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Abstract

Background: Cancer is caused by genetic mutations, but not all somatic mutations in human DNA drive the
emergence or growth of cancers. While many frequently-mutated cancer driver genes have already been identified
and are being utilized for diagnostic, prognostic, or therapeutic purposes, identifying driver genes that harbor
mutations occurring with low frequency in human cancers is an ongoing endeavor. Typically, mutations that do not
confer growth advantage to tumors – passenger mutations – dominate the mutation landscape of tumor cell
genome, making identification of low-frequency driver mutations a challenge. The leading approach for discovering
new putative driver genes involves analyzing patterns of mutations in large cohorts of patients and using statistical
methods to discriminate driver from passenger mutations.

Results: We propose a novel cancer driver gene detection method, QuaDMutNetEx. QuaDMutNetEx discovers
cancer drivers with low mutation frequency by giving preference to genes encoding proteins that are connected in
human protein-protein interaction networks, and that at the same time show low deviation from the mutual
exclusivity pattern that characterizes driver mutations occurring in the same pathway or functional gene group across
a cohort of cancer samples.

Conclusions: Evaluation of QuaDMutNetEx on four different tumor sample datasets show that the proposed method
finds biologically-connected sets of low-frequency driver genes, including many genes that are not found if the
network connectivity information is not considered. Improved quality and interpretability of the discovered putative
driver gene sets compared to existing methods shows that QuaDMutNetEx is a valuable new tool for detecting driver
genes. QuaDMutNetEx is available for download from https://github.com/bokhariy/QuaDMutNetEx under the GNU
GPLv3 license.
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Background
Cancer driver mutations are DNA changes that are
causally implicated in oncogenesis [1, 2]. Typically
between two and eight mutations, targeting several cel-
lular pathways, are needed for cancer to develop [3]. To
disrupt a single pathway or a group of functionally related
genes in a way that promotes cancer growth, often only
one mutation is needed [4–6].
Most DNAmutations are not cancer drivers. Mutations

in DNA accumulate throughout life – for example, com-
paring skin or gastrointestinal epithelium cells in cancer
samples from patients 85 and 25 years old showed that
the younger patient on average has half the number of
mutation compared to the older patient. More than half
of all mutations found in cancer tissue are estimated to
have occurred before the start of the disease [7]. Addi-
tionally, mutation rate tends to increase in cancer cells
[8], although it can differ significantly even among sub-
clones within the tumor [9]. Most of these new random
mutations do not contribute to the progression of the
disease. An analysis of large number of cancer samples
gathered in the Cancer Genome Atlas (TCGA) [10] shows
that the total number of mutations present in a tumor tis-
sue from a single patient can range from 10 to more than
100, and only about 2 to 6 among them are driver muta-
tions [11]. Hence, the majority of mutations present in
a cancer tissue sample are passenger mutations, with no
positive impact on oncogenesis. Due to the potential of
using driver genes, that is, genes that harbor driver muta-
tions, for therapeutic, prognostic, or diagnostic purposes,
assembling a comprehensive catalogue of driver genes an
important ongoing endeavor [12–14]. The main challenge
in this task is discovering new driver genes while avoiding
false positives stemming from the abundance of passenger
mutations.
Statistical and computational methods for detecting

driver genes often rely on finding certain pattern of muta-
tions in a group of driver genes across a cohort of patients.
To develop cancer, multiple cellular functions must be
perturbed, and in different patients, different genes with
the same function may be mutated. Often, the cancer
develops and is detected before a second mutation in
genes with a given function occurs. Thus, for a given
cancer type, for a group of patients, each patient would
have at least one mutation in a functionally-related group
of driver genes, but rarely would have more than one
mutation – the gene set exhibits mutual exclusivity pat-
tern of mutations. Several methods detect a set of driver
genes by quantifying mutual exclusivity, including Den-
drix [15] and Multi-Dendrix [16], RME [17], CoMEt [18],
TiMEx [19], MEMo [20], and our own method, QuaD-
MutEx [21]. An alternative approach involves knowledge
of networks linking genes. Frequently mutated genes and
their less-frequently mutated neighbors in known human

gene- or protein-level pathways or networks are detected
as drivers. Methods such as HotNet2 [22, 23], MEMo [20]
and DriverNet [24] adopted the network-oriented driver
detection approach.
Biological network connectivity and mutual exclusivity

