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Abstract
Background: Multiple co-inertia analysis (mCIA) is a multivariate analysis method that can assess relationships and
trends in multiple datasets. Recently it has been used for integrative analysis of multiple high-dimensional -omics
datasets. However, its estimated loading vectors are non-sparse, which presents challenges for identifying important
features and interpreting analysis results. We propose two new mCIA methods: 1) a sparse mCIA method that
produces sparse loading estimates and 2) a structured sparse mCIA method that further enables incorporation of
structural information among variables such as those from functional genomics.

Results: Our extensive simulation studies demonstrate the superior performance of the sparse mCIA and structured
sparse mCIA methods compared to the existing mCIA in terms of feature selection and estimation accuracy.
Application to the integrative analysis of transcriptomics data and proteomics data from a cancer study identified
biomarkers that are suggested in the literature related with cancer disease.

Conclusion: Proposed sparse mCIA achieves simultaneous model estimation and feature selection and yields
analysis results that are more interpretable than the existing mCIA. Furthermore, proposed structured sparse mCIA
can effectively incorporate prior network information among genes, resulting in improved feature selection and
enhanced interpretability.

Keywords: Multiple co-inertia analysis, l0 penalty, Network penalty, Structural information, Gene network
information, Integrative analysis, High-dimensional data, -omics data

Background
Large scale -omics studies have become common partly as
a result of rapid advances in technologies. Many of them
generate multiple -omics datasets on the same set of sub-
jects. For example, cancer studies generate datasets using
the NCI-60 cell line panel, a group of 60 human cancer
cell lines used by the National Cancer Institute (NCI).
Various types of -omics datasets such as gene expression
or protein abundance from this cell line panel are gener-
ated and available via a web application CellMiner [32].
Another example can be found at The Cancer Genome
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Atlas (TCGA) repository that contains multiple types of
-omics datasets such as genotype, mRNA, microRNA,
and protein abundance data collected from the same set
of subjects. The abundance of such datasets has cre-
ated increasing needs in advanced methods for integrative
analysis beyond separated analyses. Integrative analysis
enables us not only to understand underlying relation-
ships among multiple datasets but also discover more bio-
logically meaningful results that may not be found from
analysis of a single dataset. As a response to increasing
needs, there have been continuous efforts in developing
such methods.
Tenenhaus and Tenenhaus [36] reviewed various meth-

ods for integrative analysis of multiple datasets from the
same set of subjects. Canonical correlation analysis [17]
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is one popular method for integrative analysis of two
datasets measured on the same set of subjects. For each
of two datasets, CCA seeks a linear transformation so that
correlation between two transformed datasets is maxi-
mized. It is a prototype method to use a correlation-based
objective function. Based on CCA, various extended
methods have been proposed to integrate more than two
datasets into a singlemodel. Some examples are [4, 16, 41],
[12, 12], and [15].
Covariance-based criteria is another way to construct

an objective function. Tucker’s inner-battery factor anal-
ysis [38] is the seminal paper for investigating covariance
structures between two datasets. Various approaches have
been proposed to extend the method to an integrative
model for more than two datasets. [39], [13, 19], and [8]
are some examples.
Multiple co-inertia analysis [6] is another integrative

analysis method employing a covariance-based objective
function to identify common relationships and assess con-
cordance among multiple datasets. This method finds a
set of loading vectors for multipleK ≥ 2 datasets and a so-
called “synthetic" center of all datasets such that a sum of
squared covariances between each of linearly transformed
datasets and a synthetic center is maximized. Recently it
has been applied to an integrative analysis of multiple -
omics datasets [24]. However, estimated loading vectors
of mCIA are nonsparse. That is, if we want to apply mCIA
for analyzing two gene expression data, every gene in each
data has nonzero coefficient, making it difficult to inter-
pret the results. This has been noted as a weakness of
the method [20, 25]. In statistical literature, sparse esti-
mation has been suggested as a remedy for this type of
problem and has shown good performance in genomics or
biological data [22, 34].
In this paper, we propose a novel approach that imposes

a sparsity constraint on mCIA method, sparse mCIA
(smCIA). This model conducts estimation and variable
selection simultaneously. Non-sparsity poses significant
challenges not only in developing an accurate model, but
also in interpreting the results. Ultra-high dimensionality
is the inherited nature of -omics datasets, thus statistical
models for analyzing -omics datasets benefit from feature
selection procedure. To address this issue, it is desirable
to employ a sparsity in the model. However, it has not
been introduced in themCIA framework to the best of our
knowledge. The regularized generalized CCA framework
[37] encompasses many integrative methods including
mCIA and a sparse version of generalized CCA as its spe-
cial cases, but it does not include a sparsity-constrained
mCIA as its special case.
Also, we propose to extend smCIA, structured sparse

mCIA (ssmCIA) that incorporates the structural infor-
mation among variables to guide the model for obtaining
more biologically meaningful results. It is well-known that

gene expressions are controlled by the gene regulatory
network (GRN) [31]. Incorporation of those known prior
structural knowledge among genes is one of potential
approaches to improve analysis results. There are continu-
ing interests in developing statistical methods toward this
direction [21, 26, 27]. To incorporate structural knowl-
edge, we employ another penalty term in the objective
function of smCIA so that we can guide the model to
achieve the improved feature selection.

