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Abstract
Background: In shotgun proteomics, database searching of tandemmass spectra
results in a great number of peptide-spectrum matches (PSMs), many of which are false
positives. Quality control of PSMs is a multiple hypothesis testing problem, and the
false discovery rate (FDR) or the posterior error probability (PEP) is the commonly used
statistical confidence measure. PEP, also called local FDR, can evaluate the confidence
of individual PSMs and thus is more desirable than FDR, which evaluates the global
confidence of a collection of PSMs. Estimation of PEP can be achieved by decomposing
the null and alternative distributions of PSM scores as long as the given data is
sufficient. However, in many proteomic studies, only a group (subset) of PSMs, e.g.
those with specific post-translational modifications, are of interest. The group can be
very small, making the direct PEP estimation by the group data inaccurate, especially
for the high-score area where the score threshold is taken. Using the whole set of PSMs
to estimate the group PEP is inappropriate either, because the null and/or alternative
distributions of the group can be very different from those of combined scores.

Results: The transfer PEP algorithm is proposed to more accurately estimate the PEPs
of peptide identifications in small groups. Transfer PEP derives the group null
distribution through its empirical relationship with the combined null distribution, and
estimates the group alternative distribution, as well as the null proportion, using an
iterative semi-parametric method. Validated on both simulated data and real
proteomic data, transfer PEP showed remarkably higher accuracy than the direct
combined and separate PEP estimation methods.

Conclusions: We presented a novel approach to group PEP estimation for small
groups and implemented it for the peptide identification problem in proteomics. The
methodology of the approach is in principle applicable to the small-group PEP
estimation problems in other fields.
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Background
Identification of the proteins expressed in cells or tissues plays an essential role in pro-
teomics. In shotgun proteomics, proteins are first digested into peptide mixture that is
then analyzed via high-throughput tandem mass spectrometry (MS/MS), resulting in
thousands to millions of MS/MS spectra in a typical experiment. Analysis of these spec-
tra leads to a great number of candidate identifications of peptides. Protein sequences are
inferred from reliably identified peptides, followed by qualitative or quantitative analy-
sis. The peptide identification based on MS/MS has become one of the key problems in
proteomics [1, 2].
To identify the peptides, the MS/MS spectra are commonly searched against a pro-

tein sequence database. For each spectrum, candidate peptides from the database are
scored according to the quality of their matches to the spectrum. The top scored peptide-
spectrum match (PSM) is taken as a candidate peptide identification. However, for many
reasons, e.g. the incompleteness of the protein database or the imperfectness of the scor-
ing function, the top-scored PSMs are not always correct identifications. Thus, filtering
and quality control of PSMs after database search is necessary [3].
The scores of correct PSMs are usually higher in trend than those of incorrect PSMs,

but they always have an overlap, resulting the difficulty in recognizing the correct PSMs.
In early years, a simple way was to specify an empirical threshold and consider the PSMs
with scores higher than the threshold as the correct ones. However, such threshold may
not be appropriate, resulting in reduced accuracy or sensitivity of peptide identification.
Thus, a quality control method that not only ensures the identification accuracy, but also
does not sacrifice the identification sensitivity is needed. Quality control of PSMs can
be dealt with as a multiple hypothesis testing problem [4, 5]. Each PSM corresponds
to a hypothesis test. The null hypothesis (H0) is that the peptide is incorrectly identi-
fied, and the corresponding alternative hypothesis (H1) is that the peptide is correctly
identified. The most commonly used statistical confidence measure in multiple hypoth-
esis testing is the false discovery rate (FDR) proposed by Benjamini and Hochberg [6].
FDR is defined as the expected proportion of incorrect ones among all rejections of null
hypotheses.
At present, the common way to estimate the FDR of PSMs in proteomics is the target-

decoy database search approach [7]. The principle of the target-decoy approach is simple:
the experimental MS/MS spectra are searched against a database which not only consists
of the target protein sequences but also the same size of decoy protein sequences (typically
the reverse sequences of the target proteins). Because an incorrect identification has an
equal chance of being a match to the target sequences or to the decoy sequences, the
number of decoy PSMs can be used as an estimate of the number of false target PSMs and
the FDR of target PSMs can be estimated by the ratio of decoy PSMs to the target PSMs
above the score threshold.
FDR measures the global confidence of a collection of PSMs with different scores,