are both important sources of information in discovering
driver genes. At the same time, both types of information
must be used with caution. The available biological net-
works are incomplete and are expected to include false
positives, which might affect the true structure of the net-
work in a way that is unknown. Deviations from mutual
exclusivity pattern are expected in individual patients,
especially in slow-growing tumors where random muta-
tions have more time to accumulate before cancer is
detected. Therefore, an algorithm that uses biological net-
works and mutual exclusivity at the same time will be able
to utilize two complementary, imperfect sources of infor-
mation to improve the quality of the discovered putative
driver gene sets.
We propose a tool, QuaDMutNetEx, which combines

the network and exclusivity based approaches. As in our
previous tool QuaDMutEx [21], the objective function
that is used to select driver genes penalizes for any devi-
ation from the mutual exclusivity pattern. Additionally,
QuaDMutNetEx shows preference for genes that are con-
nected in known human biological networks. Compared
to mutual exclusivity-based tools such as QuaDMutEx or
Dendrix, this additional source of information can help
in finding rare driver mutations, for which neither the
network connectivity and mutation frequency alone, nor
exclusivity alone, are selective enough. The tool models
both the network and the mutual exclusivity terms of the
objective function as convex, quadratic terms, resulting
in a binary quadratic problem, which is solved using our
previously proposed technique of efficiently exploring the
space of gene sets by using stochastic search through a
series of globally optimal solutions to subproblems. Com-
parisons with existing state-of-the-art methods on four
cancer datasets show that the approach of combining
network and exclusivity approaches results in improved
ability to detect highly connected, mutually exclusive rare
driver genes.

Results
We evaluated QuaDMutNetEx using its default parame-
ters that have been selected experimentally: the maximum
size of the gene set is ν = 50; k = 1, indicating equal
preference for optimizing coverage and excess coverage;
C = 2.5; the network parameter was set to α = 0.3;
the number of iterations was set to T = 10, 000. In
the network-connectivity term of the objective function,
we used combined three human protein-protein inter-
action networks previously used in HotNet2 [23]. The
first network is the iRefIndex network, which consists of
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Table 1 Summary of DriverDB tool datasets used in
experimental validation of QuaDMutNetEx

Dataset Samples (n) Genes (p) Mutations

TN: triple negative breast
cancer

94 4594 6007

GBM: glioblastoma
multiforme

120 3747 8141

HGS: high-grade serous
ovarian cancer

316 13278 22897

METABRIC: breast cancer 696 13076 51255

91,872 interactions among 12,338 proteins. The second
network is MultiNet network which consists of 109,597
interactions among 14,445 proteins. The last network
is HINT+HI2012 which is created by considering two
interactome databases: HI-2012 data in human HI2 Inter-
actome database, HI2012, and high-quality interactomes
database, HINT. The HINT+HI2012 network consists of
40,783 interactions among 10,008 proteins.
We used four datasets to evaluate the proposed algo-

rithm: triple-negative breast cancer (TN), glioblastoma
multiforme (GBM), high-grade serous ovarian cancer
(HGS), and another breast cancer (METABRIC) dataset
(see Table 1). These datasets were previously used in eval-
uating the DriverNet tool. Following standard practice,
known hypermutated genes such as mucins, titin, olfac-
tory receptors, which are unlikely to play role in cancer,
were removed [25].

Quantitative and qualitative assessment of QuaDMutNetEx
results
The results of the tests, presented in Table 2, show that
the proposed method returns gene sets that are statisti-
cally significant at 0.05. To assess statistical significance
of the results returned by QuaDMutNetEx, we used per-
mutation test proposed in [15]. In short, we randomly
permuted the patient-gene matrix in a way that preserves
the number of mutations in each patient, and in each gene.
This process results in a randomized dataset in which any
correlations of mutations are only appearing by chance,
but the gene mutation frequencies and patient mutation
counts are the same as in the original dataset, which keeps