Methods
Before introducing two proposed models, we briefly
review the classical mCIA problem.
Suppose that we have K datasets from n subjects, i.e.,

K data triplets (Xk ,D,Qk)
K
k=1, Xk ∈ R

n×pk , D ∈ R
n×n,

Qk ∈ R
pk×pk , and w = (w1, . . . ,wK ) for k = 1, . . . ,K . D is

a diagonal weight metric of the space Rn, Qk is a diagonal
weight metric of the spaceRpk , and wk is a positive weight
for the k-th dataset such that

∑
wk = 1. Without loss of

generality, assume that Xk is column-wise centered and
standardized.
There are various ways to constructD. The simplest way

is to use the identity matrix for D, equal weights for each
sample. Or, it can be used to put strong emphasis on some
reliable samples compared to other samples by putting
higher weights. Also possible sampling bias or duplicated
observations can be adjusted via constructing appropri-
ate D matrix. In specific, we can estimate the probability
of selection for each individual in the sample using avail-
able covariates in the dataset and use the inverse of the
estimated probability as a weight of each individual for
adjustment. Later in our real data analysis, we use the
identity matrix for D.
For Qk , we use the proportions defined as the column

sums divided by the total sum of the absolute values of the
k-th dataset, following the similar approaches used in the
literature [7, 9, 24, 25]. In this way, we put higher weights
on the genes with higher variability. Or, we can construct
Q matrices such that some genes known to be associated
with a clinical phenotype of interest have higher weights.
Also, it would be another possible approaches to con-
struct Q based on functional annotation following recent
methods, originally proposed for a rare variant test for an
integrative analysis [3, 14].

Multiple co-Inertia analysis (mCIA)
The goal of mCIA is to find a set of vectors uk ∈ R

pk , k =
1, . . . ,K , and a vector v ∈ R

n, such that the weighted sum
of (v ᵀ DXkQkuk)2 is maximized. The objective function
of mCIA problem is defined as follows,

max
v,u1,...,uK

K∑

k=1
wk(vᵀDXkQkuk)2 (1)

s.t uᵀkQkuk = 1, k = 1, . . . ,K , vᵀDv = 1,
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where (u1, . . . ,uK ) denotes a set of co-inertia loadings (or
coefficients) and v is a synthetic center [24]. The synthetic
center v can be understood as a reference structure in the
sample space. Loading vectors (u1, . . . ,uK ) are the set of
coefficients that maximizes the objective function.
It has been shown that the vector v of problem (1) can

be found by solving the following eigenvalue problem [6],

X†Q†Xᵀ†Dv = λv,

where X† =
[
w1/2
1 X1,w1/2

2 X2, . . . ,w1/2
K XK

]
∈ R

n×∑
pk

is the merged table of K weighted datasets and Q† ∈
R

∑
pk×

∑
pk is the matrix that has Q1, . . . ,QK as its diag-

onal blocks. Given the reference vector v defined above,
the loading vectors uk , k = 1, . . . ,K are obtained by uk =
Xᵀ
kDv/‖Xᵀ

kDv‖Qk .
The second set of loadings orthogonal to the first set

can be obtained by repeating the above procedure to
the residual datasets calculated using a deflation method
[10, Chap7.1.2].
We propose a new mCIA approach that enforces spar-

sity on the set of loading vectors for all datasets. Consider
the following problem, which is another representation
of (1),

maximize
b,a1,...,aK

K∑

k=1

(
bᵀX̃kak

)2
, s.t aᵀk ak = 1, bᵀb = 1.

