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Abstract

Background: Analysing whole genome bisulfite sequencing datasets is a data-intensive task that requires
comprehensive and reproducible workflows to generate valid results. While many algorithms have been developed
for tasks such as alignment, comprehensive end-to-end pipelines are still sparse. Furthermore, previous pipelines lack
features or show technical deficiencies, thus impeding analyses.

Results: We developed wg-blimp (whole genome bisulfite sequencing methylation analysis pipeline) as an
end-to-end pipeline to ease whole genome bisulfite sequencing data analysis. It integrates established algorithms for
alignment, quality control, methylation calling, detection of differentially methylated regions, and methylome
segmentation, requiring only a reference genome and raw sequencing data as input. Comparing wg-blimp to
previous end-to-end pipelines reveals similar setups for common sequence processing tasks, but shows differences
for post-alignment analyses. We improve on previous pipelines by providing a more comprehensive analysis workflow
as well as an interactive user interface. To demonstrate wg-blimp’s ability to produce correct results we used it to call
differentially methylated regions for two publicly available datasets. We were able to replicate 112 of 114 previously
published regions, and found results to be consistent with previous findings. We further applied wg-blimp to a
publicly available sample of embryonic stem cells to showcase methylome segmentation. As expected, unmethylated
regions were in close proximity of transcription start sites. Segmentation results were consistent with previous
analyses, despite different reference genomes and sequencing techniques.

Conclusions: wg-blimp provides a comprehensive analysis pipeline for whole genome bisulfite sequencing data as
well as a user interface for simplified result inspection. We demonstrated its applicability by analysing multiple
publicly available datasets. Thus, wg-blimp is a relevant alternative to previous analysis pipelines and may facilitate
future epigenetic research.
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Background
Since the development of DNA sequencing, a large num-
ber of studies on genetic variation have been conducted,
while extensive research on the epigenetic level has only
emerged in the recent past. Although most cells within
an organism are identical in their genomic sequence, dif-
ferent tissues and cell types vary in their patterns of epi-
genetic modifications that confer their particular identity.
DNAmethylation is one of the most important epigenetic
marks and occurs mainly at CpG dinucleotides. There are
almost 28 million of such sites in the human genome,
thus 450k arrays (which cover only 1.6% of all CpGs)
are not sufficient to detect small differentially methy-
lated regions (DMRs) [1]. As a result, data-intensive whole
genome bisulfite sequencing (WGBS) is required to prop-
erly identify all CpG methylation levels. While the costs
for generating these datasets have been very high, the
continuous and sustained reduction of sequencing costs
allows more and more WGBS datasets to be generated,
creating the need for comprehensive and reproducible
analysis tools. Many algorithms have already been estab-
lished for different aspects of WGBS analyses such as
alignment and DMR detection. However, choosing appro-
priate algorithms and integrating them into an end-to-end
analysis workflow is not a trivial task due to combinato-
rial explosion of possible pipeline setups. Setting up an
end-to-end WGBS analysis workflow is further hindered
by different requirements of interacting tools, e.g. input
and output formats or chromosome naming conventions.
Previously developed end-to-end pipelines already con-
sider these problems and only require users to supply their
raw data and configuration. However, we find previous
approaches to lack features required in common research
settings, e.g. methylome segmentation, as well as techni-
cal limitations such as installation issues, as described in
more detail in the “Results & discussion” section. As a
result, we developed a pipeline approach to address these
issues.

Implementation
We present here wg-blimp (whole genome bisulfite
sequencing methylation analysis pipeline), a workflow for
automated in silico processing of WGBS data. It consists
of a comprehensive WGBS data analysis pipeline as well
as a user interface for simplified inspection of datasets
and potential sharing of results with other researchers.
Figure 1 gives an overview of the analysis steps provided.
With FASTQ files and a reference genome as input, wg-

blimp performs a complete workflow from alignment to
DMR analysis, segmentation and annotation. We choose
bwa-meth [2] for alignment as it provides efficient and
robust mappings due to its internal usage of BWA-MEM
[3]. We omit pre-alignment trimming of reads because
of bwa-meth’s internal usage of soft-clipping to mask

non-matching read subsequences. Alignments are dedu-
plicated using the Picard toolkit [4]. Methylation call-
ing is performed by MethylDackel [5] as it is the rec-
ommended tool for use with bwa-meth. Based on the
methylation reports created by MethylDackel, wg-blimp
computes global methylation statistics. Computing per-
chromosome methylation is optional and enables estima-
tion of C > T conversion rates, as unmethylated lambda
DNA is commonly added to genomic DNA prior to bisul-
fite treatment.
For quality control (QC) we use FastQC [6] to evaluate

