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Abstract

Background: Cardiotoxicity, characterized by severe cardiac dysfunction, is a major problem in patients treated with
different classes of anticancer drugs. Development of predictable human-based models and assays for drug screening
are crucial for preventing potential drug-induced adverse effects. Current animal in vivo models and cell lines are not
always adequate to represent human biology. Alternatively, human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs) show great potential for disease modelling and drug-induced toxicity screenings. Fully
automated high-throughput screening of drug toxicity on hiPSC-CMs by fluorescence image analysis is, however, very
challenging, due to clustered cell growth patterns and strong intracellular and intercellular variation in the expression
of fluorescent markers.

Results: In this paper, we report on the development of a fully automated image analysis system for quantification of
cardiotoxic phenotypes from hiPSC-CMs that are treated with various concentrations of anticancer drugs doxorubicin
or crizotinib. This high-throughput system relies on single-cell segmentation by nuclear signal extraction, fuzzy
C-mean clustering of cardiac α-actinin signal, and finally nuclear signal propagation. When compared to manual
segmentation, it generates precision and recall scores of 0.81 and 0.93, respectively.

Conclusions: Our results show that our fully automated image analysis system can reliably segment cardiomyocytes
even with heterogeneous α-actinin signals.

Keywords: Cardiotoxicity, hiPSC-derived cardiomyocytes, High-throughput screening, Image analysis, Phenotype
quantification

Background
Cardiotoxic side-effects of anticancer therapy have been
known for decades. These adverse effects are found in
patients who are treated with anti-cancer drugs from
different classes. This includes the earliest chemothera-
peutics, i.e. anthracyclines, such as Doxorubicin [1], but
also novel therapeutic compounds developed to specific
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target molecules, such as monoclonal antibodies and
small molecules inhibiting tyrosine kinases; e.g. crizotinib
[2] and sunitinib [3]. The latter have shown serious car-
diotoxicity effects. Since survival of patients who under-
went anticancer treatment has improved significantly in
the last decade [4], late onsets of adverse cardiovascular
effects are more visible in these patients.
Cardiotoxicity is routinely evaluated throughout the

drug development process. However, a major reliance
on non-human animal models cannot adequately repre-
sent human biology. Remarkably, the cardiotoxic effects
of the tyrosine kinase inhibitors pazopanib, sunitinib and
sorafenib in humans were not detected in animal models
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[5]. Thus, there is an urgent need for high-content human
in vitro systems that can better predict drug-induced
toxicity early in the drug development process [6].
The reprogramming of human somatic cells to induced

pluripotent stem cells (hiPSC) was described for the first
time in 2007 [7]. Now, over a decade later, the differenti-
ation efficiency of hiPSC to specialized cell types, includ-
ing functional cardiomyocytes, has improved enormously.
Moreover, many studies have shown the importance of
hiPSC-derived cardiomyocytes (hiPSC-CMs) for disease
modelling and drug-induced toxicity screenings [8–10].
Given the fact that toxic side-effects are not shown in
every patient, a representation of all significant genetic
variants of the population is necessary for detection of car-
diotoxicity in the early drug development process, which
is exactlywhatcanbeachievedbyusing hiPSC-CMs [11–13].
There are several technologies using fluorescent read-

outs to reflect dynamic changes of hiPSC-CMs. These
fluorescent read-outs are created by voltage-sensitive or
calcium-sensitive dyes [14–16]. The collected fluorescent
signals represent electrical and calcium transient signal
through time. Phenotypic properties can be extracted
from transient signals for further analysis. Although these
technologies are fluorescence based and suitable for high
throughput, they analyze the average signals from many
cells regardless of the celluar heterogeneity in hiPSC-CMs
[17]. In order to grasp the dynamics of the cell popu-
lation, we intend to provide a solution with a focus on
single cell analysis by providing phenotypic output, e.g.
cell number/morphological features of single cell using
high throughput image analysis techniques.
High-throughput image analysis has been shown to be a

valuable method for identification of different molecules
and drugs that interfere with biological signaling pathways
or related functional responses using different cell sources
and models. Recently, high-throughput image analysis has
also been applied on cardiomyocytes, for example in iden-
tifying phenotype changes in α-actinin-labeled primary
cardiomyocytes from newborn rats [1]. High-throughput
imaging has also been applied in studying cardiotoxic-
ity in hiPSC-CMs [18, 19]. However, the high-throughput
image analysis in all studies using hiPSC-CMs involved
manual steps, mainly to set thresholds for positive signals
[20] or for segmentation of individual nuclei regions using
commercial image analysis systems [18, 19]. This means
that current high-throughput analysis of cardiotoxicity in
hiPSC-CMs are not suitable for performing fully auto-
mated analysis on the single cell level. The main reason
for this lack of full automation is that there are cur-
rently no reported robust and automated segmentation
methods for high-throughput image analysis of α-actinin
stained hiPSC-CMs that can subsequently be applied in
cytotoxicity studies based on single cell level.

Here we report a fully automated and robust image
analysis system, designed for quantification of cardiotoxic
phenotypes as measured in datasets obtained from
immunofluorescence imaging of α-actinin in hiPSC-CMs
in a high-throughput setting. We apply an accelerated
Fuzzy c-mean clustering algorithm, automatically taking
into consideration signal heterogeneity of hiPSC-CMs in
terms of size and α-actinin signal. We demonstrate proof-
of-concept by showing cardiotoxic effects of doxorubicin
and crizotinib, which shows a good correlation with man-
ual scoring.

Methods
Cell culture
hiPSC-CMs (Pluriomics BV, The Netherlands), obtained
at day 14 of differentiation, were thawed and seeded in
a Corning 96 well special optics plate (Sigma-Aldrich),
coated with Matrigel (40 μg/ml) on day 0. The cell density
was 10,000 for each well. The chosen density level is based
on our previous testing experiment. At a lower density
(5000 cells per well), the cells are not happy and will affect
the result. At higher densities (15,000 and 20,000 cells
per well), there are too many clumpy cells which increase
the difficulty of analysis. The cells were maintained in a
humidified incubator at 37°C and 5% CO2 for 24 hours.
Cells were then refreshed with Cardiomyocyte medium
(Pluriomics BV) every other day. The composition of the
medium is described in the paper [21]. The cells were used
for treatment with anticancer drugs on day 9 after seeding.

