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Abstract

Background: The necessity to analyze medium-throughput data in epidemiological
studies with small sample size, particularly when studying biomedical data may
hinder the use of classical statistical methods. Support vector machines (SVM)
models can be successfully applied in this setting because they are a powerful tool
to analyze data with large number of predictors and limited sample size, especially
when handling binary outcomes. However, biomedical research often involves
analysis of time-to-event outcomes and has to account for censoring. Methods to
handle censored data in the SVM framework can be divided into two classes: those
based on support vector regression (SVR) and those based on binary classification.
Methods based on SVR seem to be suboptimal to handle sparse data and yield
results comparable to Cox proportional hazards model and kernel Cox regression.
The limited work dedicated to assess methods based on of SVM for binary
classification has been based on SVM learning using privileged information and SVM
with uncertain classes.

Results: This paper proposes alternative methods and extensions within the binary
classification framework, specifically, a conditional survival approach for weighting
censored observations and a semi-supervised SVM with local invariances. Using
simulation studies and some real datasets, we evaluate those two methods and
compare them with a weighted SVM model, SVM extensions found in the literature,
kernel Cox regression and Cox model.

Conclusions: Our proposed methods perform generally better under a wide variety
of realistic scenarios about the structure of biomedical data. Specifically, the local
invariances method using the conditional survival approach is the most robust
method under different scenarios and is a good approach to consider as an
alternative to other time-to-event methods. When analysing real data is a method to
be considered and recommended since outperforms other methods in proportional
and non-proportional scenarios and sparse data, which is something usual in
biomedical data and biomarkers analysis.
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Background
Biomedical studies are oftentimes based on small sample sizes and on a medium to

large number of variables. Support vector machine (SVM) models are a powerful tool

to analyse this type of data because of their performance in analysis of sparse data, i.e.,

data with as many or more predictors than observations. SVMs have been widely ap-

plied for analysis of binary outcomes. As originally developed [1] these models are

based on discriminating two classes of observations by a linear decision surface (hyper-

plane) and maximizing the distance between the hyperplane and the individual observa-

tions. If the classes are not separable by a linear surface, a non-linear transformation

can be obtained through mapping the data on a different dimension space (feature

space). This non-linear transformation can be obtained without explicitly mapping into

the feature space through the use of a kernel function.

A common outcome in biomedical research is time-to-event. The challenge of ana-

lyzing time-to-event data is associated with occurrence of censoring as it is called the

partially observed time-to-event of a participant whose follow-up ends before the event

has occurred. There are different types of censoring but the most common is right cen-

soring that occurs when an observation leaves the study before the end of follow-up or

presenting an event, or when the study ends before the event has occurred. The most

common traditional approach to analyze time-to-event data and handle censoring is

the Cox proportional hazard regression [2]. This is a semi-parametric model based on a

partial likelihood function (similar to the ordinary likelihood functions) that is defined

in terms of the hazard function and assumes that: i) the baseline hazard is common to

all observations; ii) linearity and additivity of the predictors with respect to log-hazard

or log-cumulative hazard, and iii) proportionality of the hazards across predictor classes

or constant hazard ratios over time. Another important requirement to obtain unbiased

estimations with proportional hazards models is that the minimum number of events is

at least 5 [3–5].

When the data is sparse, proportional hazards regression may not converge and yield

unreliable and biased point estimates and statistical tests. Under sparsity, SVM or a

kernelized (i.e., penalized) version of the Cox model [6] may be more appropriate. Gen-

erally, extensions of SVM to handle time-to-event and censored data can be based on a

regression (SVR) or a classification approach (SVM). Most work has focused on SVR

[7–9] and on a ranking (ordinal) methodology [10–12] and suggested that both ap-

proaches were comparable to proportional hazards model, in non-sparse scenarios, and

the kernel Cox regression and, thus, may not provide any gains in accuracy of predic-

tions. Only two methods have extended the SVM to survival data and handled censor-

ing based on a binary classification approach: SVM learning using privileged

information [13] (LUPI) and uncertain classes [14], proposed in Shiao and Cherkassky

[15] work. In both methods, the censored data is basically weighted using the follow-up

time without considering the overall probability of the event at the end of the follow-

up period.