Table 2 Quantitative characteristics of QuaDMutNetEx results

Dataset Genes Found Estimated p-value

TN 13 < 0.004

GBM 6 < 0.004

HGS 25 0.016

METABRIC 25 < 0.004

Solutions for all four datasets are statistically significant at p < 0.05

the randomized dataset similar to the original. We cre-
ated 256 randomized datasets and ran QuaDMutNetEx
on each dataset. To obtain a p-value estimate, the final
penalty score obtained from running QuaDMutNetEx on
the original dataset was compared with the distribution of
final penalty scores from running QuaDMutNetEx on the
256 randomized datasets.
The genes discovered by QuaDMutNetEx are presented

in Table 3. To evaluate the gene’s driver status, we used
COSMIC Cancer Gene Census database [26, 27] and the
cancer driver gene database DriverDBv2 [28]. To check
QuaDMutNetEx’s effectiveness in discovering rare cancer
drivers, we focused on the genes in the solutions that are
least frequently mutated in the datasets, and preformed
literature review to analyze if these are true or false pos-
itives. Additionally, we visually evaluated the resulting
gene networks – the largest connected component for
each dataset is presented in Fig. 1. To show how inclusion
of the network connectivity term in the objective function
improves the solution, we have denoted genes found on
the same datasets by our mutual-exclusivity-only method,
QuaDMutEx. We see that most of the discovered driver
genes, especially those mutated with low frequency, result
from including the network connectivity term.
In the triple-negative breast cancer (TN) dataset, out of

thirteen identified driver genes, eight are each mutated
in only two out of 94 patients, and are analyzed below.
A chromatin-remodeling gene CREBBP was found to be
overexpressed in breast cancers [29], and is frequently
mutated in bladder cancers [30]. DAPK1 is a potential
tumor suppressor gene [31, 32]. NCOA1 was found to
promote angiogenesis in breast cancers [33]. SLC39A7 is
a potential oncogene in colorectal cancer [34]. IDH3B is
upregulated in breast cancer and is significantly involved
in energy metabolism in tumor progression [35, 36].
HIST1H4A is known to play a role in cell death induction
in tumor cells [37]. HIF1A functions as a tumor promoter
in cancer-associated fibroblasts, and as a tumor suppres-
sor in breast cancer cells, also it is already a vaccine tar-
get in triple-negative breast cancer [38–40]. Finally, MLL
methyltransferase are known to have a haematopoietic-
specific tumorigenic capability [41].
In the ovarian cancer (HGS) dataset, twenty-three out

of twenty-five identified genes are low-frequency driver
genes – each is mutated only in two out of 316 patients.
Of these twenty-three genes, CTNNB1 is implicated in
malignant ovarian transformation [42]. DAG1 and HSPA5
are already drug targets [43, 44]. ERBB2, MST1R, STAT3,
VAV3, ERBB3, NTRK2 and JAK2 are known oncogenes
[45–50], and FANCA is a potential oncogene [51]. GRB2
is a therapeutic target for solid tumor prevention [52].
PIK3R1 represents a critical driver of endometrial cancer
pathogenesis and is a therapeutic target [53]. TSHR sig-
naling promotes the proliferation of ovarian cancer [54].
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Table 3 Putative driver gene sets discovered by QuaDMutNetEx

Gene c D/R QuanDMutEx COSMIC DDBv2 Gene c D/R QuanDMutEx COSMIC DDBv2

TN: Triple-negative breast cancer

TP53 35 R � � � PARK2 6 • � • �
ATR 4 D • � � SAGE1 3 • � • �
NR3C1 3 • � • � CREBBP 2 D/R • � �
DAPK1 2 • • • � NCOA1 2 D • � �
SLC39A7 2 • • • � IDH3B 2 • � • �
HIST1H4A 2 • • • � HIF1A 2 D • � �
MLL 2 D • � �

GBM: Glioblastomamultiforme

CDKN2A 55 R � � � TP53 38 R � � �
MDM2 13 D • � � MDM4 5 D • � �
MAPK9 2 • • • � RPL11 2 • • • �

HGS: high-grade serous ovarian cancer

TP53 249 R � � � SOS1 3 • • • �
CTNNB1 2 D • � � DAG1 2 • • • �
ERBB2 2 D • � � FANCA 2 R • � �
GRB2 2 • • • � PIK3R1 2 R • � �
TSHR 2 D • � � DNAJA3 2 • • • �
HSP90AA1 2 D • � � HSPA5 2 • • • �
MST1R 2 • • • � PTK2 2 • � • �
STAT3 2 D • � � UBC 2 • • • �
VAV3 2 • • • � WRN 2 R � � �
ZAP70 2 • • • � ERBB3 2 D • � �
NTRK2 2 • • • � SPRY2 2 • • • �
DHHC11 2 • • • � JAK2 2 D • � �
CDKN2A 2 R • � �

METABRIC: breast cancer

ERBB2 84 D • � � FGFR1 50 D • � �
GAB2 35 • • • � PSG11 28 • • • �
MACROD2 19 • � • � PTEN 16 D � � �
FRS2 10 • • • � IGF1R 10 • • • �
CRK 10 • • • � JAK2 7 D • � �
AC116165.7-2 6 • � • • IRS4 6 • • � �
PTK2 5 • • • � IL6ST 4 D • � �
EGFR 4 D • � � GRB2 4 • • • �
PTPN1 4 • • • � CREBBP 3 D/R • � �
DOK6 3 • • • � JAK1 2 D • � �
EGF 2 • • • � PIK3R1 2 R • � �
SYK 2 D • � � PTPN6 2 • • � �
VAV1 2 • • � �

Number of patients in the dataset that had a mutation in the gene is in c column. D/R stand for dominant or recessive otherwise unknown. Genes discovered by the
quadratic mutual-exclusivity approach that does not include the network connectivity term are in QuanDMutEx column. COSMIC [26, 27] column represent if the gene
present in COSMIC Cancer Gene Census. Genes present in DriverDBv2 [28] are in DDBv2 column
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Fig. 1 Known interactions between driver genes discovered by QuaDMutNetEx on the four datasets: TN: triple-negative breast cancer, GBM:
glioblastoma multiforme, HGS: high-grade serous ovarian cancer, and METABRIC: breast cancer

HSP90AA1 is considered as a potential protein target in
therapy of ovarian cancer. [55]. UBC is potential drug
resistance-related gene in ovarian cancer [56]. Finally,
WRN and CDKN2A are tumor suppressor genes [57, 58].
In the glioblastoma multiforme (GBM) dataset, out

of six identified driver genes, one is mutated in five,
and two in only two out of 120 patients. Of these,
MAPK9 was found to be significantly upregulated in
glioma stem cells [59]. MDM2 is a known oncogene
[60], while RPL11 is a tumor suppressor gene that acts
together with MDM2 in p53 activation pathway [61].
In the METABRIC breast cancer dataset, out of twenty
five genes identified by QuaDMutNetEx, six are very
rare – each mutated in only two out of 696 patients.
Of these, JAK1 is known for its key role in breast can-
cer progression [62]. EGFR signaling pathway also has
a crucial role in mammary cancers [63], and polymor-
phism in the EGFR ligand, EGF, was found to affect cancer
progression [64]. PIK3R1 and VAV1 are known onco-
genes [65, 66], SYK is a tumor suppressor gene [67],
and PTPN6 has a tumor suppressor role [68]. Together,
these results confirm that QuaDMutNetEx is highly effec-
tive in identifying cancer driver genes with low mutation
frequency.

For comparison, we used two network-based methods,
DriverNet and HotNet2. We also used a mutual exclu-
sivity tool, Dendrix. We ran the three tools on the same
four datasets: TN, GBM, HGS, and METABRIC. Driver-
Net was designed to utilize genomic, transcriptomic, and
biological network information, HotNet2 utilizes genomic
and biological network information, while Denrix used
only the genomic information. In all three methods, as
well as in QuaDMutNetEx, we used the default param-
eters. For each method, we analyzed coverage, excess
coverage, conformity to the mutual exclusivity pattern as
quantified by the Dendrix score n−∑n

i=1 |Gix−1|, and the
number of connected components in the subgraph of the
biological network consisting of the genes in the solution
returned by the method.

Testing in cancer molecular subtypes dataset
Mutual exclusive pattern in tumor can be resulted from
other factors [69]. Hence, methods using mutual exclusiv-
ity need to account for that. Here we are using GBM sub-
types to test the effectiveness of our method [69]. Using
copy number, gene expression and methylation, GBM
classified into proneural, neural, classical, and mesenchy-
mal [70, 71]. We downloaded GBM data from TCGA and
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divided them into four subtypes according to TCGA IDs
given in [71].
The genes discovered by QuaDMutNetEx are presented

in Table 4. To evaluate the gene’s driver status, we used
COSMIC Cancer Gene Census database [26, 27] and the
cancer driver gene database DriverDBv2 [28]. All of the
resulted genes exist in both COSMIC and DriverDB2 or
one of them.