Cytotoxicity
To assess the phenotype changes following exposure to
drugs, hiPSC-CMs were treated with dimethylsulfoxide
(DMSO 4.23 mM) as control or with 0.1 μM, 0.3 μM,
1 μM, 3 μM and 10 μM doxorubicin or crizotinib for 4
days and fixed in 2% paraformaldehyde for 30 minutes at
room temperature. A dose range between 0.1 μM and 10
μM was used since it is relevant to the clinical use [18].
An antibody against α-actinin, an actin-binding protein
that is localized at the Z-disc, of sarcomeres, was used
to identify cardiomyocytes, displaying its specific striated
pattern [18]. This cardiomyocyte protein is important for
evaluating phenotypic maturity of hiPSC-CMs [22] and it
provides additional information on cell morphology. Cells
were permeabilized using 0.1% Triton X-100 in Dulbecco’s
phosphate-buffered saline (DPBS) and incubated with pri-
mary antibody in DPBS and 4% goat serum at room
temperature for 1 hour. After washing with 0.05% Tween-
20 three times, cells were incubated with the secondary
antibody in DPBS and 4% goat serum at room temperature
for 1 hour. Cells were washed with 0.05% Tween20 again
for three times and washed once with DPBS for 5 min-
utes. For nuclei detection, cells were incubated with DAPI
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in DPBS (1:1000) for 5 minutes in room temperature and
washed three times shortly with DPBS.

Imaging
Images of cardiomyocytes were acquired using a high-
throughput, high-content imaging BD pathway 855
microscope equipped with a 20x LWD Olympus objec-
tive (NA 0.75) and a Hamamatsu - ORCA AG CCD
camera. The red-channel (α-actinin) was acquired using
HQ548/20 excitation filter with 0.08 s exposure time plus
2 gains and acquired a 84101 (84101m, from Chroma
84000 Set) emission filter. The blue-channel was used for
the cell nuclei. The signal of DAPI stained cell nuclei was
acquired using 380/10-nm excitation filter with 0.0078
s exposure time and the 435LP (Chroma filter) emis-
sion filter. The whole monolayer cell culture was scanned
through 7x7 (width x height) adjacent image tiles that
were stitched to one montage image of 4700x3600 pixels.
In Fig. 1, several sample images with different treatment
conditions are shown.

Image analysis
An image analysis pipeline was designed as depicted in
Fig. 2a, with the specific goal of segmenting the individ-
ual cardiomyocytes from the image with α-actinin and

DAPI staining. In this manner the phenotype quantifi-
cation can be based on single cells. The individual steps
of the pipeline are discussed in detail in the follow-
ing sections, but, in short, the signal of the image was
enhanced beforehand in an image preprocessing step, a
nuclei mask was extracted from the DAPI signal and a cell
mask was extracted from the α-actinin channel using var-
ied thresholding methods. Subsequently, the single nuclei
were identified in the nuclei mask using a watershed
segmentation based on distance mapping in the thresh-
old binary image. The segmented single nuclei mask was
employed as a seed and propagated in the cell mask to find
the cell border. The automated image analysis method was
developed as a Java plugin in ImageJ software [23].

Image preprocessing
In order to accomplish a better segmentation result, a
number of standard image preprocessing steps were per-
formed including background subtraction (ImageJ, Sub-
tract Background, 100 for α-actinin channel and 50 for
DAPI channel), Gaussian smoothing filter (ImageJ, Gaus-
sian Blur, radius 5 for α-actinin channel and radius 2 for
DAPI channel), median filter (ImageJ,Median, radius 5 for
α-actinin channel), and contrast enhancement (ImageJ,
Enhance Contrast, Saturated pixels: 0.3% for α-actinin

Fig. 1 Sample images acquired from BD pathway 855 microscope with 7x7 montage setup. a Sample image in the control condition (DMSO). b
Sample image with 1 μM doxorubicin treatment. c A close-up sample image from control condition (DMSO). d A close-up sample image with 1 μM
doxorubicin treatment
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Fig. 2 Image analysis pipeline and segmentation results. a Image analysis pipeline for segmentation and quantification of the individual
cardiomyocytes from the image with α-actinin and DAPI staining. b A sample of segmentation results (segmentation lines: Green; α-actinin signal:
Red; DAPI signal: blue). c Comparison of cell masking methods on a typical cluster of cells. Left, original image; middle, binary mask of Otsu
thresholding method; right, binary mask of Fuzzy c-mean clustering method. d Comparison of different segmentation methods. The difference of
the two methods are the usage of different cell masking method. Left, Propagation result with Otsu cell masking; right, our propagation result with
FCM cell masking

channel) so as to reduce the noisy background influ-
ence and improve the foreground signal. The background
noise is considered to consist of photon noise and some
aspecific background fluorescence.

Image segmentation
There are three main steps for the image segmentation.
First, detection of nuclei to provide seed locations for the
cell propagation. Second, cell detection to extract the α-
actinin positive cell region for the cell propagation. Finally,
a seeded cell propagation is initiated to find the border of
the individual cells. An example of a segmentation result
for the entire image is depicted in Fig. 2b.