In this paper, we propose an alternative extension to allow SVM to model time-to-

event data based on a binary classification SVM. To do that, we assign a probability to

the censored data using a conditional survival approach considering the survival prob-

ability at each censored time. Moreover, we propose using a semi-supervised version of

SVM with local invariances to model time-to-event data and compare the performance
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of the proposed approaches with the Cox proportional hazards regression, kernel Cox

regression, and other SVM methods for survival analysis, such as LUPI and weighted

SVM.

Related work
Traditional models for survival data – Kaplan Meier estimator and Cox proportional

hazards model

In survival analysis, the non-negative time-to-event (be death or any other event) of a

subject can be defined by the continuous random variable T∗. An important function

related to the time-to-event data is the survival function S(T∗) = P(T∗ ≥ t∗), that is the

probability of an individual to survive beyond time t∗. Due to censoring, T∗ is not ob-

servable but instead the pair (T, δ), where T is the time to censoring or to the event of

interest and δ is the censoring indicator (0 for censored data and 1 for event).

The empirical survival function is an estimate of the survival function and is com-

monly obtained by the non-parametric Kaplan-Meier estimator [16]. This can be ob-

tained applying the product:

ŜKM tð Þ ¼
Y

i:T ið Þ<t
1−

δ ið Þ
n−iþ 1

� �
ð1Þ

, where n is the total number of individuals, T(i) are the order statistics of the ob-

served times for i-th observation and δ(i) is the censoring indicator of i-th observation.

The estimator in (1) is a decreasing step function that changes only at event times.

A second important function in analyses of time-to-event data is the hazard function,

being the Cox proportional hazards model [2] the most popular model used in analysis

of survival data. It is defined in terms of the hazard function:

λ tjxið Þ¼λ0 tð Þ exp xi; βh ið Þ ð2Þ
where λ(t| xi) is the hazard at time t of an observation i with covariates vector xi,

λ0(t) is the baseline hazard function, β is the vector of coefficients of the model and 〈xi,

β〉 is the dot product between xi and β, i.e., the linear predictor function. The model as-

sumes a baseline hazard that is common to all observations in the study population. In

this model, the hazard of a subject increases multiplicatively with covariates.

In the Cox proportional hazards model, the baseline hazard is modelled semi-

parametrically, i.e., the baseline hazard does not need to be specified and the

optimization function is based on a partial likelihood. The Cox model is more robust

to outliers than other models because it uses only the rank ordering of the failure and

censoring times. The partial likelihood accounting for censored observations can be

expressed as:

L βð Þ ¼
Yn

i¼1

exp xi;βh ið ÞP
j∈Ri

exp xi;βh ið Þ

 !δi

ð3Þ

where Ri is the set of individuals at risk of having an event at time ti, δi the censoring

indicator of the observation with time ti and xi vector of covariates of observation i.

Applying the logarithm transformation to the partial likelihood we obtain the log par-

tial likelihood, which is maximized through Newton-Raphson algorithm. The maximum
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partial likelihood estimator is asymptotically unbiased, efficient and normally distrib-

uted [17].

Kernel Cox regression

This is a penalized version of the Cox model, in which a kernel is added to model the

hazard as a function of covariates. For the general Cox model for observation i, at time

t, with a vector of covariates xi, the hazard can be expressed as

λ tjxið Þ¼λ0 tð Þ exp f xið Þð Þ ð4Þ

where λ0(t) is the unspecified baseline hazard function and f(xi) is an arbitrary function.

Li and Luan [6] proposed using the log partial likelihood as a loss function and refor-

mulate the problem as finding the function f in the penalized log-likelihood such that

log L fð Þð Þ ¼
Xn

i¼1
δi f xið Þ− log

X
j∈Ri

exp f x j
� �� �� �

þ ξ fk k2H ð5Þ

where f is assumed to be from a Reproducing Kernel Hilbert Space, H, defined by a ker-

nel function and a ξ > 0 regularization parameter [18]. The solution to this problem is

given by the representer theorem [18] where the optimal f(x) has the form

f xð Þ ¼
Xn

i¼1
αik x; xið Þ þ b ð6Þ

The optimal α = (α1,…, αn) in (6) can be found by plugging (6) into (5), resulting in a

convex optimization problem to which the solution can be found by any unconstrained

optimization method. The term b is the intercept or bias usually computed as the aver-

age error between the target and predicted value.