whereas one may be interested in the confidence of PSM(s) with a specific score. The
posterior error probability (PEP, also known as local false discovery rate) is defined as
the probability of a hypothesis being null given the test statistic, and consequently it
can measure the confidence of individual tests [8]. In our case, the PEP of a PSM is
the probability that this PSM is incorrect given its score. Let f (x) = π0f0(x) + π1f1(x)
denote the probability density function (pdf) of the scores of a collection of PSMs,
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with f0(x) being the pdf of the scores of incorrect PSMs, f1(x) the pdf of scores of
correct PSMs, π0 the proportion of incorrect PSMs, and π1 = 1 − π0. Bayes’ rule
gives,

PEP(x) = Prob(H0|x) = π0f0(x)
f (x)

(1)

FDR can be derived from PEP using a simple relationship between them, i.e., FDR(x) =
Ef {PEP(s)|s ≥ x}. Therefore, whenever possible, estimation of PEP is always more
desirable than FDR.
PEP estimation relies on decomposing the mixture distribution of f (x). There are

three approaches to achieve this aim in proteomics: parametric, semi-parametric,
and non-parametric approaches. The early PeptideProphet [9] algorithm was a para-
metric approach, in which f0(x) and f1(x) are assumed to be specific types of dis-
tributions and their parameters are estimated from the observed scores using the
EM (Expecting Maximization) algorithm. However, the parametric approach could be
problematic if the assumption on the distribution types is inappropriate [2]. In addi-
tion, PeptideProphet did not make use of any decoy information to estimate f0(x).
In the improved version of PeptideProphet [10, 11], f0(x) is first derived directly
from the scores of decoy PSMs using kernel density estimation, and then f1(x)
and π0 are estimated using a semi-parametric method [12]. This semi-parametric
and semi-supervised approach is more flexible and stable. Different from Peptide-
Prophet, which estimates f0(x) and f1(x) explicitly, the method proposed by Käll et
al. [13] estimates f0(x)

f (x) directly with a non-parametric approach and estimates π0 by
bootstrap.
In proteomics, it is often the case that only a group (subset) of peptide identifica-

tions, e.g. those with specific post-translational modifications (PTMs) or from specific
proteins, are focused on [14–17]. Thus, group FDR estimation is necessary. The most
straightforward way to estimate the FDR of the group is to simply use the combined
FDR estimated on all PSMs as the FDR for the PSM group of interest. However, due
to the difference between the score distributions of the group and the whole set of
PSMs, the combined FDR may be greatly different from the real group FDR at the same
score threshold, leading to unreliable or failed quality control of peptide identifications
in the group [14, 18, 19]. Estimating the group FDR separately on the group PSMs is
certainly a better choice, which we name the separate FDR estimation method. How-
ever, for small groups, the number of PSMs in the group may not be sufficient for
reliable estimation of the separate FDR, leading to overly conservative or liberal FDR
estimation, especially for higher-score interval where observed decoy PSMs are even
fewer [20–22].
Fu et al. [21] proposed the transfer FDR method for quality control of small groups

of peptide identifications. Transfer FDR derives the group FDR from the combined FDR
based on the relationship between them. A key component of transfer FDR is to fit the
proportion of decoy PSMs belonging to the group as a function of PSM score, and extrap-
olate it to the high-score interval for group FDR estimation. Zhang et al. [23] and Li et al.
[24] developed methods of similar rationales but less rigors in estimating the proportion
of group decoy PSMs.
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It is also desirable to evaluate the PEPs of individual PSMs in the group of interest.
Similar to the case of FDR, two direct methods can be used to estimate the group PEP, i.e.,
the combined PEP (estimate the group PEP using the whole set of PSMs) and the separate
PEP (estimate the group PEP solely using the PSMs in the group). However, these two
methods have the same problems faced by combined FDR and separate FDR asmentioned
above. Especially, when the group is very small, separate PEP estimation is even infeasible.
As far as we know, there are currently no group PEP estimation methods for small

groups in proteomics and there are few in statistics. Efron [18] discussed the neces-
sity of group PEP estimation and proposed a general approach, named class-wise fdr,
based on the relationship between the group PEP and the combined PEP in the Bayesian
framework. In order to calculate the relationship, class-wise fdr supposes the cases in the
group under H0 come from a normal distribution, which, however, may not hold in some
applications, e.g. peptide identification.
Here, we present a group PEP estimation method, named transfer PEP, for quality