Nuclei detection We used the Otsu thresholding
method [24] to sufficiently segment the blue channel in
order to obtain a binary mask from the DAPI stained
nuclei. Subsequently, individual nuclei were detected
using a watershed segmentation method. There are two
classical watershed segmentation methods: one is based
on the distance transformation from the binary mask [25];

the other one is based on the grayscale from the original
image [26]. If the nuclei are sparsely distributed in the
image, the watershed method based on binary mask will
be sufficient for single nuclei identification. If a relatively
large amount of nuclei are clustered together, the water-
shed method based on the grayscale image might result
in a better performance. On the other hand, if the signal
in the single nuclei is not evenly distributed, the grayscale
watershed method might "overcut" the nuclei. This can
be complicated further by the fact that cardiomyocytes
can have more than one nucleus per cell, although for
hiPSC-CMs, the likelihood is not that high, since less than
20% of embryonic stem cell-derived cardiomyocytes are
multinucleated [19]. In our case, the cells were cultured
in monolayers, which minimized the number of clustered
nuclei.
In order to evaluate the performance of the two water-

shed segmentation methods in our nuclei image dataset,
we calculated the percentage of correctly segmented
nuclei number for both methods. A reference data set
for this analysis was obtained by an evaluation that
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was carried out by two independent researchers, man-
ually assigning nuclei in 15 randomly selected images
(512x512 pixels). The images were exposed to the same
preprocessing pipeline before the watershed segmentation
method. The result, as shown in Additional file 1: Table
S1, demonstrates that 97.8% of the nuclei are correctly
segmented using the watershed method based on binary
mask whereas 82% of the nuclei are correctly segmented
by the watershedmethod based on the grayscale. From the
experiment, we observed that all of the incorrectly seg-
mented nuclei from the latter method, being 18%, suffered
from overcutting.
From our pilot experiments we decided to use the water-

shed segmentation based on the distance transformation
so as to prevent the overcutting from the grayscale based
watershed method. In order to include bi-nucleated car-
diomyocytes but not to overdo the process, only closely
located nuclei were merged by applying a consecutive one
pixel dilation and erosion in the binary mask. The merged
nuclei were treated as one seed for the follow up steps.
Finally, the nuclei mask was relabeled as our seed for the
propagation.

Cell detection Before we were able to use the single
nuclei mask in a seed-propagation step to identify individ-
ual cells, we first needed to identify the positive signal in
the red-channel, i.e. representing α-actinin fluorescence.
First of all, an intensity thresholding method was required
to separate cell signal from the background. However, α-
actinin stained hiPSC-CMs displayed unevenly expressed
signals in and between cells with a high percentage of
weak signals in the image and as a result the α-actinin
channel did not show a bi-modal histogram but instead a
uni-modal histogram with a long tail of high intensity sig-
nals. Therefore, for this type of signal Otsu’s thresholding
method cannot be applied as it excludes too much signal,
as shown in Fig. 2d.
It has been reported that the Otsu thresholding method

shows less tolerance with intensity variance [27, 28].
Instead, a machine learning based segmentation method,
known as Fuzzy C-Means Clustering Algorithm (FCM)
[29] incorporatedmore tolerance to the intensity variation
and therefore it was selected for the thresholding of this
channel in our image dataset.
The FCM Algorithm assigns a degree of “belonging to

foreground” for each pixel and sets the cut-off between
foreground and background based on the minimization
of intra-cluster variance. This method can successfully
threshold an image with mixed strong and weak signals as
shown in Fig. 2c. However, due to the high resolution of
our images (4700x3600 pixels per image), it took relatively
long (10 minutes in a system with 3.40 GHz processing
speed and 16 GB RAM) to extract the cell signal from a
single image.

In order to solve the problems with computational
load, several improved versions based on FCM have been
reported [30]. An accelerated version of the FCM Algo-
rithm called EnFCM [31] was chosen to speed up the
segmentation step. EnFCM treats each gray value from
the histogram as a clustering candidate rather than each
pixel from the image. Therefore, we minimized an energy
function, which is expressed (equation 1) in an objective
function, as follows:

JEnFCM =
C∑

i=1

q∑

l=1
hlumil (l − Ci)

2 m > 1.

where C represents the number of clusters, q represents
the number of gray levels, hl is the number of pixels whose
gray value equals to l, m is the fuzzyfication parameter
which is a real number greater than 1, umil is the degree of
membership of gray level l, Ci is the center of the cluster.
The iterative optimization of the objective function is car-
ried out by updating the membership uil and the cluster
centers Ci:

uil = (Ci − l)−2/(m−1)
∑C

j=1(Cj − l)−2/(m−1)
∀i = 1...c, ∀l = 1....q,

Ci =
∑q

l=1 hlu
m
il l∑q

l=1 hlu
m
il

∀i = 1...c.

In this way, the computation time is drastically reduced by
using the histogram instead of using individual pixels; i.e.
2-3 seconds in the system with 3.40 GHz processing speed
and 16 GB RAM. This was adequate for our image data
processing.

Seed propagation After obtaining the cell mask and the
individual nuclei mask, individual cells were identified
using a nuclear propagation approach [32]. This approach
uses nuclei as the initial seed and propagates the region
until it reaches the cell border by comparing both intensity
and distance of the neighborhood pixels. The approach
also includes a regularization factor to provide reasonable
behavior in the case that the image data does not con-
tain strong enough edges, i.e. intensity changes, between
two seed regions. In our study, the regularization fac-
tor is set to 1, which means that the intensity difference
and distance of the neighborhood pixels have the same
impact on the propagation. Since α-actinin stains the sar-
comere structure of the cardiomyocyte, it cannot provide
a strong edge signal when the cells are strongly clus-
tered together. This propagation method can, therefore,
assist to construct the cell border both in spread out car-
diomyocytes (∼500 cells/mm2) as well as highly clustered
cardiomyocytes (∼2000 cells/mm2).
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Segmentation performance assessment
First, a qualitative performance assessment was set out
by comparing our segmentation method with a repre-
sentative seeded segmentation method [1] in our image
dataset. We compared the performance by observing the
segmentation results as shown in Fig. 2d.
Furthermore, a quantitative performance assessment

was conducted by comparing the results of the developed
automated image analysis pipeline with manual segmen-
tation results. First, we cropped 15 individual images
(512x512 pixels) including 232 cells in total from the
original image dataset with varied treatment conditions.
Second, two scientists with and without the knowledge of
our cardiotoxicity study were asked to independently seg-
ment the individual cells from the images. Third, we used
the traditional F-score to assess the accuracy of the seg-
mentation methods [33]. The F-score takes is based on a
calculation that takes into account both recall and preci-
sion. Recall (also known as sensitivity) is the proportion of
real positive results that are correctly predicted positive.
Precision denotes the proportion of predicted positive
results that are correctly real positive [34]. The F-score is
then measured as follows:

Fscore = 2 · recall · precision
recall + precision

We computed the F-score for ourmethod and compared
it to the two manually segmented results. We also com-
pute the F-score between the two manually segmented
results so as to check the degree of variation between two
scorers. Finally, as a point of reference, we segmented the
sample images using the conventional Otsu-based seg-
mentation method [1] and computed the F-score of this
method compared to a manual segmentation.