Survival analysis using the SVM based on binary classification

Two approaches have been proposed in this class of models by Shiao and Cherkassky

[15]: the LUPI approach developed by Vapnik and Vashist [13] and the SVM with un-

certain classes developed by Niaf et al. [14]. LUPI uses the censoring information as

privileged information (only available for the training data) and, thus, includes add-

itional information in the training process to enrich the learning process. Two different

spaces are described, the decision space and the correcting space (the one with the cen-

soring information). SVM with uncertain classes allows to define less than perfectly the

belonging class of observations, i.e., it allows some degree of confidence regarding the

class.

Shiao and Cherkassky suggested measuring privileged information for LUPI and the

SVM uncertainty using the proportion of follow-up time with which an i-th censored

subject contributes. Therefore, for the censored observation i, the weight or probability

assigned to the observation is Wi ¼ Ti
τ , being τ the maximum follow-up time in the

study cohort. For the event this value is fixed to be 0.

LUPI SVM

The LUPI approach is based on a triplet ðxi; x�i ; yiÞ for i = 1, …, n observations, where xi

∈ℝd; x�i ∈ℝ
k and yi ∈ {±1}. The (xi, yi) are the usual training data and x�i defines the pri-

vileged information only present in the training data, i.e., the information (variables)

only present when modelling the data. The privileged information is not available when
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predicting the class of a new observation. In the LUPI approach two different spaces

are described: i) the space related to x, known as decision space, which is the same fea-

ture space used in standard SVM and ii) the space related to x∗, known as correcting

space, which contains the privileged information about the training data and not avail-

able for predictions of future observations. The LUPI estimates the decision function

and corrects it using the correcting function via privileged information. The main

optimization problem is expressed as in equation (7).

minimize
w;w�;b;b�

1
2

wk k2 þ γ w�k k2� �þ C
Xn
i¼1

ξ i

subject to ξ i ¼ w�; x�i
� 	þ b�
� �

; i ¼ 1;…; n

yi w; xih i þ bð Þ≥1− w�; x�i
� 	þ b�
� �

; i ¼ 1;…; n

w�; x�i
� 	þ b�
� �

≥0; i ¼ 1;…; n

ð7Þ

where w is the weight vector of the separating hyperplane, xi is the vector of co-

variates for subject i, ξi are the slack variables and b is the bias term of the hyper-

plane of the decision space. The analogous parameters, w∗, x�i and b∗ are in the

correcting space.

The decision function and the correcting functions depend on the decision and cor-

recting space respectively. Although, the decision function has the same expression of

the usual SVM, the coefficients of the LUPI decision function depend on kernels in

both spaces. The SVM and the LUPI solutions are exactly the same when the privileged

information is rejected (when γ tends to 0 in expression (7).

The time to follow-up and time-to-event are observable and known in the training

set but not in the test set. Thus, the censoring information that is only present in the

training set can be used as privileged information. Shiao and Cherkassky proposed

using the pair (Ti,Wi) as the privileged information.

Uncertainty SVM

This method allows defining less than perfectly some observations, assigning them an

uncertainty in their class. For these uncertainties a confidence level or probability re-

garding the class is provided. We will refer to the Uncertainty SVM onward in this

manuscript as pSVM (probabilistic SVM).

The pSVM assigns observations to a class through a hinge loss and estimates

probability of belonging to the class through the ϵ-insensitive cost function. Given

an observation i, we define the pair (xi, li) as the training set of input vectors along

with their corresponding group of classes. These classes can be defined as

li ¼ yi ∈ f�1g for i ¼ 1;…; n

li ¼ pi ∈ ½0; 1� for i ¼ nþ 1;…;m
ð8Þ

where n is the number of observations with known classes (perfectly definite), (m − n

− 1) is the number of observations with uncertain classes, and pi is the uncertainty as-

sociated with xi in a regression setting. More specifically, the posterior probability for

class 1 is given by
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pi ¼ ProbðY i ¼ 1jX i ¼ xiÞ ð9Þ

The resulting associated optimization problem is

minimize
w;b

1
2

wk k2

subject to yi w; xih i þ bð Þ≥1; i ¼ 1;…; n
z−i ≤ w; xih i þ b≤zþi ; i ¼ nþ 1;…;m

