are in-
cluded. Again, the denominator in S; guarantees these
weights sum to 1.

In brief, this measure S; has several features. First, it
incorporates the relationship among genes through the
use of correlation, which relaxes the traditional assump-
tion of independence. Second, this correlation is bal-
anced with the inclusion of the length dj. In other
words, a large correlation between two genes far apart in
the network will be moderated by a correspondingly
large dj; while the correlation between two genes in a
direct regulation will not. Third, the threshold D for the
minimum distance offers the flexibility to include either
all genes or only the nearby ones in the evaluation of
network influence. Finally, the number ag provides the
chance to include only genes passing the single-marker
association test.

Regularization of effect direction

When combining the gene expressions in a network,
caution should be taken if there exist genes negatively
correlated with each other. A direct summation of the
expression levels without taking into account their inter-
relation may underestimate the strength of the effect.
Therefore, for gene j, if its t-test statistic is negative (¢ <
0) in the single-marker test, then the expression values
will be regularized by its maximum value O;, where O; =
max {gy, g2 --» gnj} is the maximum across all observed
gene expressions from N samples at the same gene j,
and the expression to be used for calculating the net-
work score becomes
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gR & i if t j >0

i L0j-g;+e, ift; <0

Here the ¢ is a small positive number, say 0.001, to
guard against a value of zero. This standardization leads
to our proposed pathway activity score (PAS) for the
network

M

Ti:Zgg x (Lj+S)).

=1

This regularization avoids excessive cancellation in
summing g;; and g; when they are negatively corre-

lated and, instead, gives a relatively large value of PAS to
reflect the higher degree of activity level in this pathway
for sample i. Here the t statistic #; is used as a reference
for regularization; other alternatives include the differ-
ence in the average expression level between two pheno-
typic groups or the fold-change between the two groups.

Gene-ranking with leave-one-out evaluation

To rank the gene nodes, we first compute the PAS with
the procedures described above for each sample, and
then calculate the difference in average PAS between
two phenotypic groups (grpl and grp2), £, standardized
by standard errors, se, corresponding to each group,

tan = Lon L ’
\/ [S@ ( Ti,iegrpl ) ] g + [Se ( Ti,iegrpz) ] ’

Next, we rearrange the network by leaving one gene
node out, evaluate again the local weight and topology
measure for each node in the new network with the M
-1 nodes, derive the corresponding PAS for each sam-
ple, denoted as Tj_;, and then calculate the standardized
difference in average PAS as #_;, where j is the index of
the node removed.

Once all nodes are visited in turn, and the correspond-
ing standardized differences have been computed, their
magnitudes are then compared with the original ¢, by
taking the absolute difference Q;= | t,;—t_;|. These
values can be ordered and displayed in a scree plot to fa-
cilitate analysis. A large value indicates a substantial
change when the gene node is removed from the path-
way network, while a small value implies little perturb-
ation with this deletion. The scree plot of the sorted
absolute differences Q()—i.e., the order statistics—from
largest to smallest, can provide the ranking in terms of
importance, indicating which nodes may be useful in tar-
get therapy or drug development within this set of inter-
est. This is the NetworkHub procedure. In addition, if a
cut-off is needed to select influential gene nodes, the
inflection point on the curve, defined as the first ordered

Qy where (Qq.1-Qp)-(Qy—-Qy-1)) becomes
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negative, can be used where all nodes before Q are
considered as influential. The R code for performing the
pathway test and gene-ranking, an example, and the
document files are freely available online (https://github.
com/Hung-Ching-Chang/NetworkHub).
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