Phenotype measurement
In this study, we included a list of phenotype measure-
ments on the level of single cells in order to describe the
changes between different experimental treatment condi-
tions. They can be mainly separated into four main cate-
gories: (1) basic measurements, such as cell area, perime-
ter and mean intensity; (2) shape measurements [35],
including extension, dispersion, elongation, compactness,
long axis and short axis; (3) texture measurements [36],
such as standard deviation of the intensity, smoothness,
skewness, uniformity and entropy as shown in Table 1;
(4) other measurements such as cell number and cell-cell
contact [1], which is the percentage of the cell borders
shared with other cells. Each treated condition was com-
pared with control (DMSO) condition using Two-sample
Kolmogorov-Smirnov test [37]; i.e. P<0.05 was considered
as significant.

Table 1 Texture measurements

Feature
Name

Expression Description

std f1 =√∑
i(i − mean)2H(i)

The standard deviation of
intensity from all the pixels in
a region.

Smoothness f2 = 1 − 1
(1+f 21 )

The relative smoothness of
the intensity in a region of
constant intensity in a region.
It is 0 for a region of constant
intensity and 1 for a region
with large excursion in the
values of its intensity levels.

Skewness f3 = ∑
i

(i − mean)3H(i)
The order moment about the
mean. The departure from
symmetry about the mean
intensity. It is 0 for symmetric
histograms, positive for
histograms skewed to the
right and negative for
histograms skewed to the left.

Uniformity f4 = ∑
i H

2(i) The sum of squared elements
in Histogram. It reaches
maximum when all intensity
levels are equal and decreases
from there.

Entropy f5 = −∑
i H(i)log2H(i) The statistical measure of

randomness.

i represents the intensity value. H(i) is the histogram of intensity.

mean symbolizes the average intensity.

Results
Cell masking performance assessment
We evaluated our high-throughput image analysis
pipeline by applying it on a dataset of 120 images of
hiPSC-CMs (4700x3600 pixels per image), either cultured
in control conditions or treated with anticancer drugs
with five replicates for each condition. We did the experi-
ment on two different batches of cells from Pluriomics BV
and two individual plates in total. We performed dose-
response studies using anticancer drugs doxorubicin (a
classical anthracycline antibiotic) and crizotinib (a novel
tyrosine kinase inhibitor).
The biggest challenge in our study is to perform

proper cell masking for the α-actinin-stained hiPSC-CMs
(Fig. 2c). We compared the performance of a conventional
Otsu-based segmentation method, which has been used
successfully for segmentation of primary cardiomyocytes
in an earlier study [1], with our own method.
We applied both our method and the Otsu-based seg-

menationmethod on our data set. The cell masking results
are shown in Fig. 2c. The final single cell segmenta-
tion results are shown in Fig. 2d. Our method is able to
identify both strong and weak signals from the red- chan-
nel (α-actinin) using the EnFCM thresholding method
(Fig. 2c(iii), d(ii)), whereas in the conventional method
much of the weak signal is excluded (Fig. 2c(ii), d(i)).
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To quantify the performance of the segmentation meth-
ods, two researchers were asked to manually segment 232
cells from 15 randomly selected images from our sample
set with varied treatment conditions as shown in Addi-
tional file 1: Table S2. A typical example of these results
from the two manual segmentations is shown in compar-
ison to the obtained results of the automated segmenta-
tion by our methods and the Otsu-based segmentation
method (Fig. 3). Researchers are able to identify individ-
ual cells easily when the cells are spread out (Fig. 3e-h). In
contrast, it is more difficult for the researchers to precisely
identify the cell border in aggregated cells (Fig. 3a-d),
especially because the α-actinin signal is uneven and cells
are very close to each other. Therefore, variation exists
between the two sets of manual segmentation results,
leading to an overall F-score of 89.88% between the two
researchers.
The results of F-score analysis of all cell masking meth-

ods are summarized in Table 2. When using the two sets
of manual segmentations as a baseline, our method has a
higher recall score (91.97%, 93.84%, resp.), than the con-
ventional method (55.29%, 61.23%, resp.). The very low
recall score of the conventional method is probably caused
as a result of the Otsu thresholding, which fails to select
all α-actinin signal and only picks up strong α-actinin
signal from the image. This exclusive selection of high-
intensity signal also explains the extremely high precision
of the conventional method (97.28%, 97.25%, resp.) when

compared to our method (84.28% and 78.49%, resp.). The
relatively low precision score of our method is partially
caused by the high radius used in the Gaussian filter in
the pre-processing stage (5 pixels) in order to smooth the
α-actinin signal. It brings more neighboring pixels (∼4
pixels) around the α-actinin signal into foreground. This is
clearly visible in Fig. 3f, but it does not significantly affect
themorphological descriptors for single cells as illustrated
in the next section.
As indicated above, the F-score between the two man-

ual scorers is 89.88%, which is quite close to the aver-
age of F-score between our method and the two man-
ual scorers, which is 86.58% (Table 2). This means that
our algorithm performs well and is close to the typ-
ical variation that is observed in manual scoring. In
summary, the overall segmentation performance F-score
improved significantly from 71.89% using the conven-
tional method to 86.58% using our method, which is
comparable or even higher than the performance of pre-
viously reported cell segmentation methods [1, 33]. It
should be noted that our method is applied on human car-
diomyocytes and uses very large, high resolution, images
as input.

Single-Cell segmentation performance assessment
We also quantified how various automated segmenta-
tion methods affect the morphological descriptors for
single cells (as described in Supplementary Methods 1).