Comparison with existing methods
The quality of the solutions returned by QuaDMutNetEx
is higher than solutions from other methods (see Table 5).
QuaDMutNetEx consistently produces more mutually

exclusive gene sets than the network-based methods, and
the gene sets are more highly connected – the interaction
networks have fewer separate connected components.
Compared to Dendrix, the tool that only considers mutual
exclusivity, QuaDMutNetEx solutions show slightly lower
mutual exclusivity, but at the same time are much more
highly connected.

Effects of parameters on QuaDMutNetEx
The behavior of proposed method can be adjusted by
three parameters, based on the knowledge of the tumor
under study. Parameter α quantifies the reward for gene
connectivity in cellular networks – higher values indicate

Table 4 Putative driver gene sets and metrics in GBM subtypes discovered by QuaDMutNetEx

Gene c D/R COSMIC DDBv2 Gene c D/R COSMIC DDBv2

Classical GBM

Metrics:
samples genes mutations Genes in solution Coverage Excess coverage Connected components

n=69 p=487 1192 6 0.6232 0.1163 5

EGFR 21 D � � PCDHAC2 15 • • �
DNAH9 4 • • � GABRA6 4 • • �
PTPRG 2 • • � TEK 2 • • �

Mesenchymal GBM

Metrics:
samples genes mutations Genes in solution Coverage Excess coverage Connected components

n=75 p=510 1310 12 0.7733 0.1552 4

PTEN 23 D � � EGFR 17 D � �
PIK3CA 5 D � � CPNE8 3 • • �
KDM2B 3 • � � NRXN1 3 • • �
INPPL1 3 • • � EZR 2 D � �
GRB10 2 • • � IRS1 2 D � �
IRS4 2 • • � LZTR1 2 D � �

Proneural GBM

Metrics:
samples genes mutations Genes in solution Coverage Excess coverage Connected components

n=44 p=229 558 7 0.6364 0.0714 2

TP53 15 R � � PCDHAC2 5 • • �
CHEK1 2 • • � CREBBP 2 D/R � �
DAXX 2 R � � MECOM 2 R � �
TBP 2 • • �

Neural GBM

Metrics:
samples genes mutations Genes in solution Coverage Excess coverage Connected components

n=41 p=199 482 8 0.6585 0.0370 2

TP53 15 R � � ANK2 5 • • �
PDGFRA 2 D � � FLT1 2 • • �
PTPN11 2 D � � CHD8 2 • • �
DYNC1I1 2 • • � KDR 2 D � �

Boxes below the GBM subtypes show the metrics of a GBM subtype including number of samples, number of genes etc. Discovered genes by QuaDMutNetEx are below the
metrics box. Number of patients in the dataset that had a mutation in the gene is in c column. D/R stand for dominant or recessive otherwise unknown. COSMIC [26, 27]
column represent if the gene present in COSMIC Cancer Gene Census. Genes present in DriverDBv2 [28] are in DDBv2 column
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Table 5 Comparison between QuaDMutNetEx, HotNet2, DriverNet, and Dendrix

Method Genes in solution Coverage Excess coverage Dendrix score Connected components

TN: Triple negative breast cancer

HotNet2 128 0.6809 0.7969 -118 9

DriverNet 21 0.6383 0.4667 23 14

Dendrix 22 0.6170 0.1034 51 8

QuaDMutNetEx 13 0.6854 0.0983 55 3

GBM: Glioblastoma multiforme

HotNet2 37 0.7833 0.4149 10 11

DriverNet 17 0.9333 0.8661 -140 9

Dendrix 22 0.7166 0.023256 84 4

QuaDMutNetEx 6 0.8151 0.1855 79 1

HGS: high-grade serous ovarian cancer

HotNet2 58 0.8449 0.4307 83 4

DriverNet 72 0.9335 0.6373 -35 51

Dendrix 3 0.8037 0.0 254 3

QuaDMutNetEx 25 0.6170 0.1086 236 1

METABRIC: breast cancer

HotNet2 224 0.4424 0.7394 -1694 18

DriverNet 90 0.4683 0.7785 -1130 33

Dendrix 18 0.3836 0.1236 233 16

QuaDMutNetEx 25 0.3982 0.1753 216 4

stronger preference for finding densely connected genes.
Parameter k controls how steeply the penalty for multiple
mutations in a single pathway grows – lower values of k
lead to lower penalization of excess coverage in relation to
coverage, and is appropriate for slower growing tumors,
where additional mutations in any given pathway have
more time to accumulate by chance. Finally, higher val-
ues of parameter C penalize for solutions sets with many
genes.
We have analyzed how these parameters affect the solu-