(2)

where X̃k = √wkD1/2XkQ
1/2
k ∈ R

n×pk , ak = Q1/2
k uk ∈

R
pk , and b = D1/2v ∈ R

n. The problem (2) is a multi-
convex problem, which is a convex problem with respect
to ak while others ak′ , k′ = 1, . . . , k − 1, k + 1, . . . ,K and
v are fixed. This enables us to apply an iterative algorithm
for finding a solution set (b,a1, . . . ,aK ).
First, for fixed ak , k = 1, . . . ,K , the problem (2)

becomes

maximize
b

K∑

k=1

(
bᵀX̃kak

)2
, s.t bᵀb = 1. (3)

where the objective function is convex with respect to b.
Indeed, above problem can be optimized via Eigenvalue
decomposition. Consider the Lagrangian formulation of
(3), L(b) = ∑K

k=1

(
bᵀX̃kak

)2 − λ(bᵀb − 1), where λ is
a Lagrangian multiplier. To obtain a solution, we take a
derivative of L with respect to b and solve the equation
by setting the derivative equal to zero as follows, ∂L

∂b =
2

∑K
k=1

(
bᵀX̃kak

)
X̃kak − 2λb = 2

(∑K
k=1Mkb − λb

)
=

0, where Mk = X̃kaka
ᵀ
k X̃

ᵀ
k ∈ n × n. The optimal b is the

first eigenvector of
∑K

k=1Mk .

As a next step for finding a solution of a1, we fix b and
ak , k = 2, . . . ,K . Then we have

maximize
a1

aᵀ1N1a1, s.t aᵀ1a1 = 1, (4)

where N1 = X̃ᵀ
1bbᵀX̃1. Notice that the problem (4) is the

eigenvalue decomposition problem. The first eigenvector
of N1 is the optimal a1 and the corresponding eigenvalue
is the maximized objective value at the optimal value of
a1. Rest of loading vectors a2, . . . ,aK can be estimated
by applying the same procedure as a1. From the set of
estimated vectors (b̂, â1, . . . , âK ), we recover a solution
of the original mCIA, (v̂, û1, . . . , ûK ), by premultiplying
D−1/2,Q−1/2

1 , . . . ,Q−1/2
K to (b̂, â1, . . . , âK ) respectively.

The subsequent sets of vectors
(
v(r),u(r)

1 , . . . ,u(r)
K

)
, r =

2, . . . , min(n, p1, . . . , pK ) which are orthogonal to all sets
of previously estimated vectors can be estimated by apply-
ing the same procedure to the residual data matrices
X(r)
1 , . . . ,X(r)

K with respect to the previously estimated
vectors

(
v(r′),u(r′)

1 , . . . ,u(r′)
K

)
, r′ = 1, . . . , r − 1 using a

deflation technique.

Sparse mCIA
For obtaining interpretable results, sparsity on coefficient
loading vectors (a1, . . . ,aK ) is desirable. To this end, we
will impose a sparsity constraint on the transformed load-
ing vectors a1, . . . ,aK . Note that we do not put a sparsity
constraint on the reference vector b in the sample space.
Sparsity on (a1, . . . ,aK ) can be transferred to the original
loading vectors (u1, . . . ,uK ) because the weight matrices
Q1, . . . ,QK are assumed to be diagonal matrices.
Given b and ak , k = 2, . . . ,K , we propose to add the l0-

sparsity constraint to (4) for obtaining a sparse estimate of
a1 as follows,

maximize
a1

aᵀ1N1a1, s.t aᵀ1a1 = 1, ‖a1‖0 ≤ s1, (5)

where N1 = X̃ᵀ
1bbᵀX̃1 and s1 is a pre-defined positive

integer value less than p1.
To tackle our problem (5), we will utilize the algorithm

recently proposed by [35]. They proposed the truncated
Rayleigh flow method (Rifle), which solves the maximiza-
tion problem of the l0-sparsity constrained generalized
Rayleigh quotient. It is well known that the optimization
problem of the generalized Rayleigh quotient with respect
to ω ∈ R

p,

f (ω) = ωᵀR1ω/ωᵀR2ω, (6)

where R1,R2 ∈ R
p×p are symmetric real-valued matrices,

is same as the generalized eigenvalue problem. Our objec-
tive criterion is a specific case of the generalized eigen-
value problem with R1 = N1 and R2 = Ip1 , which allows
us to use Rifle for solving our problem. The algorithm
is a simple iterative procedure consisting of the gradient
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descent algorithm and hard-thresholding steps. At each
iteration, themost biggest s1 elements of the solution from
the gradient descent step are left as nonzero and others are
forced to be zero. The same procedure is applied for esti-
mating remaining loading vectors a2, . . . ,aK . The com-
plete pseudo-algorithm of smCIA problem is summarized
in Algorithm 1.