Fig. 3 Examples of automated and manual segmentation results. a-d are images from control conditions and e-h are from treated conditions with 3
μM crizotinib. a and e are derived from conventional Otsu-based segmentation. b and f are derived from our method. c and g are derived from the
first researcher by manual segmentation. (D) and (H) are derived from the second researcher by manual segmentation
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Table 2 F-score analysis for the automated and manual segmentation results

Automated vs Manual 1 Automated vs Manual 2

Precision Recall F-Score Precision Recall F-Score

Gregory’s method Mean 0.9728 0.5529 0.6945 0.9725 0.6123 0.7432

SEM 0.0055 0.0361 0.0296 0.0047 0.0342 0.0263

Our method Mean 0.8428 0.9197 0.8775 0.7849 0.9384 0.8533

SEM 0.0122 0.0130 0.0054 0.0116 0.0102 0.0055

The averages of the distance between the various auto-
mated methods and the masks from manual researchers
are shown in Additional file 1: Table S3. The Student t-
test results in Additional file 1: Table S4 show that there
are four single-cell features (area, extension, dispersion
and compactness) for which the results of the Otsu-based
segmentation method and our method differ significantly.
Together with Additional file 1: Table S3, we can see
that for three of the four features (area, dispersion and
compactness) the result of our method is significantly
closer to the manual mask than the Otsu-based segmenta-
tion method. For one feature (extension) the conventional
method has a significantly closer to the manual masks
than ourmethod. This is due to the nature of the extension
feature, which has no internal normalization and therefore
is very sensitive to slight over segmentation. We there-
fore conclude that a possible slight overestimation of cell
borders in our method does not significantly bias results
on different parameters, such as cell number or cell shape
and the phenotype changes can still be properly detected.
The effect of a partial selection as a result of Otsu thresh-
olding in the conventional method, however, hampers the
reliable quantification of morphological descriptors.

Cell number
Two representative anti-cancer drugs with known clini-
cal cardiotoxicity outcomes were tested for cardiotoxicity
effects on cardiomyocytes. As our primary testing, we var-
ied the concentration of the drugs at the range between
0.1 μM and 10 μM, which is within the range of clinical
use. The total number of cardiomyocytes in the image was
used to quantify cell viability. As shown in Fig. 4a-b, both
drugs reduced cell viability with increasing drug concen-
trations. (DMSO treated) condition, doxorubicin reduced
the cell number drastically (41.7% of the number of cells
compared to DMSO treated control) at the lowest con-
centration (0.1 μM) and kept on reducing with increasing
concentrations of 0.3 μM (25.1%), 1 μM (16.2%), 3 μM
(13.3%) and 10 μM (5.0%). Treatment with crizotinib
showed a gradual decrease of cell number at the lower
concentrations, indicated by 91.1%, 98.4% and 79.9% for
the concentration range of 0.1 μM, 0.3 μM, 1 μM. There
was a drastic decrease in the cell number at the concen-
tration of 3 μM (13.5%), which remained approximately

at the same level at the highest concentration of 10 μM
(13.8%). In conclusion, these results showed that both
doxorubicin and crizotinib led to cardiomyocyte loss at
concentrations less than 10 μM.

Morphology
In order to detect the morphological changes that could
be related to cardiotoxicity, a list of shape features was cal-
culated and four of them are presented in Fig. 4c-f and
Additional file 1: Figure S1A-D. These are area, perimeter,
elongation and compactness. Morphological changes by
these shape descriptors may indicate changes of cell via-
bility and alteration of specific signalling pathways related
to cardiotoxicity. Cell size measured by area and perime-
ter decreases with increasing dose concentrations for both
doxorubicin and crizotinib. This is similar to the trend
seen in cell density.
Elongation is a measure of how much the shape must

be compressed along its long axis in order to minimize its
extension [35]. The compactness of an object, also known
as circularity, is defined as a function of the perimeter
P and the area A, 4A/P2. The circularity of a circle is 1,
and less than one for an irregular shape. As compared
to control (DMSO treated) cells, doxorubicin-treated cells
demonstrated an elongated spindle-like cellular morphol-
ogy at the lower concentration (0.1 μM and 0.3 μM). At
the higher concentrations of doxorubicin and crizotinib
(3 μM and 10 μM) cells became smaller and more circu-
lar, which would typically be a sign of cells detaching and
dying.

Cell-cell contacts
According to our observations, healthy cardiomyocytes
tend to contact to each other and form a tight network
[38].When the cells lose their viability, they start to detach
and die. As a result, cell-cell contacts could also be a valid
measurement for the cell viability. We observed a signifi-
cant reduction in cell-cell contacts after adding the drugs
when comparing to the control (DMSO treated) condition
(Fig. 4g-h).

Texture
Compared to control (DMSO treated) cells, crizotinib-
treated cells have condensed nuclei which may be the
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Fig. 4 Representative results of phenotype measurements on single cell level. a The effects of doxorubicin treatment on cell viability (depicted as
number of cardiomyocyte). b The effects of crizotinib treatment on cell viability (depicted as number of cardiomyocyte). c The effects of doxorubicin
treatment on cell area. d The effects of crizotinib treatment on cell area. e The effects of doxorubicin treatment on cell shape (Elongation). f The
effects of crizotinib treatment on cell shape (Elongation). g The effects of doxorubicin treatment on cell-cell contact. h The effects of crizotinib
treatment on cell-cell contact. Cells treated with dimethylsulfoxide (DMSO 4.23 mM) is considered as control. In general, data are represented as
mean±s.e.m. *p<0.05 by Two-sample Kolmogorov-Smirnov test. N-number is 5

cause of drug-induced cardiotoxicity [18]. Therefore, we
checked the texture changes in the DAPI channel with dif-
ferent treatments. In Additional file 1: Figure S1E-F the
coefficient of variation (CV value) of nuclei intensity is
presented. The coefficient of variation indicates the inten-
sity fluctuations in the nuclei region and is defined as
the standard deviation of intensity divided by the mean
intensity value. The cells treated with crizotinib showed

an increasing CV value compared to control cells as well as
the cells treated with doxorubicin. The nucleus with con-
densed chromatin could imply that the cardiomyocyte is
in the apoptosis stage.

