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Abstract

Background: Nanopore sequencing is a rapidly developing third-generation sequencing technology, which can
generate long nucleotide reads of molecules within a portable device in real-time. Through detecting the change of
ion currency signals during a DNA/RNA fragment’s pass through a nanopore, genotypes are determined. Currently,
the accuracy of nanopore basecalling has a higher error rate than the basecalling of short-read sequencing. Through
utilizing deep neural networks, the-state-of-the art nanopore basecallers achieve basecalling accuracy in a range from
85% to 95%.

Result: In this work, we proposed a novel basecalling approach from a perspective of instance segmentation.
Different from previous approaches of doing typical sequence labeling, we formulated the basecalling problem as a
multi-label segmentation task. Meanwhile, we proposed a refined U-net model which we call UR-net that can model
sequential dependencies for a one-dimensional segmentation task. The experiment results show that the proposed
basecaller URnano achieves competitive results on the in-species data, compared to the recently proposed
CTC-featured basecallers.

Conclusion: Our results show that formulating the basecalling problem as a one-dimensional segmentation task is a
promising approach, which does basecalling and segmentation jointly.
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Background
Nanopore sequencing, a third-generation sequencing
technique, has achieved impressive improvements in the
past several years [1, 2]. A nanopore sequencer mea-
sures currency changes during the transit of a DNA
or an RNA molecule through a nanoscopic pore and
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can be equipped in a portable size. For example, Min-
ION is such a commercially available device produced by
Oxford Nanopore Technologies (ONT). One key merit of
nanopore sequencing is its ability to generate long reads
on the order of tens of thousands of nucleotides. Besides
the sequencing application, it is actively used in more and
more fields, such as microbiology and agriculture.

Basecalling is usually the initial step to analyze nanopore
sequencing signals. A basecaller translates raw signals
(referred to as squiggle) into nucleotide sequences and
feeds the nucleotide sequences to downstream analy-
sis. It is not a trivial task, as the currency signals are
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highly complex and have long dependencies. ONT pro-
vides established packages, such as Scrappie and Guppy.
Currently, nanopore basecalling still has a higher error
rate when compared with short-read sequencing. Its error
rate ranges from 5% to 15%, while the Illumina Hiseq
platform has an error rate of around 0.1% (a majority of
reads have Q-score more than 30). More and more work
is now focusing on solving challenges to further improve
basecalling accuracy.

Early-generation basecallers require first splitting raw
signals into event segments and predict k-mer (includ-
ing blanks) for each event. Sequential labeling models,
such as hidden Markov model (HMM) [3] and recur-
rent neural network (RNN) [4] are used for modeling
label dependencies and predicting nucleotide labels. It is
widely considered that a two-stage pipeline usually brings
about an error propagation issue that wrong segments
affect the accuracy of basecalling. Recently, end-to-end
deep learning models are used to avoid pre-segmentation
of raw signals, which enables basecallers to directly pro-
cess raw signals. For example, BasecRAWller [5] puts the
event segmentation step in a later stage after initial feature
extraction by an RNN. Chiron [6] and recent ONT Guppy
use a Connectionist Temporal Classification (CTC) mod-
ule to avoid explicit segmentation for basecalling from
raw signals. With CTC, a variant length base sequence
can be generated for a fixed-length signal window through
output-space searching.

On the other hand, even though those basecallers
can translate raw signals to bases directly, segmen-
tation and explicit correspondence between squiggles
and nucleotide bases are also informative. It can pro-
vide information for detecting signal patterns of target

events, such as DNA modifications [7]. In a re-squiggle
algorithm, basecalling and event detection are also
required.

In this paper, we do basecalling from the point of view
of instance segmentation and develop a new basecaller
named URnano. Distinguished from previous work that
treats basecalling as a sequence labeling task, we formal-
ize it as a multi-label segmentation task that splits raw
signals and assigns corresponding labels. Meanwhile, we
avoid making the assumption that each segment is associ-
ated with a k-mer (k ≥ 2) and directly assign nucleotide
masks for each currency sampling point. On the model-
level, based on the basic U-net model [8], we propose an
enhanced model called UR-net that is capable of model-
ing sequential dependencies for a one-dimensional (1D)
segmentation task. Our basecaller is also an end-to-end
model that can directly process raw signals. Our exper-
iment results show that the proposed URnano achieves
competitive results when compared with current base-
callers using CTC decoding.