Structured sparse mCIA
We propose another new model that incorporates prior
known network information among features. To this end,
we employ the Laplacian penalty on the sparse mCIA
model to obtain more biologically meaningful results.
Let G1 = {C1,E1,W 1} denote a weighted and undi-

rected graph of variables in X1, where C1 is the set
of vertices corresponding to the p1 features (or nodes),
E1 = {i ∼ j} is the set of edges that connect features i
and j, and W 1 contains the weights for all nodes. Given
G1 = {C1,E1,W 1}, the (i, j)-th element of the normalized
Laplacian matrix L1 of X1 is defined by

L1(i, j) =
⎧
⎨

⎩

1 − w1(i, j)/di, if i = j and di 	= 0,
−w1(i, j)/

√
didj, if i and j are adjacent,

0, otherwise,

where w1(i, j) is a weight of the edge e = (i ∼ j) and di is
a degree of the vertex i defined as

∑
i∼j w1(i, j). It is eas-

ily shown that p(u1;L1) = uᵀ1L1u1 becomes zero if the
prior known network information of L1 agrees with the
true network existing among X1.
For fixed b and ak , k = 2, . . . ,K , consider the following

optimization problem,

maximize
a1

aᵀ1N1a1 − λ1aᵀ1 L̃1a1

s.t aᵀ1a1 = 1, ‖a1‖0 ≤ s1,
(7)

where N1 = X̃ᵀ
1bbᵀX̃1, s1 is a pre-defined positive inte-

ger value less than p1, λ1 is a pre-defined network penalty
parameter, and L̃1 = Q−1/2

1 L1Q−1/2
1 is a transformed

Laplacian matrix that contains the network information
among variables of X1. To solve (7), the network penalty
needs to be minimized, which implies that the penalty
encourages the model to estimate a1 to be in agreement
with the incorporated network information contained in
the L̃1.
We again employ Rifle for solving (7). The objective

function of (7) become aᵀ1R1a1 where R1 = N1 − λ1L̃1.
Rifle requires R1 to be symmetric and N1 − λ1L̃1 satis-
fies the condition since both N1 and L̃1 are symmetric.
Like smCIA algorithm, the estimation of remaining load-
ing vectors a2, . . . ,aK is same as that of a1. The complete
pseudo-algorithm of ssmCIA problem is summarized in
Algorithm 1.

Input: sk ∈ R, ηk ∈ R, λk ∈ R, b ∈ R
n, X̃k ∈

R
pk×pk , L̃k ∈ R

pk×pk , k = 1, . . . ,K
a(0)
k ← the solution of the original mCIA

t ← 1 � iteration counting index
repeat

b(t) ∈ R
n ← the first eigenvector of

∑K
k=1Mk ,

whereMk = X̃ka(t−1)
k a(t−1)

k
ᵀ
X̃ᵀ
k ∈ R

n×n

for k=1,. . . ,K do
Nk ← X̃ᵀ

k b(t)b(t)ᵀX̃k
repeat

if sparse mCIA model then
ρ(t−1) ←
a(t−1)
k

ᵀ
Nka(t−1)/a(t−1)

k
ᵀ
a(t−1)
k

C ← Ipk +(ηk/ρ
(t−1)) ·(Nk−ρ(t−1)Ipk )

else
ρ(t−1) ←
a(t−1)
k

ᵀ
(Nk −λkL̃k)a(t−1)

k /a(t−1)
k

ᵀ
a(t−1)
k

C ←
Ipk+(ηk/ρ

(t−1))·(Nk−λkL̃k−ρ(t−1)Ipk )
end
a(t)
k ← Ca(t−1)

k /‖Ca(t−1)
k ‖2

Truncate a(t)
k to have the sk-largest absolute

valued elements remained to be nonzero,
make rest (pk − sk) elements to be zero
a(t)
k ← a(t)

k /‖a(t)
k ‖2

t ← t + 1
until Until objective values converges

end
until Until objective values converges
Algorithm 1: Pseudo algorithm for the smCIA and
ssmCIA

Choice of tuning parameters
In our methods, we have K and 2K parameters required
to be tuned for smCIA and ssmCIA, respectively. Denote
the set of tuning parameters as

λ =
{ {sk , k = 1, . . . ,K}, if smCIA,

{sk , λk , k = 1, . . . ,K}, if ssmCIA.