Discussion
We developed a fully automated image analysis system
that reliably segments cells even with heterogeneous sig-
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nals and provides single cell information on cardiotoxicity.
The segmentation pipeline as included in our image anal-
ysis system can correctly detect wide ranges of α-actinin
signals, thereby allowing the analysis of a broad range of
cardiomyocytes, including immature hiPSC-CMs. Follow-
ing treatment with two anticancer drugs i.e. doxorubicin
and crizotinib, we observed loss of cardiomyocytes at
increasing drug concentrations. In addition, we observed
differences in morphological and texture features, which
may provide a better insight on different aspects of drug-
induced cardiomyocyte toxicity from different classes of
anticancer, or other, drugs. Our current setup is not
designed for monitoring live cells. Observing live cells
would add extra value on drug dose effects, however, it has
not being the purpose of our study.
A large high-content screening with automated image

analysis system is necessary to unravel drug-induced car-
diotoxicity. Current high-content analysis is mainly based
on live calcium signaling in cardiomyocytes to analyse
calcium transients using a calcium indicator [39]. We
present a method that can analyse phenotype changes
related to cardiotoxicity based on images of immunoflu-
orescence. We compared our method to an established
mouse cardiomyocyte image analysis system embedded
in CellProfiler: the Otsu-based segmentation method.
We replaced the more conventional Otsu thresholding
method to EnFCM clustering algorithm in order to prop-
erly segment cells based on unevenly distributed α-actinin
signals in hiPSC-CMs. With our segmentation method
we improved the F-score from 71.89% using Otsu-based
segmentation to 86.58% with our EnFCM-based segmen-
tation.
Phenotypical changes are crucial for the analysis of

cardiotoxicity. The difference of phenotypical changes
between drug treatments enlightens the identification of
specific signalling pathways related to cardiotoxicity for
further exploration. We have been able to quantify a list
of phenotype measurements including shape, texture and
other related features so as to form a unique phenotype
matrix for different drugs.
Our image analysis system is essentially helpful for drug

testing on cardiotoxicity since it is required for all drugs
before entering clinical trials and ultimately the market.
Furthermore, the Food and Drug Administration (FDA)
is in favour of performing these test in human stem cell
based assays [40]. In addition to drug-induced cardiotoxi-
city, differences in cardiomyocytemorphology and texture
related to sarcomeric organization are also strongly asso-
ciated with diseased or dysfunctional cardiomyocytes.
Therefore, hiPSC-CMs derived from patients suffering
from cardiac disease can be evaluated using our improved
analysis system, which will be helpful to understand the
underlying mechanisms and to identify doses of drugs
or compounds that can rescue the cardiomyocyte disease

phenotype.
For future work, we will explore deep learning models,
especially Convolutional Neural Network (CNN) based
segmentation methods such as U-Net [41] and Mask-
RCNN [42]. These are two popular segmentationmethods
and seem to be outstanding models for nuclei segmenta-
tion challenges. In addition, these models are even joint
to further improve the performance of Nuclei segmen-
tation[43]. We intend to evaluate the performance of
these two models for the segmentation of highly clustered
hiPSC-CMs. As a starting point, our validated segmen-
tation method can be successfully used as input to these
deep learning models. In our study, we have shown the
success rate of our method and the application gives us
around 43870 cardiomyocytes which can be used as train-
ing data for a U-net or Mask-RCNN model. We need
to make the comparison to see which setup has a better
performance. To the best of our knowledge, this num-
ber of training samples seems to be sufficient to train the
deep learning models and assess their performance. Sub-
sequently, in the future, we hope we can include a deep net
in our standardized pipeline. Moreover, our research will
include an assessment for distributed computing so as to
balance the computational load between GPU and CPU.

Conclusions
Our method has shown to be particularly efficient in the
processing of large images of hiPSC-CMs. We showed
the potential of our system for determining cardiotoxicity
based on phenotypical changes in hiPSC-CMs. This high-
throughput assay could be further enhanced by combining
with other high-throughput assays using functional and
biochemical parameters, such as cardiomyocyte contrac-
tility, electrophysiology, calcium signalling and mitochon-
drial activity [44]. By combining such high-throughput
assays we can collect a profound set of data to describe the
phenotype variations of hiPSC-CMs in response to drugs,
cardiac disease, or the combination thereof. In summary,
our image analysis system is an automated and accurate
solution for the evaluation of drug-induced cardiotoxicity
in hiPSC-CMs.

Supplementary information
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Additional file 1: This additional file provides one supplementary figure,
four supplementary tables and extra explanation of method.

Abbreviations
hiPSC: Human somatic cells induced pluripotent stem cells; hiPSC-CMs:
Human induced pluripotent stem cell-derived cardiomyocytes; DMSO:
Dimethylsulfoxide; DPBS: Dulbecco’s phosphate-buffered saline; DAPI:
4’,6-diamidino-2-phenylindole; FCM: Fuzzy C-Means Clustering Algorithm;
EnFCM: Enhanced Fuzzy C-Means Clustering Algorithm; CV: Coefficient of
variation; CNN: Convolutional Neural Network

https://doi.org/10.1186/s12859-020-3466-1


Cao et al. BMC Bioinformatics          (2020) 21:187 Page 11 of 12

Acknowledgements
Not applicable.

Authors’ contributions
LC conducted the HT-experiments. She designed and implemented the whole
pipeline of the automated image analysis system. She also wrote the paper.
AM participated in the design of performance assesment. FJV supported the
design and the implementation of the system. He also contributed to the
writing of the paper. RP designed the HT-experiments and guided through
the whole project. He also co-wrote the paper. All authors read and approved
the final manuscript.

Funding
This work was supported by grant ZonMw-MKMD-40-42600-98-036 and
ERA-CVD 2016T092. Both funding bodies support the development of high
throughput assays based on human pluripotent stem cell derived
cardiomyocytes for the analysis of cardiotoxicity induced by anti-cancer
treatment. They were neither involved in the specific design of the study and
collection and interpretation analysis of data, nor in the writing of the
manuscript.

Availability of data andmaterials
The datasets used and/or analysed during the current study are available from
the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 28 November 2019 Accepted: 23 March 2020

References
1. Bass GT, Ryall KA, Katikapalli A, Taylor BE, Dang ST, Acton ST,

Saucerman JJ. Automated image analysis identifies signaling pathways
regulating distinct signatures of cardiac myocyte hypertrophy. J Mol Cell
Cardiol. 2012;52(5):923–30.