Methods
The overall pipeline of URnano is described in Fig. 1.
URnano contains two major components: 1© UR-net for
signal segmentation and basecalling. 2© Post-processing.
For streaming signals generated by a nanopore sequencer,
URnano scans signals in a fixed window length L (e.g.,
L = 300) and slides consequently with a step length s
(e.g., s = 290). Given signal input X = (x1, x2, ..., xi, ..., xL),
UR-net predicts segment label masks yi for each xi.
The output of UR-net Y = (y1, y2, ..., yi, ..., yL) has
exactly the same length as the input X and yi ∈
{A1, A2, C1, C2, G1, G2, T1, T2}. Here, {A1, C1, G1, T1} and

Fig. 1 Overall pipeline of URnano basecaller. Block 1© is the UR-net deep neural network. Block 2© is the post-processing part that transforms the
UR-net’s output to final basecalls
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{A2, C2, G2, T2} are alias label names, which is designed to
handle homopolymer repeats (described in “Homopoly-
mer repeats processing” section). After label mask Y is
generated, we conduct a post-processing step that trans-
forms Y to Y ′ ∈ {A, C, G, T}N , where N is the length of the
final basecall. The post-processing contains two simple
steps. First, it collapses consecutive identical label masks
as one label. Second, the collapsed labels in alias names-
pace are transformed back to bases in {A, C, G, T}. Y ′ is
the final basecalls of the URnano.

Besides predicting basecalls, URnano also generates
a signal segment for each base. In the previous work
[4, 5], signal segments are assumed to be associated with
k-mers of a fixed k (e.g., k=2,4,5). Every base is read as a
part of k consecutive events. In URnano, we avoid making
the k-mer assumption and directly assign label masks for
signals.

UR-net: enhanced u-net model for 1D sequence
segmentation
The key component of the URnano is UR-net. Its net-
work structure is profiled in Fig. 1 (more details in
Additional file 1: Figure S1). In general, UR-net is based
on the U-net model [8] and is enhanced to model
sequential dependencies. “R" represents a refinement of
U-net and the integration of RNN modules. The origi-
nal U-net is designed for image data in two dimensional
(2D) and has achieved the-state-of-the-art performances
in many image segmentation tasks. Although the model
can be directly applied for 1D data, the 1D segmenta-
tion task has its own characteristics that are distinguished
from the 2D image segmentation task. In a sequence
segmentation task, one segment may not only relate to
its adjacent segments but also depends on non-adjacent
segments that are several distance away. Such dependen-
cies were not considered in the original U-net model,
which mainly focuses on detecting object regions and
boundaries.

The UR-net has a similar U-shape structure as U-net, in
which left-U side encodes inputs X through convolution
(CONV) with batch normalization (BN) following with
rectified linear unit (ReLU) and max pooling, and right-
U side decodes through up-sampling or de-convolution.
We make two major enhancements in the UR-net model,
which are highlighted in green shown in Fig. 1 and
described as follows:

• For the encoding part (left-U), we add an RNN layer
right after each CONV-BN-ReLU block to model
sequential dependencies of hidden variables in
different hierarchical levels. Those RNN layers are
also concatenated with UP-Sample layer in the
right-U decoding part.

• We add three bi-directional RNN layers as final layers.

Those changes are motivated to enhance the sequential
modeling ability of the U-net.

Model training
Given D = {(Xi, Yi)|i = 1, ..., n}, we train UR-net with
an interpolated loss function that combines dice loss (DL)
and categorical entropy loss (CE). Note that the task loss
of edit distance can not be directly optimized. For each
segment sample i, DLi and CEi are defined as follows:

DLi = 2
∑L

t=1
∑8

j=1 pt,j × gt,j
∑L

t=1
∑8

j=1 gt,j + ∑L
t=1

∑8
j=1 pt,j

(1)

CEi =
L∑

t=1

8∑

j=1
gt,j × log(pt,j) (2)

where t = {1, ..., L} represents the t-th time step in the
sequence. For each time step t, we do one-hot encoding
for prediction label pt and gold label gt in the 8-label space
of {A1, A2, T1, T2, G1, G2, C1, C2}. pt,j is the softmax value
for j-th label in time step t. gt,j ∈ {0, 1} indicates the gold
label in time step t.

We interpolate the dice loss and the categorical entropy
loss with weight α and β .

loss = α

n∑

i=1
CEi + β

n∑

i=1
DLi (3)

By default, α = β = 1 . We use Adam [9] to optimize
the above loss function.