We employ a T-fold cross validation (CV) method to
select the best tuning parameter set. We set the range of
grid points for each parameters from several initial trials.
We divide each dataset into T subgroups and calculate the
CV objective value defined as follows,

CV (λ) = (T − 1)
∑K

k=1
∑T

t=1 cvt,k

T
∑K

k=1
∑T

t=1

(
cvt,k − ∑K

k=1
∑T

t=1 cvt,k
)2
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where cvt,k =
(
(b̂

−t
(λ))ᵀX̃t

kâ
−t
k (λ)

)2
, and â−t

k (λ) and

b̂
−t

(λ), t = 1, . . . ,T are estimated loading vectors and ref-
erence vectors from the training data X̃−t

k using a tuning
parameter set λ. This can be considered as a scaled version
of the CV objective value used in [40]. Unlike CCA whose
correlation values are always within a range [−1, 1], co-
inertia values are not limited to be within a certain range.
We overcome this problem by standardizing all co-inertia
values used for the cross validation.
There is another set of parameters in the algorithm,

the stepsize ηk of the gradient descent step. [35] suggests
that ηk < 1/maximum eigenvalue of R2, where R2 is the
matrix in the denominator of the Rayleigh function (6).
Since R2 is the identity matrix in smCIA and ssmCIA
problem, the maximum value of ηk is 1. We also tune this
value by exploring multiple values within (0, 1] and select
the best value using the cross validation.
Lastly, we use the nonsparse solution of (u1, . . . ,uk , v)

from mCIA as a starting point.

Simulation study
Synthetic data generation
We use a latent variable model to generate synthetic K
datasets related to each other. Let θ be a latent variable
such that θ ∼ N

(
0, σ 2) and it affects to K sets of ran-

dom variables xk = θaᵀk + ε
ᵀ
k ∈ R

pk , k = 1, . . . ,K , where
εk ∼ N(0pk ,�k) and ak is set to be same as the first
eigenvector of the matrix �k . Then following calculation

E(Xᵀ
k bb

ᵀXk) =
n∑

i
b2i E[

(
θiak + εk,i

) (
θiaᵀk + ε

ᵀ
k,i

)
]

= E
[
θ2aka

ᵀ
k + θakε

ᵀ
k,i + θεka

ᵀ
k + εkε

ᵀ
k

]

= σ 2aka
ᵀ
k + �k

= (
σ 2 + γ1

)
aka

ᵀ
k +

pk∑

j=2
γjejeᵀj

verifies that ak is same as e1, the first eigenvector of the
matrix E

(
Xᵀ
k bb

ᵀXk
)
with the corresponding eigenvalue

nσ 2+γ1, where (γj, ej), j = 1, . . . , pk are eigen-pairs of�k .
Following calculation is for cross-covariance matrices in

the model.

E(Xᵀ
l bb

ᵀXm) =
n∑

i
b2i E

[
(θial + εl,i)

(
θiaᵀm + ε

ᵀ
m,i

)]

= E
[
θ2alaᵀm + θalεᵀm + θεlaᵀm + εlε

ᵀ
m

]

= σ 2alaᵀm.

Our complete generative model simulates a concate-
nated dataset Xᵀ = [

Xᵀ
1 X

ᵀ
2 · · · Xᵀ

K
] ∈ R

∑
pk×n from the

normal distribution with the mean 0∑
pk and the variance

	T ∈ R

∑
pk×

∑
pk , where

	T =

⎡

⎢
⎢
⎢
⎣

σ 2a1aᵀ1 + �1 σ 2a1aᵀ2 · · · σ 2a1aᵀK
σ 2a2aᵀ2 σ 2a2aᵀ2 + �2 · · · σ 2a2aᵀK

...
...

...
...

σ 2a1aᵀK σ 2a2aᵀK · · · σ 2aKaᵀK + �K

⎤

⎥
⎥
⎥
⎦
.

Simulation design
We consider various simulation designs to compare the
performance of smCIA and ssmCIAwithmCIA.We com-
pare our methods with mCIA only since the objective
functions of other integrative methods such as gener-
alized CCA or methods that have the covariance-based
objective function are different from mCIA so that direct
comparison is inappropriate.
We assume that there exist multiple networks among

genes in each dataset, and the networks affect the rela-
tionship between datasets. We have 8 design scenarios by
varying three conditions:

• σ 2, the variance of the latent variable,
• nel, the number of elements in each network,
• nen, the number of effective networks among whole

networks.

We generate 100 Monte Carlo (MC) datasets. For each
MC dataset, we generate n = 200 observations of each
three random variables x1 ∈ R

300, x2 ∈ R
400, and x3 ∈

R
500. There are 5 networks among each of x1, x2, and

x3 and 10 or 20 elements nel in each network. Among
nel genes of each network, the first indexed gene is the
main gene that are connected to all other genes within
the network. This means that the first indexed gene of
each network in the simulation design with nel = 20 has
the higher weight compared to the one in the simula-
tion with nel = 10. For the number of effective networks
nen, we consider two cases. One case assumes that some
networks affect relationships among datasets by setting
nen = (3, 4, 5), while the other case assumes that all exist-
ing networks affect relationships, nen = (5, 5, 5). Also, we
consider two values for σ 2 = (1.2, 2.5), the higher σ 2 value
leads to the higher first eigenvalue of E

(
Xᵀ
k bb

ᵀXk
)
.