tion by running QuaDMutNetEx for 100,000 iterations
for parameters α = 0.01, 0.05, 0.1, 0.3, 0.6, 1 with C =
0.25, 0.5, 1, 1.5, 2, 2.5 and α = 0.01, 0.05, 0.1, 0.3, 0.6, 1 with
k = 0.25, 0.5, 1, 1.5, 2, 2.5. Figure 2 shows that the param-
eter α achieves its design goal, that is, solution with
higher α include fewer connected components and pre-
fer connected network. The α parameter has the following
effect on coverage and excess coverage: as the value of α

increases, the coverage decreases and the excess cover-
age increases. Furthermore, as the value of α increases, it
decreases the effect of C and k. Setting α to a low value,
such as 0.001, makes the effect of C and k to be more
dominant. Higher coverage and higher excess coverage, as
expected, are observed for low k values. High values of C
lead to solution sets involving only a few genes, while low
values of C lead to high coverage.

Discussion
The proposed method, QuaDMutNetEx, relies on two
sources of information to detect cancer driver genes. It
uses observed somatic mutations in a cohort of can-
cer patients, to detect mutual exclusivity patterns, and
a biological network encoding functional relationships
between genes to provide context for the observed data.
Relying on two sources of information is a strength of the
proposed method, since treated individually, each source
is imperfect. Biological networks are know to be incom-
plete and contain false positives, and the functional, reg-
ulatory, and signaling relationships they capture are not
all directly relevant to cancer. Mutual exclusivity patterns
may not be perfectly present in the observed patientmuta-
tion data. This may be true especially for slower growing
tumors, where the time from onset of the disease to its
detection is long enough to allow for accumulation of
additional mutations in functionally-related sets of genes
that contribute to cancer. Depending on the knowledge of
the analyzed type of cancer and characteristics of the stud-
ied patient cohort, the users of QuaDMutNetEx should
adjust the parameters of the methods that govern the
strength of preference for mutual exclusivity in relation
to patient coverage, the weight assigned to the network
knowledge, and the strength of preference for small driver
gene sets. Users of QuaDMutNetEx should also keep in
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Fig. 2 Effects of parameters on QuaDMutNetEx. a, b: effect on connected components; c, d: effect on coverage; e, f: effect on excess coverage.
Results shown are for the HGS dataset, the results for other datasets are similar

mind that it uncovers driver genes relevant to the cohort
from which the mutation data comes from. That is, it
detects drivers present in the particular set of patients,
based on the particular type of mutation data provided.

Conclusions
Experiments on four datasets show that QuaDMutNetEx
has the ability to detect driver genes mutated with low fre-
quency, genes that may be missed by existing tools that
rely on mutual exclusivity alone, or on frequency and net-
work information alone. Improvements in the quality and
interpretability of the discovered putative driver gene sets
makes QuaDMutNetEx a valuable addition to the family
of driver discovery tools.

Methods
Input for QuaDMutNetEx
QuaDMutNetEx input has two sources of information.
The first source is the binary somatic mutation matrix as
in many mutual-exclusivity tools [15, 21]. Specifically, the
data for n patients, each with total of p genes explored for
possible existence of somatic mutations, arrives in a form
of a mutation matrix G, an n by p sparse binary matrix.
We expect Gij = 1 if patient i has a somatic mutation
in gene j, that is, a difference between cancer tissue and
matched healthy tissue from the same patient is detected;
otherwise, Gij = 0. The change can be a point mutation

in the coding region of the gene, potentially affecting its
function. It could also be a mutation in the non-coding,
regulatory elements of the DNA associated with the gene,
or copy number alternation of the gene in case of homozy-
gous deletions and high-level amplifications, affecting its
expression. A row of the matrix describing mutations in
patient i will be referred to as a vector Gi. The second
source of information is a gene connectivity matrix A,
with nonzero Aij values for genes i and j that are known
to be related in a biologically meaningful way, for exam-
ple one gene regulates the other, or proteins encoded by
the genes are known to interact in a signaling pathway.
The output of the method is a column vector x of length
p, with xj = 1 indicating that gene j is a putative can-
cer driver gene, that is, its mutations can contribute to
cancer growth, and zero otherwise. The non-zero ele-
ments of the solution will be referred to as the solution
gene set.