read quality scores. Coverage reports containing infor-
mation about overall and per-chromosome coverage are
generated by Qualimap [7]. Qualimap also reports met-
rics such as GC content, duplication rate, and clipping
profiles, thus enabling in-depth quality evaluation of each
sample analysed. Quality reports by Picard, Qualimap and
FastQC are aggregated into a single interactive HTML
report using MultiQC [8].
Multiple algorithms are supported for DMR calling:

metilene [9], bsseq [10] and camel [11] are frequently
used tools. The application of more than one DMR call-
ing tool is recommended, because these tools identify
different, although overlapping sets of DMRs. Users may
tune multiple parameters to control the number of DMR
calls. Increasing the number of DMR calls usually coin-
cides with an increased proportion of false positive calls.
The parameters include the minimum number of CpG
sites included in a region to be recognized as differen-
tially methylated, minimum absolute difference in aver-
aged methylation between the two groups compared, and
minimum coverage per DMR. DMR calls by metilene also
include q-values based on a Mann-Whitney U test that
can be used for downstream filtering.
We further integrate detection of unmethylated regions

(UMRs) and low-methylated regions (LMRs) to iden-
tifify active regulatory regions in an unbiased fashion.
This segmentation is implemented using MethylSeekR
[12] as it provides automatic inference of model parame-
ters using only a user-defined false-discovery rate (FDR)
and methylation cutoff. MethylSeekR also implements
detection of regions of highly disordered methylation,
termed partially methylated domains (PMDs). The pres-
ence of PMDs is influencing UMR/LMR detection and
is often unknown a priori. As a result, wg-blimp pre-
emptively performs the MethylSeekR workflow with
and without PMD computation. Based on the met-
rics measured by MethylSeekR users may decide wether
or not to consider PMDs when analysing UMRs and
LMRs.
Resulting DMRs, UMRs, LMRs and PMDs are anno-

tated for overlap with genes, promoters, CpG islands
(CGIs) and repetitive elements as reported by Ensembl
[13] andUCSC [14] databases. Average coverage per DMR
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Fig. 1 wg-blimp workflow overview. Users only need to provide FASTQ files and a reference genome, and wg-blimp will perform alignment,
deduplication, QC checks, DMR calling, segmentation and annotation. Once the pipeline results are available, users can inspect results using a web
interface

is computed using mosdepth [15] to enable filtering of
DMR calls in regions of low coverage.
We base the wg-blimp pipeline on the workflow exe-

cution system Snakemake [16] as it enables robust and
scalable execution of analysis pipelines and prevents
generation of faulty results in case of failure. Snake-
make also provides run-time and memory usage logging,
thus easing the search for bottlenecks and performance
optimization. To minimize errors caused by changing
software versions we utilize Bioconda [17] for depen-
dency management and installation. We further provide
a wg-blimp Docker container because API changes to
Bioconda dependencies may temporarily break pipeline
functions.
Once the analysis workflow completes, users may load

the results into wg-blimp’s user interface. We imple-
mented the interface using the R Shiny framework that
enables seamless integration of R features into a reac-
tive web app. The interface aggregates QC reports,
pipeline parameters, and allows inspection and filtering
of DMRs based on caller output and annotations (see
Additional file 1: Figures S2-S4). UMRs and LMRs com-
puted by MethylSeekR may also be accessed through
wg-blimp’s Shiny interface, and users may dynamically
choose whether or not to include PMDs (see Fig. 2). Since
visualization of genomic data is often employed when
inspecting analysis results, access links to alignment data
for use with the Integrative Genomics Viewer (IGV) [18]
are also provided, as IGV provides a bisulfite mode for use
with WGBS data.

Results & discussion
To evaluate wg-blimp’s relevance for WGBS experiments,
we compared it to previous end-to-end pipelines and
demonstrated its applicability by analysing three exem-
plary datasets.

Comparison to previous pipelines
Since wg-blimp only integrates published software, and
exhaustive evaluation of all conceivable pipeline setups
would result in combinatorial explosion, we focus here
on a feature-wise comparison of pipelines, similar
to [19]. We compared wg-blimp to BAT [20], bicy-
cle [21], CpG_Me/DMRichR [10, 22–24], ENCODE-
DCC’s WGBS pipeline [25], Methy-Pipe [26], Nextflow
methylseq (two available workflows) [27], PiGx [28]
and snakePipes [19]. Pipelines were compared with
regards to technical setup (installation, workflow man-
agement), WGBS read processing (adapter trimming,
alignment, methylation calling, quality control), and
post-alignment analyses (DMR detection, segmentation,
annotation).
Table 1 gives an overview over each pipeline’s setup.