Homopolymer repeats processing
In genomes, homopolymer repeats (e.g. AAA and TTTT)
commonly exist. Figure 2a demonstrates a histogram
of homopolymer repeats on randomly sampled 200 E.
coli reads and 200 λ-phage reads. From the figure,
we can observe that majority homopolymer repeats
have lengths less than 5 base-pairs. Figure 2b-d are
homopolymer repeats on reference genomes. For the
original U-net model, adjacent bases in a homoploymer
can not be distinguished and are merged as one base.
This brings about deletion errors if models are directly
trained on this data. To solve this problem, we use an
alias trick to differentiate adjacent identical labels. For
example, homopolymer repeat “AAAAA" in the train-
ing data is converted to “A1A2A1A2A1" for training
UR-net model. In the inference stage, those new labels
are transformed into the original representation through
post-processing.

Merge basecalls in sliding window into a whole read
In the training phase, a read is split into the non-
overlapping windows of fixed length. In the testing phase,
for calculating read accuracy, read signals are scanned
with overlapping windows. The sliding window takes a
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Fig. 2 a is the histogram of homopolymer repeats from 400 E. coli and λ-phage reads. b, c and d are histograms of homopolymer repeats for real
E.coli, λ-phage and Human Chr11 reference genome. Here, the single nucleotide is also treated as a “homopolymer" for reference

step s (s < L). For each time step t, xt and xt−1 have
L − s overlaps on the signal content. Thus, for a read sig-
nal of length N we have �N−L

s � windows and each overlap
with its neighbors by L − s. The basecalls for each input
at neighboring positions are merged in pair-wise fashion
consecutively.

To merge the basecalls of sliding windows, we have two
different strategies in general. One is on the nucleotide
level after the final basecall is generated. The other is on
the segment label level before the final basecalls. Here,
we use the latter strategy with ‘soft merging’. Shown in
Fig. 3, the soft merging combines consecutive predictions
at the segment label level, where we use probabilities of
each segment label predicted by the deep learning model.
We apply weight interpolation for each overlapped posi-
tion and use the label mask with the maximum score
as the prediction label for the overlapped positions. The
basecalls are made after merging all sliding windows of a
read.

Experiment settings
Data: we compared URnano with the latest version of
related basecallers: Chiron (v0.5.1) and ONT Guppy
(v3.2.2). Both Chiron and Guppy use CTC decoding for
basecalling. For comparing model performances, we used
a publicly accessible curated dataset provided by Teng et
al. [6]. The dataset contains per-base nucleotide labels for
currency segments. In other words, we know the signal
segment for each nucleotide. The training set contains a
mixture of randomly selected 2000 E. coli reads and 2000
λ-phage reads generated using nanopore’s 1D protocol on
R9.4 flowcells. The test set contains the same amount of
reads from E. coli and λ-phage. To assess read accuracy
and assembly performance across species, we use 1000
randomly selected reads from Chromosome 11 (Chr11) of
human benchmark sample NA12878 (1D protocol on R9.4
flowcells).

The raw signals are normalized using median shift
and median absolute deviation scale parameters
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Fig. 3 An example on merging basecalls of overlapped slide window using soft merging

Norm_signal = Raw_signal−Shift
Scale . The Norm_signal usually

has values in a range of [ −2, 2]. For training deep learning
models, signals of a read are split into non-overlapping
window segments of a fixed length L (L = 300 by default).
For those samples containing Norm_signal larger than
10, we filtered them out for training. In total, we have
830,796 segments of 300-length used for training.

Evaluation metric: we evaluated a basecaller’s perfor-
mance according to the following metrics:

• Normalized edit distance (NED) between gold
nucleotides and basecalls in non-overlapping
windows. It is used to evaluate different deep learning
models.

• Read accuracy (RA) evaluates the difference between
a whole read and its reference

RA = M
M + U + I + D

.

Read identity rate (RI)

RI = M
number of bases in reference

,

where M is the number of bases identical to the
reference. U, I and D are the numbers of mismatches,
inserts, and deletions, respectively, according to the
reference read. Following the evaluation scheme in
Chiron, we used GraphMap (v0.5.2) [10] to align

basecalls of a read to the reference genome. The error
rates of the aligned reads are calculated using the
publicly available Japsa tool (v1.9-3c).