All true loadings make the network penalty zero. Thus
we expect that ssmCIA performs better compared to
smCIA since ssmCIA is encouraged to estimate the coef-
ficient loadings minimizing the network penalty. All sim-
ulation scenarios and corresponding true coefficient load-
ings are summarized in Table 1. In addition, we consider
incorporating incorrect network information in the first
scenario to show the robustness of ssmCIA. Results of
the additional simulation studies can be found in the
supplementary materials.
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Table 1 Simulation designs for each scenario and corresponding
true loading vectors. All true vectors are normalized to have
l2-norm 1

nen = (3, 4, 5)

nel = 10 nel = 20

σ 2 = 1.2

scenario 1 scenario 2

a1 = ((13, 027)ᵀ
⊗

110) a1 = ((13, 027)ᵀ
⊗

120)

a2 = ((14, 036)ᵀ
⊗

110) a2 = ((14, 036)ᵀ
⊗

120)

a3 = ((15, 045)ᵀ
⊗

110) a3 = ((15, 045)ᵀ
⊗

120)

σ 2 = 2.5

scenario 3 scenario 4

a1 = ((13, 027)ᵀ
⊗

110) a1 = ((13, 027)ᵀ
⊗

120)

a2 = ((14, 036)ᵀ
⊗

110) a2 = ((14, 036)ᵀ
⊗

120)

a3 = ((15, 045)ᵀ
⊗

110) a3 = ((15, 045)ᵀ
⊗

120)

nen = (5, 5, 5)

nel = 10 nel = 20

σ 2 = 1.2

scenario 5 scenario 6

a1 = ((15, 025)ᵀ
⊗

110) a1 = ((15, 025)ᵀ
⊗

120)

a2 = ((15, 035)ᵀ
⊗

110) a2 = ((15, 035)ᵀ
⊗

120)

a3 = ((15, 045)ᵀ
⊗

110) a3 = ((15, 045)ᵀ
⊗

120)

σ 2 = 2.5

scenario 7 scenario 8

a1 = ((15, 025)ᵀ
⊗

110) a1 = ((15, 025)ᵀ
⊗

120)

a2 = ((15, 035)ᵀ
⊗

110) a2 = ((15, 035)ᵀ
⊗

120)

a3 = ((15, 045)ᵀ
⊗

110) a3 = ((15, 045)ᵀ
⊗

120)

Performance measures
To compare the feature selection performance of our
methods in the simulations, we use sensitivity (SENS),
specificity (SPEC), and Matthew’s correlation coefficient
(MCC) defined as follows,

SENS = TP
TP + FN

, SPEC = TN
FP + TN

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TP, TN, FP, and FN are true positives, true neg-
atives, false positives, and false negatives, respectively.
Also, we calculate the angle between the estimated loading
vectors âk and the true loading vectors a∗

k , k = 1, 2, 3, to
compare the estimation performance between our meth-
ods andmCIA. Angle is defined as∠(âk) = âᵀk a

∗
k

‖âk‖2×‖a∗
k‖2 . If

two vectors are exactly same, the calculated angle between
those two vectors is 1.

Simulation results
Simulation results are summarized in Table 2 and Table 3.
First, the estimation performance of our proposed meth-
ods are superior compared to mCIA evidenced by cal-
culated angle values. An angle value is close to 1 if the
estimated loading vector is close to the true loading vec-
tor. The calculated angle values from our methods are

closer to 1 than those from mCIA. Second, ssmCIA per-
forms better than smCIA in feature selection. Note that, in
our simulation scenarios, the true loadings are designed to
follow the pre-defined network structure of the synthetic
data. Thus we expect to observe better performance from
ssmCIA than that from smCIA. In all scenarios, ssmCIA
performs better than smCIA in all aspects, SENS, SPEC,
MCC, and even for angle.
Also, we have several observations by comparing the

results of different scenarios, driven by the nature of our
generative model. First, the performance of themethods is
better in the scenarios 3(4, 7, 8) than the one in the scenar-
ios 1(2, 5, 6) (respectively). This observation agrees with
our expectation originated from the nature of our gener-
ative model. In particular, the bigger σ 2 makes the first
eigenvalue of the matrix Xᵀ

k bb
ᵀXk big, and this helps the

algorithm detect the eigenvector, which is the estimator of
the true loading vector.
Second, results of ssmCIA from the scenarios with

nen = (5, 5, 5) show a better performance than those from
the scenarios with nen = (3, 4, 5) and the results from the
scenarios with nel = 10 show a better performance than
those from the scenarios with nel = 20 in terms of sensi-
tivity. Again, this agrees with the nature of our generative
model. This is because the true loading vectors from the
scenarios with nen = (3, 4, 5) has bigger nonzero valued
elements compared to the scenarios with nen = (5, 5, 5),
and the coefficients of connected variables in the network
are bigger in the scenarios with nel = 10 than those in the
scenarios with nel = 20.