Defining the quality of potential driver gene sets
For the binary solution vector x with length p genes, there
are 2p −1 possible non-zero solution vectors, each encod-
ing a different gene set. The challenge is to find a gene set
that is composed of driver genes. To this end, we designed
a penalty score that reflects how likely it is that genes
encoded by a solution vector form a comprehensive set
of driver genes impacting a single cellular function. The
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lower the penalty score, the more likely the solution con-
sists of related driver genes. The penalty score has two
major terms: a network term, and a mutual-exclusivity
term.
The network terms captures our preference for solution

gene sets in which the products of transcribing the genes
are connected in known human protein-protein interac-
tion networks. Other sources of pairwise gene relation-
ships could be used, for example functional similarity, or
regulatory interactions. This network connectivity pref-
erence is captured by a term N(A, x) in the objective
function, where A is the undirected adjacency matrix cor-
responding to the network, and x is the solution gene set.
The new term introduces a reward for any two genes in
a solution that are connected. Since the solution vector is
binary, the additional term can be defined as N(A, x) =
−xTAx = − ∑

i,j Aijxixj. The scaled term αN(A, x) with
nonnegative weight α corresponds to providing a reward
of α every time two genes i and j present in the solution,
that is, with xi = 1 and xj = 1, are connected by an
edge, that is, when Aij = 1. The effect of introducing the
network term can be seen in Fig. 3.

The second term in the objective function captures
mutual exclusivity pattern among solution genes. We use
a flexible, quadratic term previously used in our mutual
exclusivity method, QuaDMutEx [21]. Briefly, the term
penalizes for solutions that leave some patients not show-
ing any mutation in the solution genes, as well as for
solutions in which patients are covered by more than
one mutation. The penalty for excess mutations grows
quadratically with the number of mutations over one. The
ration of penalty for multiple mutations to penalty for no
mutation can be tweaked by parameter k. For example,
for a slow growing tumor, where there is ample time for
additional mutations to accumulate in a single pathway, k
should be low. In addition, we define parameter C to be a
penalty incurred by adding one more gene to the solution
set.
For any possible solution vector x, the penalty score is a

sum of the two terms described above, and is

L(G,A, x) = −αxTAx +
n∑

i=1

1 + k
2

(Gix − 1)
(

Gix − 2
1 + k

)

+ C||x||0.

(1)

Fig. 3 Illustration of the role of the network term N(A, x). Based solely on the mutual exclusivity, potential solutions 1 and 2 are equally good, both
show perfect mutual exclusivity. Inclusion of network term N(A, x) makes potential solution 2 the preferred one, since it consists of more highly
connected genes
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Algorithm for finding high-quality driver gene sets
The minimization of the quadratic penalty function
L(G,A, x) over binary vectors x is an example of an uncon-
strained binary quadratic problem (BQP).While BQPs are
known to be NP-hard [72], for problems small enough
the optimal solution can still be found. For example, for
datasets with up to 1000 patients, if one focuses on only
ν = 50 genes, the solution x that is the global minimum of
L(G,A, x) can be found in below a second.
As we have shown before [21], high-quality approxi-

mate solutions to BQP problems involving thousands of
genes can be found efficiently by an iterative algorithm
that maintains an evolving set of size ν consisting of
candidate driver genes, and in each of the T iterations
finds an optimal solution to a small instance of the prob-
lem in Eq. 1 involving only the current candidate genes.
This allows for improving the quality of the driver gene
set, while exploring a diverse set of possible genes as
candidates.
A single run of QuaDMutNetEx will return a set

of functionally-related driver genes with high mutual
exclusivity and high network connectivity. Running
QuaDMutNetEx in sequence, removing discovered genes
from input matrices G and A after each iteration, will
allow to uncover genes from multiple pathways needed
for oncogenesis, although the joint solution is no longer
expected to have high connectivity, nor to conform to the
mutual exclusivity pattern.
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