ð10Þ

where w is the weight vector of the hyperplane, xi is the vector of covariates for subject

i, b is the bias term of the hyperplane, and yi is the class of subject i. The terms z−i and

zþi are boundaries depending on pi. If n =m the problem is reduced to a hard margin

SVM. To allow misclassification in classes, slack variables ξ i; ξ
−
i and ξþi are introduced

and the optimization problem expressed in (10) can be rewritten as

minimize
w;ξ;ξ−;ξþ;b

1
2

wk k2 þ C
Xn
i¼1

ξ i þ ~C
Xm
i¼nþ1

ξ−i þ ξþi
� �

subject to yi w; xih i þ bð Þ≥1−ξ i; i ¼ 1;…; n
z−i −ξ

−
i ≤ w; xih i þ b≤zþi þ ξþi ; i ¼ nþ 1;…;m

ξ i≥0; i ¼ 1;…; n
ξ−i ≥0; i ¼ nþ 1;…;m
ξþi ≥0; i ¼ nþ 1;…;m

ð11Þ

The proportional follow-up time approach computes the probability pi for censored

data, and subsequently z−i and zþi , as
Ti
τ , being τ the maximum follow-up time estab-

lished in the study cohort. For an event, this value is fixed to be 0.

Weighted SVM

Another approach that has not been tested in the literature is to address the survival-

SVM as a weighted SVM (wSVM) problem (see eq. 12). The basic idea of wSVM is to

assign to each observation a different weight according to its relative importance in the

class such that different data points contribute differently to the learning of the deci-

sion surface [19]. This methodology is particularly useful to handle outliers because

upon detecting an outlier, we can diminish its effect in the estimation of the separating

hyperplane.

minimize
w;ξ

1
2

wk k2 þ C
Xn
i¼1

Wiξ i

subject to yi w; xih i þ bð Þ ≥ 1 − ξ i; i ¼ 1;…; n

ξ i ≥ 0; i ¼ 1;…; n

ð12Þ

where Wi is the weight or probability of each observation. The censored observation

can be seen as a partial or weighted observation because, an observation censored just

at the beginning of the study, for instance, is adding no information to the data and

have weight close to 0. A censored observation just before the end of the follow-up

period should be treated almost as complete observation (a weight close to 1).
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Proposed approaches
Proposed weighting methods

Censored data has been handled through assigning a weight or probability to an obser-

vation assuming proportionality of follow-up time, i.e., linearly associated with the ob-

served follow-up period. The approach consists in computing the weight as Wi ¼ Ti
τ ,

being τ the maximum follow-up time in the study cohort and Ti the censored time for

an observation i. For the events, this value is fixed and is equal to non-events who com-

pleted the follow-up period,i.e., subjects who were free of events by the end of the study

period. Therefore, this method does not account for the overall survival probability.

Use of this information in time-to-event data is important because, for example, a cen-

sored observation at the beginning of the follow-up will be more likely to have an event

if the overall survival probability is 0.1 than if it is 0.9. The current proposed methods

in the SVM literature do not use this information because of the proportionality on

follow-up time approach. We propose weighting the censored observations based on

the probability of surviving ti + z years (13) (conditional survival probability), given that

the participant i is still alive at ti (censored time) that can be estimated through the

Kaplan-Meier estimator as in eq. (1).

Ŝz tið Þ ¼ Ŝ ti þ zð Þ
Ŝ tið Þ ð13Þ

This modification would improve the accuracy of the method by including in the

weighting process information about the overall survival probability of the cohort and

the survival curve shape. More specifically, our proposal is to weight (or to assign a

probability to be an event or non-event) the censoring information using the condi-

tional survival probability in the following way for each specific SVM method:

� For the LUPI method our proposal is to define the weight (importance) of the

privileged information based on the Kaplan-Meier estimation of eq. (12), i.e., x�i

¼ ŜzðtiÞ ¼ Ŝðti þ zÞ
ŜðtiÞ

� For pSVM our proposal is to compute the uncertain probability of the censored

data based on the conditional probability of having the event using the Kaplan-

Meier estimator (13).

� For WSVM our proposal, following the same idea than the previous methods, is

using a conditional survival approach, based on the Kaplan-Meier estimator of (13).