Similar to snakePipes, wg-blimp utilizes Bioconda for
installation. Using package managers such as Bioconda
or workflow environments like Nextflow [29] not only
simplifies installation for users but also provides straight-
forward update processes of both the pipeline itself as
well as its dependencies. Thus, we recommend usage of
such package managers to ensure stable runtime envi-
ronments. For workflow management, we prefer using
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Fig. 2 Segmentation tab of wg-blimp R Shiny GUI. Once the analysis pipeline completes, users may load results into wg-blimp’s R Shiny App. The
tab depicted here displays MethylSeekR results and allows users to include or exclude PMD computation by toggling a single checkbox

dedicated workflow management systems such as Snake-
make or Nextflow over plain shell scripts, as these allow
more scalable and robust execution. Users may also con-
sider using cloud computing platforms such as DNAnexus
(dnanexus.com). These platforms alleviate setting up own
hardware for analysis, with the downside of users pro-
viding their data to third-party providers, thus posing
potential data privacy risks.
For read processing, wg-blimp employs similar strate-

gies as other pipelines, with popular alignment and
methylation calling tools being bwa-meth/MethylDackel
and Bismark [24]. However, wg-blimp deviates from other
pipelines by skipping read trimming, which is handled by
BWA-MEM’s soft-clipping. For QC we recommend using
MultiQC as it produces HTML quality reports in a com-
pact and scalable way. We omitted the details about which
metrics are collected by MultiQC for each pipeline, as the
pipelines investigated use common tools such as Picard or
sambamba [30] (with the exception of BAT, bicycle and
Methy-Pipe).
While most of the pipelines investigated use similar

tools for read processing, setups differ for post-alignment
analyses. For DMR detection, we pursue a similar setup as
snakePipes and BAT by providing multiple DMR callers.
wg-blimp and PiGx are the only workflows to perform
methylome segmentation. We prefer MethylSeekR over
methylKit for segmentation because of its consideration
of PMDs.
We further added functionality over other pipelines by

implementing an interactive R Shiny GUI. Users may load

one or more analysis runs into the Shiny App, thus pro-
viding a straightforward way to create a central repository
for analysis results to share with fellow researchers. This
not only makes distributing individual files unnecessary
but also enables a more concise inspection of results. For
example, users may switch between segmentation with
and without consideration of PMDs using MethylSeekR
by toggling a single checkbox instead of having to inspect
multiple files. An example of wg-blimp’s interface dis-
playing MethylSeekR results is given in Fig. 2. More GUI
features are discussed in detail in the Supplementary
Material.
We applied the pipelines to a public WGBS dataset to

assess run times for performing an end-to-end WGBS
analysis, as described in detail in the Supplementary
Material. In brief, wg-blimp showed a run time compara-
ble to other pipelines using bwa-meth/MethylDackel for
alignment and methylation calling. We encountered tech-
nical issues with several pipelines when running these
analyses. As a result we recommend users to perform test
runs prior to using published pipelines in active research
environments.
While we provide additional functionality over previous

WGBS pipelines, we would like to emphasize that wg-
blimp should not be seen as a replacement for previous
approaches, but rather as an extension to the landscape
of available workflows. snakePipes, for example, not only
provides a WGBS analysis workflow, but is also capable
of performing integrative analyses on ChIP-seq, RNA-
seq, ATAC-seq, Hi-C and single-cell RNA-seq data. As a
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result, snakePipes should be preferred over wg-blimp in
experiments that aim at integrating different epigenomic
assays. In contrast, we prefer wg-blimp over snakePipes
for WGBS-only experiments that aim at determining
active regulatory regions due to its implementation of seg-
mentation and simplified dataset inspection through its
GUI. Thus, when deciding which analysis workflow to
choose for a WGBS experiment, we believe there is no
”one-fits-all” solution, and we deemwg-blimp one suitable
option to consider for future WGBS analyses.

Application to published datasets
We applied wg-blimp to three exemplary publicly avail-
able WGBS datasets. Two of these datasets were utilized
to demonstrate wg-blimp’s DMR calling capabilities and a
third to demonstrate methylome segmentation. All anal-
yses were executed on a server equipped with two Intel
Xeon E5-2695 v4 CPU’s, 528 GB of memory and Debian
9 as operating system (OS). 64 threads were allocated for
each analysis.