control of small groups of peptide identifications. Inspired by the transfer learning tech-
nology [25], which transfers the knowledge from one domain to another domain for
better learning with insufficient training data, transfer PEP builds on the empirical rela-
tionship between the group distribution and the combined distribution of PSM scores.
When the group null distribution is different from the combined counterpart, transfer
PEP derives it from the fitted proportion of group decoy PSMs among all decoy PSMs.
When the group alternative distribution is different from the combined counterpart,
transfer PEP estimates it, as well as π0, using a semi-parametric method. The accuracy
and power of transfer PEP were validated on simulated data and real MS/MS data of
peptides.

Algorithm
The aim is to estimate PEPG(x), the PEP of PSMs in a group G at arbitrary score x:

PEPG(x) = Prob(H0|x,G) = πG0fG0(x)
πG0fG0(x) + πG1fG1(x)

(2)

where fG0(x) and fG1(x) are the pdfs of null and alternative distributions of group G, i.e.
the pdfs of the scores of incorrect and correct PSMs in the group, respectively, πG0 is the
proportion of incorrect PSMs in the group, and πG1 = 1 − πG0.
We deal with the situation in which the group G is so small that fG0(x), fG1(x) and

πG0 cannot be estimated directly. We assume that the whole set of PSMs is always large
enough such that f0(x), f1(x) and π0 can be accurately estimated out, e.g., using the
same algorithm as in PeptideProhpet. The rationale of our algorithm, transfer PEP, is to
make use of the relationship between the group and combined score distributions to help
estimate PEPG(x).

Estimation of πG0fG0(x)

When fG0 = f0, f0 is directly used as fG0. When fG0 �= f0, we establish a relationship
between them as follows. Define γG(x) = Prob(G|H0, s ≥ x), where s is the PSM score.
As we previously showed, γG(x) can be readily fitted as a linear function of x using
decoy PSMs, the given incorrect PSMs [21]. Let F0(x) and FG0(x) denote the cumulative
distribution functions (cdfs) of f0(x) and fG0(x), respectively. Bayes’ rule gives,
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γG(x) = Prob(G|H0, s ≥ x)

= Prob(G,H0)Prob(s ≥ x|G,H0)

Prob(H0)Prob(s ≥ x|H0)

= Prob(G,H0)(1 − FG0(x))
Prob(H0)(1 − F0(x))

= πGπG0(1 − FG0(x))
π0(1 − F0(x))

(3)

Thus,

πG0(1 − FG0(x)) = π0(1 − F0(x))γG(x)
πG

(4)

Taking the derivatives of both sides of Eq. (4), we have

πG0fG0(x) = −π0(γG(x))′(1 − F0(x)) + π0γG(x)f0(x)
πG

(5)

where πG is the ratio of group PSMs to all PSMs, which can be directly calculated.

Estimation of fG1(x) and πG0

When fG1 = f1, f1 is directly used as fG1. When fG1 �= f1, there is no established rela-
tionship available between them, and we estimate fG1(x) and πG0 using a semi-parametric
approach [10, 12]. In this approach, fG1(x) and πG0 are updated iteratively with an EM-
like procedure. When fG0 = f0 and fG1 = f1, πG0 is the only parameter that needs to be
estimated. In this case, we estimate it using the same iterative procedure, which reduces
to a standard EM algorithm in the simplest form.
Algorithm 1 outlines the main steps of our transfer PEP algorithm. In the algorithm,

the probability for each of the n group PSMs being correct is stored in a n-dimensional
vector, θG. In each iteration, πG1 is estimated by the average of θG. fG1(x) is estimated by
Gaussian kernels, K(·), with θG used as weights. Then, θG is updated using the current
πG1, fG1(x), and πG0fG0(x). The above procedure is repeated until θG becomes stable.