Events and non-events at the end of follow-up time will have a weight of 1.

Local invariances SVM

Alternatively, censoring can be treated as a semi-supervised problem, an approach that

has not been considered in the SVM literature. In the semi-supervised setting, there are

observations with class and others with class unknown. The goal is to learn from both

types of data to find the decision surface that separates both classes. We propose to

treat censored observations as unknown classes, i.e., observations we don’t know their

event status within the follow-up period, and events and non-events at the end of

follow-up as known classes, i.e., observations with known event status.
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In the non-SVM specific literature [20], a framework has been proposed of semi-

supervised learning in the reproducing kernel Hilbert space H (RKHS) associated with

a given kernel function k, using local invariances that explicitly characterize the behav-

iour of the target function around both known and unknown data. Three types of in-

variances have been proposed: i) invariance to small changes in the observations,

restricting the gradient of the function to be small at the observed data; ii) invariance

to averaging across a small neighbourhood around observations, restricting the function

value at each observation to be similar to the average value around a small neighbour-

hood of the corresponding observation; and iii) invariances to local transformation, like

rotational and translational invariance (specially focused in problems such as handwrit-

ten digit recognition and vision problems). The third invariance is not relevant for sur-

vival analysis. The optimization problem (14) includes the hinge-loss for known data

and the ϵ-insensitive loss for unknown data to obtain a semi-supervised SVM with local

invariances (inSVM).

minimize
g;b

1
2

gk k2 þ
Xn
i¼lþ1

ξ i þ ξ�i
� �þ

X1
i¼1

γ i

subject to − g; zih i − b ≤ ∈ − ξ i; i ¼ l þ 1;…; n

g; zih i þ b ≤ ∈ þ ξ�i ; i ¼ l þ 1;…;m

ξ i ≥ 0; i ¼ l þ 1;…; n

ξ�i ≥ 0; i ¼ l þ 1;…; n

yi g;ϕ xið Þh i þ bð Þ ≥ 1 − γi; i ¼ 1;…; l

γi ≥ 0; i ¼ 1;…; l

ð14Þ

where g ∈H is the target function and zi is the representer of the functional associated

with the invariance [20] . In particular, given the following expression of the Gaussian

kernel

k x1; x2ð Þ ¼ exp −
1
2σ2

x1 − x2k k2
� �

ð15Þ

where σ is the parameter of the Gaussian kernel, the evaluation functional of the repre-

senter of the derivative functional Lxi; jð f Þ ¼ ∂ f
∂x j jxi , for any f in the RKHS H associated

with the Gaussian kernel is:

zxi; j xð Þ ¼ 1
σ2

x j − x j
i

� �
exp −

1
2σ2

x − xik k2
� �

ð16Þ

and the dot product between two representers of the functional derivative is expressed

as:

Zxi; j ;Zxp;q

� 	 ¼
−
1
σ4

x j
i − x j

p

� �
xqi − xqp
� �

exp −
1
2σ2

xi − xp


 

2

� �
if j ≠ q

1
σ4

σ2 − x j
i − x j

p

� �2� �
exp −

1
2σ2

xi − xp


 

2

� �
if j ¼ q

8>><
>>:

ð17Þ

where i and p are the subject indices and j and q are the indices of the specific variable

in the specific x vector.
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Another type of local invariance is the local averaging. So, considering the Gaussian

kernel in (15) and the following Gaussian density

p xð Þ ¼ 1

2πð Þd2 σdp
exp −

1
2σ2p

xk k2
 !

ð18Þ

and given that the convolution of two Gaussian densities is a Gaussian density, the rep-

resenter of the local averaging functional, Lxið f Þ ¼
R
X f ðuÞpðxi−uÞdu− f ðxiÞ, for any f in

the RKHS H associated with the Gaussian kernel, shall be expressed as:

zxi xð Þ ¼ σd
k

σk þ σp
� �d exp −

1

2 σk þ σp
� �2 xi−xk k2

 !
− exp −

1
2σ2k

xi−xk k2
� �

ð19Þ

and the dot product between two representers of the averaging functional

zxi ; zx j

� 	 ¼ σdk
σk þ 2σp
� �2 exp −

1

2 σk þ 2σp
� �2 xi − x j



 

2
 !