Data analysis
NCI60 dataset
The NCI60 dataset includes a panel of 60 diverse human
cancer cell lines used by the Developmental Therapeu-
tics Program (DTP) of the U.S. National Cancer Institute
(NCI) to screen over 100,000 chemical compounds and
natural products. It consists of 9 cancer types; leukemia,
melanomas, ovarian, renal, breast, prostate, colon, lung,
and CNS origin. There are various -omics datasets gen-
erated from the cell line panel including gene expres-
sion datasets from various platforms, protein abundance
datasets, and methylation datasets.
The goal of the analysis is to identify a subset of

biomarker genes that contributes to the explanation
of common relationships among multiple datasets. We
downloaded three datasets generated using NCI-60 cell
lines from CellMiner [32], two of which were gene
expression datasets and the other was protein abundance
dataset. Two gene expression datasets were obtained from
different technologies, one was the Affymetrix HG-U133
chips [33] and the other was the Agilent Whole Human
Genome Oligo Microarray [23]. The third dataset was
the proteomics dataset using high-density reverse-phase
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lysate microarrays [29]. Since one melanoma cell line was
not available in the Affymetrix data, We used 59 cell line
data that are common to all three datasets. To reduce
the computational burden, we selected top 5% of genes
with high variance, which resulted in 491 genes in the
Affymetrix data, 488 genes in the Agilent data, and 94
proteins in proteomics data. Pathway graph information
was obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database [18].

Analysis results
Table 4 shows the number of nonzero elements in each
estimated loading and the percentage of explained data
variability by each method. Our sparse methods show
comparable or better performance in terms of explained
variability with much smaller number of nonzero ele-
ments in the estimated loadings. Percentage of explained
variability is calculated as a ratio of pseudo eigenvalues
corresponding to the estimated loading vectors to the sum
of total eigenvalues of the datasets. We applied the esti-
mated loading vectors to the test dataset and the whole
dataset to calculate the percentage of explained variabil-
ity. When we apply the estimated loading to the whole
dataset, our sparse methods explain almost the same
amount of variability as mCIA with much fewer selected
genes. When we apply the estimated loadings to the test
dataset, both sparse methods explain comparable amount
of variability as mCIA explains using the first estimated
loading vector. Moreover, the first two loading vectors of
ssmCIA explain more variability than mCIA with much
more sparsely estimated loadings.
Four plots generated using the first two estimated load-

ing vectors from each method are shown in Fig. 1. Plots
in the first column are 3-D figures where each point rep-
resents one cell line sample. The coordinate of each point
consists of scores calculated using the first estimated load-
ing vectors of three datasets. Plots from the second to
fourth columns are generated using the first two estimated
loading vectors on the variable spaces of each data.
Figure 1 proves that sparse estimates from our pro-

posed methods reveal biologically meaningful results that

are consistent with previous studies [7, 24]. In the 3-D
plot, leukemia cells are well separated from other cells.
And we confirmed that smCIA and ssmCIA select cer-
tain genes related to leukemia. For example, SPARC is also
high weight on both axes of Affymetrix plot from mCIA,
smCIA, and ssmCIA analysis. Recent study showed that
this gene promotes the growth of leukemic cell [1].
EPCAM is an another example, the gene having a high
negative weight on the second axis in the plot of mCIA
and ssmCIA in the Affymetrix dataset. This gene is known
to be frequently over-expressed in patients with acute
myeloid leukemia (AML) [42]. The gene EBF1, another
example, has a high weight on the second axis in plot
of ssmCIA in the Agilent data, which can be supported
by recent studies discussing the relationship between this
gene and leukemia [30]. Also, above observations implies
that the second axis of the ssmCIA analysis may con-
tribute to cluster the dataset into leukemia cells and non-
leukemia cells. From the comparison between the results
of smCIA and ssmCIA, we notice that the ssmCIA results
is more consistent with the result of mCIA than the results
of smCIA, in terms of number of common genes and
estimated coefficients of those common genes. Selected
genes from ssmCIA has more common genes with mCIA
than smCIA. We compared top 30 genes in each datasets
and smCIA selected 40 common genes with mCIA while
ssmCIA selected 56 genes in common with mCIA. Also,
ssmCIA results shows consistent direction for estimated
coefficients of genes that are common with the results of
mCIA, while some of genes from smCIA shows different
directions compared to mCIA results. From this obser-
vation, we confirm that incorporation of network infor-
mation guides the model to achieve the more biologically
meaningful estimate results.
In addition, we have conducted a pathway enrichment

analysis using ToppGene Suite [5] to assess the set of fea-
tures selected by our methods. Note that we compare the
result using the first estimated loading vectors only. There
are numerous gene ontology terms (GO), pathways, and
diseases that genes with nonzero values in the estimated
loading vectors are enriched. For example, the GO term,