• Assembly identity (AI) and relative length (RL). We
assembled genomes using the results of each
basecaller. Assembly identity and relative length are
calculated by taking the mean of individual accuracy
rates and relative lengths for each shredded contig,
respectively. The details of the assembling process are
described in “Read assembly results” section.

AI = 1
N

N∑

i=1
RAi , RL = 1

N

N∑

i=1

Lpredi

Lrefi
,

where N is the total number of aligned parts, Lpredi is
the length of the assembled ith basecall and Lref is the
length of the reference genome.

Model and basecaller settings: The URnano is imple-
mented using Keras (v2.2.4) with Tensorflow backend
(v1.8.0). We trained three basecallers on the same dataset
with input sequence length of 300. The Chiron decodes
with its default beam size of 50. Guppy is trained with
ONT Taiyaki (v4.1.0) with default setting.
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Table 1 NED of URnano with different network architectures for
the non-overlapping window in the test set

Network structure Mean Std

U-net 0.3528 0.2448

3GRU 0.2808 0.1631

U-net+3GRU 0.1800 0.1296

UR-net 0.1665 0.1329

Results
Basecalling results on non-overlapping segments
We first investigated different deep network architectures
in the URnano framework using normalized edit distance
(NED). In total, 847,201 samples of 300-length window
are evaluated. In general, the lower the NED is, the more
accurate a basecaller is.

Table 1 shows NED of using different neural network
architectures. The original U-net performs the worst of
0.3528, while UR-net achieves the best of 0.1665. As the
sequential dependencies are not modeled in the U-net,
these results indicate the importance of sequential infor-
mation in the 1D segmentation task for basecalling.

To take into account the sequential dependencies, we
initially added 3 layers of bi-directional gated recurrent
units (GRU) for the output of the U-net. This gives about
0.1728 absolute reduction on the NED compared with
the U-net. Meanwhile, we observed that the U-net+3GRU
performs significantly better than only using 3GRU (0.1
absolute NED reduction). In addition, we incorporated
GRU layers in different hierarchical levels of convolutional
layers. It gives a further 7.5% relative reduction of NED,
when comparing URnano with U-net+3GRU.

Basecalling results on read accuracy
We evaluated read accuracy for the whole reads on the
test set. The results are summarized in Table 2. We first
investigated in-species evaluation where the training data
contains data of the same species as the test set. We

tested on 2000 E. coli and 2000 λ-phage reads, separately.
For E.coli, Guppy_taiyaki achieves the best RA score of
0.8636, while URnano has the highest RI of 0.9010. They
all perform significantly better than Chiron. For λ-phage,
URnano performs better on both RA and RI than the other
two basecallers. But the performance gap in RA between
URnano and Guppy_taiyaki is not large. For cross-species
evaluation, we evaluated on human data by doing base-
calling on 1000 randomly selected reads from Chr11.
Compared with the evaluation of in-species, the perfor-
mances of all three basecallers are decreased. From Fig. 2,
an obvious difference of GC-content between E. coli/λ-
phage and human can be observed. Such a difference
between training and test brings about a performance
drop for deep-learning-based basecallers. Guppy_taiyaki
performs best among all three basecallers on the human
data, which is around 0.015 higher on RA and 0.011 higher
on RI than URnano. In all three species, URnano achieves
the lowest mismatch rate.

Read assembly results
We also evaluated the quality of the assembled genomes
using the reads generated by each basecaller on the test
set. We make use of the same evaluation pipeline of Teng
et al. [6]. Assembly experiments consist of three steps:
read mapping, contig generation, and polishing. Read
mapping uses minimap2 (v2.17-r943-dirty) [11], which is
designed for mapping each long-read with high-error rate
in a pairwise manner. After that, miniasm (v0.3-r179) is
applied to generate long contigs based on the pairwise
read alignment information generated in the previous
read mapping phase. Finally, Racon (v1.4.6) [10] is used
to polish the contigs by removing the read errors itera-
tively. The polishing step consists of mapping the initial
long-reads to the contigs and takes the consensus of each
mapped read to get higher quality contigs. Polishing is
repeated 10 times.