−
σdk

σk þ σp
� �d exp −

1

2 σk þ σp
� �2 xi − x j



 

2
 !

−zx j xið Þ

ð20Þ

where σk and σp are the sigma values specified for the Gaussian kernel and Gaussian

density respectively, d is the number of covariates and zx jðxiÞ is as defined in eq. (19).

Calculations and proofs associated with the inSVM methodology can be found in Lee

et al. [20] .

Implementation

The SVM methods presented in this paper: LUPI, pSVM, wSVM and inSVM, had not

been implemented in the widely used R software [21]. Therefore, we have written R

functions that will be included in a R package.

Simulation studies
We conducted simulation studies to compare the proposed approaches in different sce-

narios. Simulations included varying sample size (50 and 300 subjects), 30 predictor

variables (or features), and a proportional and non-proportional hazard of comparison

groups. Moreover we varied the proportion of censoring (10–30%) and the distribution

of the follow-up time (uniform, positive skewed and negative skewed). Those choices

were based on realistic scenarios encountered in data we previously analysed. Based on

the proportional hazards framework, the time-to-event was generated using the Gom-

pertz distribution.

Specifically, the 30 predictor variables were generated following a multivariate normal

distribution with mean defined by a realization of an uniform distribution U (0.03,0.06).

The variables were classified in four groups according to their pairwise correlation: no

correlation (around 0), low correlation (around 0.2), medium correlation (around 0.5)

and high correlation (around 0.8). These four levels of correlation reflected correlation

of predictors in the biomedical field such as transcriptional profile or the inflammatory

process. These variables were used to compare two scenarios of time-to-event data
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using the Cox proportional hazards model. In the proportional hazards framework the

time-to-event variable can be generated, based on the Gompertz distribution [22] as

T ¼ 1
α

1−
α log Uð Þ

γ exp β; xih ið Þ
� �

ð21Þ

where U follows a Uniform (0,1) distribution, β is the vector of coefficients associated

with each variable, and α ∈ (−∞,∞) and γ > 0 are the scale and shape parameters, re-

spectively, of the Gompertz distribution. The values for these parameters were selected

so that overall survival was around 0.6 at 18 months follow-up time.

To generate scenarios in which the hazard of comparison groups was not propor-

tional, a noise has been added into the exp(〈β, xi〉) term in eq. (21), forcing the hazard

to be a shared frailty model [23]. The frailty was chosen so that there were 5 groups of

observations with same size that shared a common frailty.

Tuning parameters and test performance

For the cost parameters C and ~C, we selected the values 0.1, 1, 10, and 100, and for the

Gaussian kernel parameters σ the values 0.25, 0.5, 1, 2, and 4. A two-step approach was

used to estimate tuning parameters and evaluate operational characteristics of the SVM

models using the best combination of tuning parameters: in the first step, for each

combination of parameters, 10 training datasets were fitted and each of them was vali-

dated using 10 different validation datasets. The combination of parameters with largest

accuracy was used to measure the performance of the models in the second step. In the

second step, new 10 datasets were simulated for estimation of models given the best

combination of tuning parameters found in the first step and for each of those, 10 test-

ing datasets were simulated to compare the performance of the SVM models based on

the following metrics: accuracy (proportion of correctly classified observations), Mat-

thews’ correlation, normalized mutual information, area under the ROC curve (AUC-

ROC), sensitivity, specificity and F1 score. Therefore, 100 datasets have been tested and

used to compute the mean and the standard deviation of the metrics used as a sum-

mary performance of each method.

Real-life datasets
We applied our approaches to three datasets from the “Survival” package available in

the R software repository [17]. Parameters were tuned and the accuracy, AUC-ROC,

sensitivity, specificity and F1 score was estimated through a 5-fold nested-cross valid-

ation repeating the process in 10 resampled datasets. The follow-up time was censored

to the third quartile of the maximum observed follow-up time in each dataset. We used

the same analytical methods and the same grid of tuning parameter values of the simu-

lation studies described above. Briefly, datasets of the following studies were analyzed:

� Lung Study: this study was conducted by the North Central Cancer Treatment

Group (NCCTG) and aimed to estimate the survival of patients with advanced lung

cancer. The available dataset was comprised of 167 observations, 89 events during

the follow-up time of 420 days, and 10 variables. A total of 36 observations were

censored before the end of follow-up. The overall survival probability at the end of

follow-up period was 0.40.
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� Stanford2 Study: this dataset was extracted from the Stanford Heart Transplant

study and was comprised of 157 observations, 4 variables and the maximum follow-

up time is 1264 days. A total of 88 events were recorded and 29 observations were

censored before the end of follow-up. The overall survival probability at the end of

follow-up period was 0.41.