Table 4 For each method, the first two columns show the number of nonzero elements in the first two estimated coefficient loadings
of three datasets, the Affymetrix, the Agilent, and the protein dataset respectively. Next four columns contain pseudo-eigenvalues
calculated using the estimated coefficient loadings from the training dataset. Last four columns include proportions of
pseudo-eigenvalues to the sum of total eigenvalues for each dataset

# of nonzeros
Pseudo Eigenvalues % of variability explained

test dataset whole dataset test dataset whole dataset

1st 2nd 1st 1st+2nd 1st 1st+2nd 1st 1st+2nd 1st 1st+2nd

mCIA (491, 488, 94) (491, 488, 94) 36065.92 33447.03 282991.70 218372.50 0.088 0.169 0.129 0.229

smCIA (250, 30, 20) (100, 80, 15) 31161.89 21283.77 208966.30 157045.80 0.076 0.127 0.095 0.167

ssmCIA (300, 80, 15) (400, 15, 30) 34611.11 36793.08 239050.80 239050.80 0.084 0.173 0.109 0.218
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Fig. 1 From the top to bottom, each row shows the results from mCIA, smCIA, and ssmCIA method respectively. From left to right, each column
represents the sample space in R

n , the gene space of the Affymetrix dataset in R
491, the gene space of the Agilent dataset in R

488, and the gene
space of the proteomics dataset in R

94. For three panels in the first column, the estimates of the first loading vectors are used. Each different colors
represent different cell lines, breast (BR), melanoma (ME), colon (CO), ovarian (OV), renal (RE), lung (LC), central nervous system (CNS, glioblastoma),
prostate (PR) cancers and leukemia (LE). For the remaining plots, the estimates of the first two loading vectors are used. Also, colored and labeled
points in the plots are top 20 genes that are most distant from the origin, which are more significant compared to other genes. Complete lists of top
20 genes for each panel can be found in the supplementary materials

regulation of cell proliferation, is revealed to be highly
enriched in our results (GO:0042127, Bonferroni adjusted
p-values are 5.77e−16 in the result of smCIA, 7.52e−19

in the result of ssmCIA). Leukemia-cell proliferation is
a topic of interest to researchers [2, 28]. Recently, [11]
have reviewed the molecular mechanism related the cell
proliferation in leukemia. Also, we confirm that ssmCIA
enjoys the benefit of incorporating the network infor-
mation from the pathway enrichment results. Compared
to the results from smCIA, the enrichment results of
ssmCIA often shows much smaller Bonferroni adjusted p-
values, above GO:0042127 is one of examples. Also, we
could obtain more enriched results from ssmCIA than
those from smCIA. There are 673 enriched GO terms,
pathways, human phenotypes, and diseases in the results
of ssmCIA, while 520 enriched results are obtained from

smCIA. These results indicate that ssmCIA is more sensi-
tive to select relevant features by incorporating structural
information so that more biologically meaningful genes
can be identified.

Discussion
For integrative analysis of K data sets, the number of
tuning parameters is K and 2K for smCIA and ssm-
CIA respectively. As such, the computational costs of
the methods can become prohibitively expensive for inte-
grative analysis of a large number of -omics datasets
using the proposed cross validation strategy for param-
eter tuning. One potential solution is to use the same
pair of tuning parameter values for all K data sets.
It is of potential interest to tackle this limitation in
future research.
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Conclusion
In this article, we propose smCIA method that imposes
a sparsity penalty on mCIA loading vectors and ssmCIA
that employs a network-based penalty to incorporate bio-
logical information represented by a graph. Our numerical
studies demonstrate that both methods are useful for
integrative analysis of multiple high-dimensional datasets.
Particularly, they yield sparse estimates of the loading vec-
tors while explaining a similar amount of variance of the
data compared to themCIA. In the real data analysis, ssm-
CIA, with incorporation of biological information, is able
to select important pathways contributing to correspon-
dence among the three datasets, and hence yields more
interpretable results.
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