In evaluating the quality of output contigs, each contig
is shredded into 10k-base components and aligned to the

Table 2 Results of read accuracy on the test set

Species basecaller Deletion Insertion Mismatch Read Identity unaligned Read Accuracy

E. coli

Chiron 0.0692 0.0465 0.0600 0.8709 7/2000 0.8243

URnano 0.0584 0.0533 0.0407 0.9010 8/2000 0.8476

Guppy_taiyaki 0.0585 0.0343 0.0436 0.8978 7/2000 0.8636

λ-phage

Chiron 0.0799 0.0467 0.0641 0.8559 9/2000 0.8093

URnano 0.0662 0.0455 0.0363 0.8975 10/2000 0.852

Guppy_taiyaki 0.0655 0.0397 0.0481 0.8864 6/2000 0.8467

Human

Chiron 0.0983 0.0687 0.0866 0.8151 385/1000 0.7464

URnano 0.0957 0.0788 0.0727 0.8316 375/1000 0.7528

Guppy_taiyaki 0.0822 0.0748 0.0756 0.8422 352/1000 0.7674
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reference genome. We evaluated the identity rate of each
10k-base component and report the mean of all the 10k-
base components as the final identity rate of the assembly.
The identity rate is the number of matching bases divided
by the total length of the aligned part of the reference. This
identity is also referred to as the ‘Blast identity’ [12]. If the
total length of the aligned parts is smaller than half of the
read length, we assume it to be unaligned and the identity
rate for that contig is 0. Relative length is also calculated
in a similar manner.

Table 3 gives the assembly results on E. coli, λ-phage and
Human test sets (Polished assembly result of each round
can be found in Additional file 2: Table S1). Note that
different than the conventional approach which evaluates
assembly results on relatively higher depth data, our test
data is shallow, especially for human data. The read
assembly here is mainly used as a side evaluation met-
ric for basecalling. The reference genomes used for each
species data are on different scales. λ-phage has the small-
est size of 52k bp, while Chr11 has the largest size of 135M
bp. E. coli has a number of around 4.6M bp in the middle.
Under the circumstance of using a few reads for assem-
bly, species with a smaller genome size tends to have more
overlapped reads. On λ-phage data, URnano performs the
best on both AI and RL.

In the in-species evaluation, we observed a correlation
between the assembly identity and the read accuracy, that
a basecaller with a higher RA tends to have a higher AI
(the Pearson’s correlation coefficient between AI and RA
is 0.83). In the cross-species evaluation, the Pearson’s cor-
relation reduces to 0.76. Guppy_taiyaki achieves the best
AI with the highest RA of 93.28% on the human data.
For the relative length (the closer RL to 100% the better),
URnano performs the best on both E.coli and λ-phage
data, but has a longer relative length on the cross-species
data. It is consistent with the result shown in Table 2 that
URnano has a higher insertion rate on the human data.

Table 3 Assembly results on the test set

Dataset basecaller Assembly
Identity (%)

Relative
Length (%)

E. coli

Chiron 97.1995 99.0589

URnano 97.4994 99.8868

Guppy_taiyaki 98.272 99.3644

λ-phage

Chiron 90.8901 99.8352

URnano 99.6525 99.9211

Guppy_taiyaki 99.1734 99.3223

Human

Chiron 92.0374 99.9770

URnano 91.2176 101.553

Guppy_taiyaki 93.2813 99.7087

The mean values of 10-round polished results are reported

Segmentation results
In this section, we investigated event segments for each
predicted nucleotide. Figure 4 demonstrates an example
of basecalling and segmentation by URnano. For URnano,
the signal segment for each base can be directly derived
through label masks. As in the post-process of URnano,
consecutive identical masks are merged as one base, a
region of consecutive identical masks is just an event
segment.

For CTC-based basecaller, segmentation is not explicitly
conducted or learned in the model. Although heuris-
tic approaches can be used to derive segments based
on intermediate logit output, it is not straightforward
and accurate to determine per-base segmentation using
CTC basercallers. Figure 4 demonstrates the segmenta-
tion results generated by URnano for a randomly selected
input. From the gold segmentation, we can observe the
length of signals for each nucleotide is not evenly dis-
tributed across time. This is mainly due to the fact that,
the speed at which a molecule passes through a pore
changes over time. The speed issue makes the segmenta-
tion a non-trivial task. Traditional statistical approaches
without considering the speed changes may not work.
Here, the proposed URnano is designed to learn segmen-
tation from the data, which implicitly considers the speed
changes embedded in signals. For example, events of ‘T’s
around 150 time-step tend to have short lengths than
that in 200 time-step. The URnano can distinguish such
speed changes as shown in the third row of the figure. For
the beginning part of the signal in this example, URnano
makes the correct base predictions, but the segments of
‘TT’ shift a bit compared to the gold standard.