2. Tartarone A, Gallucci G, Lazzari C, Lerose R, Lombardi L, Aieta M.
Crizotinib-induced cardiotoxicity: the importance of a proactive
monitoring and management. Future Oncol. 2015;11(14):2043–8.

3. Yang Y, Bu P. Progress on the cardiotoxicity of sunitinib: Prognostic
significance, mechanism and protective therapies. Chem Biol Interact.
2016;257:125–31.

4. Zuppinger C, Suter TM. Cancer therapy-associated cardiotoxicity and
signaling in the myocardium. J Cardiovasc Pharmacol. 2010;56(2):141–6.

5. Yang B, Papoian T. Tyrosine kinase inhibitor (TKI)-induced cardiotoxicity:
approaches to narrow the gaps between preclinical safety evaluation and
clinical outcome. J Appl Toxicol. 2012;32(12):945–51.

6. Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, Marks N,
Mandegar M, Conklin BR, Lee LP, Healy KE. Human iPSC-based cardiac
microphysiological system for drug screening applications. Sci Rep.
2015;5:8883.

7. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K,
Yamanaka S. Induction of pluripotent stem cells from adult human
fibroblasts by defined factors. Cell. 2007;131(5):861–72.

8. Anson B, Kolaja K, Kamp T. Opportunities for use of human ips cells in
predictive toxicology. Clin Pharmacol Ther. 2011;89(5):754–8. https://doi.
org/10.1038/clpt.2011.9.

9. Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, Holmstrom A,
Chang AC, Coronado MJ, Ebert AD, Knowles JW, Telli ML, Witteles RM,
Blau HM, Bernstein D, Altman RB, Wu JC. Human induced pluripotent
stem cell-derived cardiomyocytes recapitulate the predilection of breast
cancer patients to doxorubicin-induced cardiotoxicity. Nat Med.
2016;22(5):547–56.

10. Sinnecker D, Laugwitz KL, Moretti A. Induced pluripotent stem
cell-derived cardiomyocytes for drug development and toxicity testing.
Pharmacol Ther. 2014;143(2):246–52.

11. Fakunle ES, Loring JF. Ethnically diverse pluripotent stem cells for drug
development. Trends Mol Med. 2012;18(12):709–16.

12. Rouhani F, Kumasaka N, de Brito MC, Bradley A, Vallier L, Gaffney D.
Genetic background drives transcriptional variation in human induced
pluripotent stem cells. PLoS Genet. 2014;10(6):1004432.

13. Tofoli F. A., Dasso M., Morato-Marques M., Nunes K., Pereira L. A.,
da Silva G. S., Fonseca S. A., Costas R. M., Santos H. C., da Costa Pereira A.,
Lotufo P. A., Bensenor I. M., Meyer D., Pereira L. V. Increasing The Genetic
Admixture of Available Lines of Human Pluripotent Stem Cells. Sci Rep.
2016;6:34699.

14. Bedut S, Nole C, Lamamy V, Caignard S, Boutin J, Nosjean O, Stephan
J-P, Coge F. High-throughput drug profiling with voltage and
calcium-sensitive fluorescent probes in human ipsc-derived
cardiomyocytes. Am J Physiol Heart Circ Physiol. 2016;311:00793–2015.
https://doi.org/10.1152/ajpheart.00793.2015.

15. Daily NJ, Du ZW, Wakatsuki T. High-Throughput Phenotyping of Human
Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Neurons
Using Electric Field Stimulation and High-Speed Fluorescence Imaging.
Assay Drug Dev Technol. 2017;15(4):178–88.

16. Leyton-Mange JS, Mills RW, Macri VS, Jang MY, Butte FN, Ellinor PT,
Milan DJ. Rapid cellular phenotyping of human pluripotent stem
cell-derived cardiomyocytes using a genetically encoded fluorescent
voltage sensor. Stem Cell Rep. 2014;2(2):163–70.

17. Di Carlo D, Tse HT, Gossett DR. Introduction: why analyze single cells?.
Methods Mol Biol. 2012;853:1–10.

18. Doherty KR, Wappel RL, Talbert DR, Trusk PB, Moran DM, Kramer JW,
Brown AM, Shell SA, Bacus S. Multi-parameter in vitro toxicity testing of
crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes.
Toxicol Appl Pharmacol. 2013;272(1):245–55.

19. Foldes G, Mioulane M, Wright JS, Liu AQ, Novak P, Merkely B, Gorelik J,
Schneider MD, Ali NN, Harding SE. Modulation of human embryonic
stem cell-derived cardiomyocyte growth: a testbed for studying human
cardiac hypertrophy?. J Mol Cell Cardiol. 2011;50(2):367–76.

20. Patel AK, Celiz AD, Rajamohan D, Anderson DG, Langer R, Davies MC,
Alexander MR, Denning C. A defined synthetic substrate for serum-free
culture of human stem cell derived cardiomyocytes with improved
functional maturity identified using combinatorial materials microarrays.
Biomaterials. 2015;61:257–65.

21. Ribeiro MC, Tertoolen LG, Guadix JA, Bellin M, Kosmidis G, D’Aniello C,
Monshouwer-Kloots J, Goumans MJ, Wang YL, Feinberg AW, Mummery
CL, Passier R. Functional maturation of human pluripotent stem cell
derived cardiomyocytes in vitro–correlation between contraction force
and electrophysiology. Biomaterials. 2015;51:138–50.

22. Pasqualini FS, Sheehy SP, Agarwal A, Aratyn-Schaus Y, Parker KK.
Structural phenotyping of stem cell-derived cardiomyocytes. Stem Cell
Rep. 2015;4(3):340–7.

23. Jose Maria Mateos Perez JP. Image Processing with ImageJ. Birmingham:
Packt Publishing; 2013.

24. Otsu N. A threshold selection method from gray-level histograms. IEEE
Trans Syst Man Cybern. 1979;9(1):62–6. https://doi.org/10.1109/TSMC.
1979.4310076.