� PBC Study: this study was nested in the Mayo Clinic trial of primary biliary liver

cirrhosis (PBC) that was conducted between 1974 and 1984. A total of 424 PBC

patients were referred to Mayo Clinic during the ten-year interval and met

eligibility criteria for the randomized placebo controlled trial of the drug D-

penicillamine. The data subset used in the current paper contains 258 observations

and 22 variables. From the whole cohort 93 observations experienced the event, 65

finalized the follow-up period without presenting an event and 100 were censored

before the end of the follow-up time of 2771 days. The overall survival probability

at the end of follow-up period was 0.57.

Results
Simulated datasets

In the four simulated scenarios with a sample size of 300 in which hazards of compari-

son groups were proportional, the Cox proportional hazards model and pSVM (linear

kernel) performed comparably to inSVM (gradient and averaging). Specifically, the ac-

curacy was 0.89 for the Cox proportional hazards model, 0.87 for the linear pSVM and

0.84 for inSVM (Table 1). The AUC-ROC of the three models ranged from 0.92 to

0.96. Generally, the distribution and proportion of censoring did not affect results, with

the inSVM-gradient being the most sensitive to the proportion of observations that

were censored. LUPI methods (proposed Kaplan-Meier and proportional approach)

performed similarly to pSVM using a radial kernel. The accuracy for a 10 and 30% cen-

soring was 0.77.

Conversely, when the sample size was decreased to 50, the proportion of cen-

sored observations affected all metrics of predictive accuracy even for data simu-

lated meeting the proportional hazards assumption (Table 2). pSVM, inSVM and

kernel Cox regression had the best performance in the 10% censoring scenario

with an accuracy of approximately 0.75. The Cox model, wSVM and pSVM-radial

had the worse performance with an accuracy of 0.62–0.67. Predictive accuracy was

slightly decreased with increases in the proportion of censoring to 30% except for

wSVM.

Performance of all approaches was worse under non-proportional hazards (Tables 3 and

4). The largest difference between proportionality compared to non-proportionality was in

the 300 observations scenario (Table 3) compared to the 50 observations scenario (Table 4).

In all scenarios, approaches based on conditional survival performed better than

those based on proportional follow-up time, particularly when the sample size was 50

observations and especially when hazards were non-proportional. Overall differences

between both methods were small (around 0.02 units in accuracy and around 0.02 units

in AUC-ROC) but consistent.

The inSVM, based on both gradient and averaging approach, performed closest to

the best method within each scenario. Although the averaging approach was slightly
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better and more insensitive to the proportion of censored observations, there were no

clear differences between the averaging and gradient approach.

Other scenarios yielded comparable results and are presented in supplementary

Tables S1, S2, S3, S4, S5, S6, S7 and S8.

Real-life datasets

In the three compared datasets the conditional survival approach attained the largest

predictive accuracy based on accuracy values and AUC-ROC (Table 5) when compared

with the proportionality approach within each method. Within each dataset the per-

formance of the LUPI method was one of the best, with almost no difference between

the conditional survival and the proportionality approach.

The inSVM method averaging approach performed better than gradient in both ac-

curacy and AUC-ROC metrics in all three datasets, being the former one of the best

methods within each ones of the datasets.

Discussion and conclusions
In this article we proposed alternative methods and extensions within the SVM for bin-

ary classification framework for dealing with censored data. Specifically, a conditional

survival approach for weighting censored observations when fitting SVM through LUPI,

Uncertainty SVM, Weighted SVM, and a semi-supervised SVM with local invariances.

The former takes into account the events and follow-up period including more infor-

mation in the weighting process than using a proportionality of time approach. The lat-

ter is a semi-supervised SVM with local invariances method that allows using two types

of invariances: gradient over variables and averaging over observations. We showed that

both approaches outperformed the other studied methods on most compared metrics.