Equality judgement

In order to use the algorithm, we need to judge whether fG0 = f0 and fG1 = f1 in practice.
Define λG(x) = Prob(G|H1, s ≥ x). Then, we have the following two conclusions: (1)
fG0 = f0 if and only if γG(x) is a constant, and (2) fG1 = f1 if and only if λG(x) is a
constant. Take γG(x) as an example. If γG(x) is a constant γ , then by using Eq. (5), we have
fG0(x) = π0γ f0(x)

πGπG0
= Cf0(x), in which C is a constant. Because FG0(∞) = CF0(∞) = 1,

C = 1. Thus, fG0 = f0. On the other hand, when fG0 = f0, γG(x) = πGπG0
π0

, which is a
constant.
Whether γG(x) is a constant can be judged by examining whether the fitted γG(x) is

a horizontal line. Similar to γG(x), λG(x) can be estimated by the proportion of correct
matches belonging to the group:

λ̂G(x) = NGt(x)(1 − FDRG(x))
Nt(x)(1 − FDR(x))

= NGt(x) − NGd(x)
Nt(x) − Nd(x)

(6)

where FDRG(x) is the group FDR at score threshold x, NGt(x) is the number of target
PSMs in the group with scores > x, NGd(x) is the number of decoy PSMs in the group
with scores > x, Nt(x) is the number of target PSMs with scores > x, and Nd(x) is the
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number of decoy PSMs with scores > x. At varying x, we calculate the estimated value of
λG(x), and examine whether or not these values approximate some constant.

Algorithm 1 Transfer PEP
Input {xi}i=1...n � PSM scores in group G
Output πG0, fG0(x), fG1(x)

� π0,f0,f1 were estimated on the whole set of PSM scores.

� Estimation of πG0fG0(x)
1: if fG0 = f0
2: fG0(x) ← f0(x)
3: else
4: fit γG(x) using decoy PSMs � γG(x) = Prob(G|H0, s ≥ x)
5: t(x) ← −π0(γG(x))′(1−F0(x))+π0γG(x)f0(x)

πG
� t(x) = πG0fG0(x)

6: end if

� Estimation of fG1(x) and πG0
7: if fG1 = f1 fG1(x) ← f1(x) end if
8: θG ← #  »0.1 � Initialization
9: θ ′

G ← #»0 � Initialization
10: ε ← 0.001 � Initialization
11: while ||θG − θ ′

G||2 > ε do
� E-Step

12: πG1 ← 1
n

∑

i
θG,i

13: πG0 ← 1 − πG1
� M-Step

14: if fG0 = f0 t(x) ← πG0fG0(x) end if

15: if fG1 �= f1 fG1(x) ←
∑

i
θG,iK(

x−xi
h )

h
∑

i
θG,i

end if � Gaussian kernels

16: θ ′
G ← θG

17: for i ← 1 . . . n θG,i ← πG1fG1(xi)
πG1fG1(xi)+t(xi) end for

18: end while
19: πG1 ← 1

n
∑

i
θG,i

20: πG0 ← 1 − πG1
21: if fG0 �= f0 fG0(x) ← t(x)

πG0
end if

22: if fG1 �= f1 fG1(x) ←
∑

i
θG,iK(

x−xi
h )

h
∑

i
θG,i

end if

Results
In order to validate the performance of the transfer PEP algorithm, we must be able to
know the theoretical distribution of data so as to compare the estimated PEP to the the-
oretical PEP. However, the theoretical distribution is in general absent in the problem of
peptide identification. Therefore, we prepared three different types of data to evaluate the
accuracy and power of transfer PEP: (i) theoretical simulated data, (ii) simulated MS/MS
data of peptides, and (iii) real MS/MS data of peptides.
Three methods for estimating the group PEP of peptide identifications were compared:

combined PEP, separate PEP and transfer PEP. Combined PEP and separate PEP were
estimated on the whole set of PSMs and on the PSMs in the group only, respectively, using
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the semi-parametric method as used in the PeptideProphet algorithm [10]. Transfer PEP
was estimated using Algorithm 1 as described in the previous section.
Two criteria were used for evaluation: the consistency between the estimated PEP and

the theoretical PEP, and the consistency between the estimated FDR and the real FDR.
The estimated FDR was obtained by integration of the estimated PEP, and was used for
evaluation on MS/MS data because the theoretical PEP was not available for them. The
integrals of combined PEP, separate PEP and transfer PEP are denoted as iCombined FDR,
iSeparate FDR and iTransfer FDR, respectively. Note that iTransfer FDR is not the transfer
FDR which we proposed previously [21].