25. Beucher S, Lantuéjoul C. Use of Watersheds in Contour Detection. Int
Work Image Process Real Time Edge Motion Detect/Estimation.
1979:17–21. Workshop published ,Rennes.

26. Tsukahara M, Mitrovic S, Gajdosik V, Margaritondo G, Pournin L,
Ramaioli M, Sage D, Hwu Y, Unser M, Liebling TM. Coupled tomography
and distinct-element-method approach to exploring the granular media
microstructure in a jamming hourglass. Phys Rev E Stat Nonlin Soft Matter
Phys. 2008;77(6 Pt 1):061306.

27. Kumar S, Ahirwar R, Jain YK. Efficient 3-class fuzzy c-means clustering
algorithm with thresholding for effective medical image segmentation.
Int J Emerg Tech and Adv Eng (ISSN 2250–2459, ISO 9001:2008 Certified
Journal. 2014;4(10). www.ijetae.com.

28. Lee H, Chen Y-PP. Skin cancer extraction with optimum fuzzy
thresholding technique. Appl Intell. 2014;40:. https://doi.org/10.1007/
s10489-013-0474-0.

29. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T. A modified
fuzzy c-means algorithm for bias field estimation and segmentation of

https://doi.org/10.1038/clpt.2011.9
https://doi.org/10.1038/clpt.2011.9
https://doi.org/10.1152/ajpheart.00793.2015
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
www.ijetae.com
https://doi.org/10.1007/s10489-013-0474-0
https://doi.org/10.1007/s10489-013-0474-0


Cao et al. BMC Bioinformatics          (2020) 21:187 Page 12 of 12

mri data. IEEE Trans Med Imaging. 2002;21(3):193–9. https://doi.org/10.
1109/42.996338.

30. Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering
algorithms incorporating local information for image segmentation.
Pattern Recog. 2007;40(3):825–38. https://doi.org/10.1016/j.patcog.2006.
07.011.

31. Szilagyi L, Benyo Z, Szilagyi SM, Adam HS. Mr brain image segmentation
using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (IEEE Cat. No.03CH37439); 2003. p. 724–7261. https://doi.
org/10.1109/IEMBS.2003.1279866.

32. Jones TR, Carpenter AE, Golland P. Voronoi-based segmentation of cells
on image manifolds. In: Computer Vision for Biomedical Image
Applications. Springer; 2005. p. 535–43. https://doi.org/10.1007/
11569541_54.

33. Du X, Dua S. Segmentation of fluorescence microscopy cell images using
unsupervised mining. Open Med Inform J. 2010;4:41–9.

34. Powers D. Evaluation: From precision, recall and f-factor to roc,
informedness, markedness & correlation. J Mach Learn Technol. 2008;2(1):
37–63. http://www.bioinfo.in/contents.php?id=51.

35. Dunn GA, Brown AF. Alignment of fibroblasts on grooved surfaces
described by a simple geometric transformation. J Cell Sci. 1986;83:
313–30.

36. Bountris P, Farantatos E, Apostolou N. Advanced image analysis tools
development for the early stage bronchial cancer detection.
2007;1(9):526–31.

37. Massey Jr FJ. The kolmogorov-smirnov test for goodness of fit. J Am Stat
Assoc. 1951;46(253):68–78. https://doi.org/10.1080/01621459.1951.
10500769.

38. Staudt DW, Liu J, Thorn KS, Stuurman N, Liebling M, Stainier DY.
High-resolution imaging of cardiomyocyte behavior reveals two distinct
steps in ventricular trabeculation. Development. 2014;141(3):585–93.

39. Cerignoli F, Charlot D, Whittaker R, Ingermanson R, Gehalot P,
Savchenko A, Gallacher DJ, Towart R, Price JH, McDonough PM,
Mercola M. High throughput measurement of ca2+ dynamics for drug
risk assessment in human stem cell-derived cardiomyocytes by kinetic
image cytometry. J Pharmacol Toxicol Methods. 2012;66(3):246–56.

40. Colatsky T, Fermini B, Gintant G, Pierson JB, Sager P, Sekino Y, Strauss
DG, Stockbridge N. The comprehensive in vitro proarrhythmia assay
(cipa) initiative — update on progress. J Pharmacol Toxicol Methods.
2016;81:15–20. https://doi.org/10.1016/j.vascn.2016.06.002. Focused Issue
on Safety Pharmacology.

41. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for
biomedical image segmentation. In: Navab N, Hornegger J, Wells WM,
Frangi AF, editors. Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015. Cham: Springer; 2015. p. 234–41.

42. He K, Gkioxari G, Dollár P, Girshick RB. Mask r-cnn. 2017 IEEE Int Conf
Comput Vision (ICCV). 2017:2980–88. Venice.

43. Vuola AO, Akram SU, Kannala J. Mask-rcnn and u-net ensembled for
nuclei segmentation. CoRR. 2019;abs/1901.10170:. http://arxiv.org/abs/
1901.10170.

44. van Meer BJ, Tertoolen LG, Mummery CL. Concise Review: Measuring
Physiological Responses of Human Pluripotent Stem Cell Derived
Cardiomyocytes to Drugs and Disease. Stem Cells. 2016;34(8):2008–15.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/42.996338
https://doi.org/10.1109/42.996338
https://doi.org/10.1016/j.patcog.2006.07.011
https://doi.org/10.1016/j.patcog.2006.07.011
https://doi.org/10.1109/IEMBS.2003.1279866
https://doi.org/10.1109/IEMBS.2003.1279866
https://doi.org/10.1007/11569541_54
https://doi.org/10.1007/11569541_54
http://www.bioinfo.in/contents.php?id=51
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1016/j.vascn.2016.06.002
http://arxiv.org/abs/1901.10170
http://arxiv.org/abs/1901.10170

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Cell culture
	Cytotoxicity
	Imaging
	Image analysis
	Image preprocessing
	Image segmentation
	Nuclei detection
	Cell detection
	Seed propagation


	Segmentation performance assessment
	Phenotype measurement

	Results
	Cell masking performance assessment
	Single-Cell segmentation performance assessment
	Cell number
	Morphology
	Cell-cell contacts
	Texture

	Discussion
	Conclusions
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3466-1.
	Additional file 1

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