DMR detection
One of the DMR datasets consists of two pairs of isogenic
humanmonocyte andmacrophage samples [31], the other
of two pairs of isogenic human blood and sperm samples

(each generated from pools of DNA from six men) [32].
We chose these two datasets to demonstrate wg-blimp’s
capability of calling DMRs for cases where few (mono-
cytes vs. macrophages) or many (blood vs. sperm) DMRs
are expected due to the degree of relatedness between
compared groups.
For the monocyte/macrophage dataset we chose hg38

as reference and used a coverage of at least 5×, at least
4 CpG sites overlapping, and a minimum absolute differ-
ence of 0.3 as thresholds for DMR calling. We detected
6,189 DMRs in total, with 4,078 DMRs overlapping genes
and 886 DMRs overlapping promoter regions. We were
able to recover 112 of the original 114 DMRs reported,
even though [31] used hg19 as reference genome and only
BSmooth for DMR calling. Most of these DMRs are out-
side of CpG islands (6,009 DMRs) and lose DNAmethyla-
tion during differentiation (5,765 DMRs), which is consis-
tent with the original findings [31]. Excluding indexing of
the reference genome, the whole analysis workflow from
FASTQ files to annotated DMRs took 38.87 hours in total.
A maximum memory usage of 216.07 GB was reached
for bsseq DMR calling (Supplementary Material). bwa-
meth alignment was the most time consuming step with
a run time of 27.81 hours for a single sample using 16
threads.

Fig. 3 Distance from UMR/LMR centers to closest TSS for H1 ESCs. UMRs/LMRs were automatically inferred using wg-blimp’s MethylSeekR
integration. UMRs and LMRs show a clear separation, with most UMRs being located in close proximity of TSSs
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For the blood/sperm dataset we used wg-blimp to
determine soma-germ cell specific methylation differ-
ences. We found 410,247 DMRs (≥ 4 CpGs, ≥ 0.3
absolute difference, ≥ 5× coverage), of which 192,953
overlap with genes, 58,183 with promoters and 10,150
with CpG islands. As expected, the number of DMRs
is much higher compared to the monocyte/macrophage
dataset. Executing the whole workflow required 30.61
hours in total with a maximum memory usage of
208.83 GB.

Methylome segmentation
We applied wg-blimp to a single WGBS sequencing
run of H1 embryonic stem cells (ESCs) [33, 34] (SRA
accession SRP072141) to demonstrate segmentation using
MethylSeekR. We chose H1 embyronic stem cells to com-
pare our integrated segmentation to the results of the orig-
inal MethylSeekR authors that, among other cell types,
also analyzed H1 ESCs [12]. FDR cutoff was set to 5% and
methylation cutoff to 50% (default values). PMDs were not
considered because alpha distribution values did not sug-
gest PMD presence in this methylome (see Supplementary
Material). In total, 18,930 UMRs and 31,748 LMRs were
detected.
To evaluate segmentation results, we computed each

segment center’s distance to the nearest transcription
start site (TSS) as reported by Ensembl [13]. Figure 3
depicts separability of UMRs and LMRs with regards
to TSS distances. As expected, most UMRs are in
close proximity of a TSS, indicating activity in regula-
tory regions. Our results are in line with the original
findings that also found no PMD presence and UMRs
mostly overlapping promoter regions for H1 ESCs [12],
despite differences in reference genomes and sequencing
strategies.
Excluding reference genome indexing, executing the

whole wg-blimp workflow from alignment to segmenta-
tion required 11.05 hours to complete. Alignment was the
most time consuming step with a run time of 5.72 hours.
Maximum memory usage of 168.76 GB was reached by
MethylSeekR.

Conclusions
wg-blimp implements a WGBS analysis workflow,
improving on previousWGBS pipelines by providing sim-
ple installation and usage as well as a more extensive set
of features. In addition to the analysis workflow wg-blimp
includes a reactive R Shiny web interface for simplified
inspection and sharing of results. wg-blimp is capable of
producing coherent results, as demonstrated by analysing
three publicly available datasets. We believe wg-blimp
to be an apt alternative to previous WGBS analysis
pipelines and hope to ease handling WGBS datasets for
fellow researchers, and thus benefit the field of epigenetic
research.

Availability and requirements
Project name: wg-blimp
Project home page: https://github.com/MarWoes/wg-
blimp
Operating system(s): UNIX
Programming language: Python, R
Other requirements: Conda or Docker installation
License: AGPL-3.0
Any restrictions to use by non-academics: AGPL-3.0
conditions apply

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3470-5.

Additional file 1: Supplementary Material

Abbreviations
CGI: CpG island; DMR: differentially methylated region; ESC: embryonic stem
cell; FDR: false-discovery rate; LMR: low-methylated region; PMD: partially
methylated domain; QC: quality control; TSS: transcription start site; UMR:
unmethylated region; WGBS: whole genome bisulfite sequencing
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