Speed comparison
We measured the speed of the basecallers by basepairs-
per-second metric. To calculate the speed, we divided the
total length of basecall by the total time. URnano achieves
16,271.15 bp/s on average, which is around 1.77x faster
than Chiron with 9,194.78 bp/s on average using Nvidia
Tesla V100 GPU under single thread setting. We used the
Chiron’s script to generate basecalling speed for URnano
and Chiron. Note that the previous version of Chiron
(v0.3) is slow with using large overlapping of consecu-
tive sequences (90%), while the latest version (v0.5.1) uses
smaller overlap for speedup at the cost of certain read
accuracy. Both URnano and Chiron were not optimized
for speed as Guppy, which are 2-3 orders of magnitude
slower than Guppy with a reported speed of ∼1,500,000
bp/s [12].

Discussion
We analyzed the three basecallers and enumerated their
key modules including network input, network structure,
network output and post-process of each one, shown in
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Fig. 4 A segmentation example of the URnano basecall for the sequence of “TACTTACTCAACAATGCGTTAAATTTCGACTGTTTA”. A dotted vertical
line indicates the start position of a nucleotide segment

Table 4. For neural network architectures, the CNN layer
and RNN layer are commonly used. CNN is generally
used to extract features from raw signals and prepares
input for RNN. RNN module is used to learn dependen-
cies among hidden units. With URnano, our experiment
also demonstrates the usefulness of using RNN for 1D
segment mask prediction. Besides using RNN in final lay-
ers, it also demonstrates the combination of CNN and
RNN layers in the encoding stage can further improve
the basecalling performance. Chiron and Guppy use CTC
decoding to generate basecalls of variant length through
beam-searching in the hidden unit space. The output of
Chiron includes blank labels, which are collapsed in the
CTC decoding stage.

In a real physical process, the speed of a molecule pass-
ing through a nanopore changes over time. This can be

Table 4 A brief summary of related deep-learning-based
basecallers

Module Chiron Guppy URnano

Input Raw Raw Raw

Networks CNN+RNN+CTC RGRGR+CTC UR-net

Output bases bases base masks

Post-process N/A N/A label transform

observed in the Fig. 4. A k-mer assumption using fixed
k may not hold over time. Although incorporating blank
labels can deal with the low-speed case, the high-speed
one that involves more bases for the same signal length
could exceed the limit of the fixed k. For Chiron and
URnano, the fixed k-mer assumption is avoided. Chiron
uses CTC decoding, while URnano uses label masks that
are smaller units than 1-mer.

To curate the data for training a basecaller, a re-
squiggle algorithm is usually applied. In a re-squiggle
algorithm, raw signal and associated basecalls are refined
through alignment to a reference. After re-squiggling, a
new assignment from squiggle to a reference sequence
is defined. In the re-squiggle algorithm [7], event detec-
tion and sequence to signal assignment are performed
separately. We think the proposed URnano can be used
as the basecaller in a re-squiggle algorithm, as it can do
basecalling, event detection and sequence to signal assign-
ment jointly in an end-to-end manner. URnano can also
be extended to detect DNA methylation, in which event
segments are usually required.

In this paper, we only evaluated on a small curated
data for fair comparisons between different basecallers.
URnano works better on in-species evaluation. To fur-
ther improve URnano, we intend to train it on larger data
covering more species.



Zhang et al. BMC Bioinformatics 2020, 21(Suppl 3):136 Page 9 of 9

Conclusion
In this paper, we proposed a novel basecalling approach
from the perspective of instance segmentation. We for-
malized basecalling as a multi-label segmentation task and
developed an end-to-end solution that can perform base-
calling from raw signals and generate signal segments for
basecalls at the same time. In addition, we proposed an
enhanced deep neural network architecture called UR-
net for 1D sequence data. The proposed URnano out-
performs Chiron in both in-species and cross-species
evaluation on read accuracy, and achieves competitive
assembly results in the in-species evaluation. Although
the performance of URnano (read accuracy and basecall-
ing speed) still has a distance to the-state-of-the-art ONT
Guppy, it provides an alternative basecalling approach
that can generate per-base segmentation information
jointly.
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https://doi.org/10.1186/s12859-020-3459-0.
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10-round polishing process.
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