As expected, when the sample size was as limited as 50 observations and the propor-

tional hazards assumption was violated, the Cox proportional hazards model had a

poorer performance. Results with the wSVM, were highly dependent on the proportion

of censoring but not so much on the distribution of time to censor. Moreover, wSVM

results were comparable to the LUPI results, and that has also been observed by Lapin

et al. [24]. This similarity may be explained by the common unique information

(censored data) used by both methods. This similarity suggests that the wSVM method

may be more advantageous in practice because is much less time consuming, although

is less robust than the LUPI method.

When applying the LUPI approach, we have included the censoring data as privileged

information in the correcting space. Our results were consistent with Shiao and

Cherkassky [15], i.e., LUPI performs worse than the Cox proportional hazards model

and pSVM in all compared scenarios. Actually, some of our simulated scenarios were

similar to simulated scenarios used by Shiao and Cherkassky. The correcting space is

used as complementary information to be combined with the decision space. Therefore,

is not directly used to define the class of the observations, as it is in pSVM or wSVM.

We agree with Serra-Toro et al. [25], that further work is needed to fully understand

the LUPI approach and how the correcting and decision spaces interact.

The performance of the pSVM and the Cox proportional hazards model was similar

when the sample size was larger and better than the kernel Cox regression, being the
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linear kernel slightly superior to the radial kernel, as observed by Shiao and Cherkassky

[15]. Perhaps a finer grid search could benefit the overall performance of the non-

linear approach. Ours and Shiao and Cherkassky [15] results were consistent with

regards to the superior performance of the linear pSVM performs when compared to

the pSVM using Gaussian kernel.

The conditional survival approach proposed by us performs better than the propor-

tional follow-up time approach in all compared scenarios. The conditional method

takes into account the events and follow-up period, hereby, it includes more informa-

tion and is more accurate in the weighting estimation than the proportionality of time

approach. The latter is assuming linearity and does not take into account specificities

of the data, for instance, variability in survival due to intrinsic data. However, one as-

pect to be remarked is that the conditional approach is assuming that the survival prob-

ability of the test data is similar to the training data. This is a reasonable assumption

but depending on the difference between survival probabilities, the prediction accuracy

may be affected.

With respect to the proposed inSVM approach (both gradient and averaging), in

the 300 observations scenarios, results are pretty similar to Cox, kernel Cox regres-

sion and pSVM. However, in scenarios in which the number of observations was

small and close to the number of variables, the inSVM outperformed all other ap-

proaches in all compared metrics, and it was one of the most robust approaches to

varying number of variables and violations of proportionality of hazards. Although,

inSVM is a semi-supervised approach that does not account for censoring, its per-

formance is comparable to other methods that account for censoring. That could

be explained because we are assuming that censoring is independent from the

events and representative of the data. Therefore, patterns in the observed data that

are applicable to the censored observations and the local invariances assumptions

should be valid. Additionally, an advantage of this approach is that no extra as-

sumptions about the censoring distribution are necessary. The main drawback of

the local invariances approach is that it is computationally intensive, specially the

gradient approach.

All simulated data was based on balanced data, i.e., the proportion of events and

non-events were similar. SVM models are sensitive to data imbalance between classes.

Therefore, future investigation shall consider imbalanced scenarios.

Given the significant number of compared methods and data, the presented work

has been restricted to the two most commonly used linear and Gaussian kernels.

Further work shall evaluate the performance of the proposed methods using other

kernels. Additionally, we addressed overfitting through standard procedures: by

simulating completely different datasets to test parameters and validate models,

and by applying nested cross-validation to estimate and validate parameters when

analysing real data. However, future work may assess the performance of the pro-

posed methods including even more simulation scenarios and a larger range of

parameter values.

From the compared methods the proposed inSVM method using the conditional sur-

vival approach is the most robust under different scenarios and is a good approach to

consider as an alternative to other time-to-event methods. When analysing sparse data

is a method to be considered and recommended since outperforms other methods even

Sanz et al. BMC Bioinformatics          (2020) 21:193 Page 18 of 20



when the proportional hazards assumption is not met, a situation that often occurs in

biomedical data and biomarkers analysis.
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