Theoretical simulated data

To evaluate the consistency between the estimated PEP and the theoretical PEP, we sim-
ulated sets of scores for the case fG0 �= f0 and fG1 �= f1 under the condition that
γG(x) = ax + b, in which a �= 0 and b �= 0. All the scores were divided into two com-
plementary groups: G and Q. Assume all the scores are greater than or equal to 0. From
Eq. (4) we have πG0 = bπ0

πG
. Bringing it into Eq. (5) yields

fG0(x) = −a(1 − F0(x)) + (ax + b)f0(x)
b

(7)

According to the definition of γG(x), we have Prob(G|H0) = γG(0) = b, and
Prob(Q|H0) = 1 − b. Because f0(x) = Prob(G|H0)fG0(x) + Prob(Q|H0)fQ0(x), we have

fQ0(x) = f0(x) − bfG0(x)
1 − b

(8)

Thus if γG(x) = ax + b and f0(x) are given, both fG0(x) and fQ0(x) are given as well.
In the simulation, we set γG(x) = −0.01x + 0.4 and f0(x) = Gamma(x, 0.96, 1.5), and

derived fG0(x) and fQ0(x) using Eq. (7) and Eq. (8), respectively. The total number of
scores were N = 15000. The proportion of incorrect scores (from null distribution f0)
was π0 = 0.65. Among the N0 incorrect scores, NG0 scores were generated from fG0(x)
with probability Prob(G|H0) = b = 0.4, and NQ0 = N0 − NG0 scores were generated
from fQ0(x) with probability Prob(Q|H0) = 1− b = 0.6. Among theN1 = N −N0 correct
scores (from alternative distribution f1), n (=1, 10, 20, 50, 100) scores were generated from
fG1(x) = N(9, 6) and N1 − n scores were generated from fQ1(x) = N(10, 6). The choice of
gamma and normal distributions to generate the incorrect and correct scores is because
they resemble the real distributions [10, 26]. Tomimic the target-decoy strategy,N0 decoy
scores were generated. Among them, NG0 scores were from fG0(x) and NQ0 scores were
from fQ0(x). This simulation was repeated S = 1000 times.

γG(x) was fitted as a linear function using the observed proportions of decoy scores
belonging to group G above threshold x, as shown in Fig. 1. Notice that big deviation
was observed at critical regions, i.e. large scores, which correspond to small FDRs and
we care the most. This deviation was caused by the random fluctuation of the proportion
calculated from very limited number of scores. The similar phenomenon was observed
onMS/MS data (Figs. 3, 5 and 8). The proportions for large scores should be extrapolated
from the fitted function. This is the very rational of transfer PEP.
Figure 2 shows the results of the three PEP estimation methods in one simulation in

which the number of scores from fG1(x) is n = 10. As shown in Fig. 2a, both πG0fG0(x)
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Fig. 1 The linear fitting result of γG(x) on the simulated data. The x-axis represents the score threshold and
y-axis represents the proportion of decoy scores belonging to group G above the threshold

and πG1fG1(x) estimated by combined PEP seriously deviated from the theoretical distri-
butions. The result of separate PEP was much better, but still had significant deviations at
some regions due to the insufficient sample size. Benefiting from the estimation of γG(x),
transfer PEP gave remarkably accurate estimates of both πG0fG0(x) and πG1fG1(x). The
group PEP curve estimated by the transfer PEP was also the most accurate among the
three methods, as shown in Fig. 2b.
To evaluate the average performance of each estimation method in the S simula-

tions, we calculated the mean and standard deviation (SD) of mean squared error (MSE)
between the estimates, ˆPEPG, and the theoretical values, PEPG, for top scores (Ratio =
1%, 5%, 10%, 20%, 100%). The MSE in the jth simulation for the given values of Ratio and
n (the number of correct scores generated from fG1(x)) is calculated as:

MSEj(n,Ratio) = 1
Nj

Nj∑

i=1

( ˆPEPG,i,j − PEPG,i,j
)2

where Nj denotes the number of top Ratio scores in the jth simulation, and ˆPEPG,i,j and
PEPG,i,j denote the estimated and theoretical PEPs of the ith score in the jth simulation,
respectively. Then, we compute the mean and SD of MSEs over the S simulations as:

Mean(n,Ratio) = 1
S

S∑

j=1
MSEj(n,Ratio)

SD(n,Ratio) =

√
√
√
√
√

1
S

S∑

j=1
(MSEj(n,Ratio) − Mean(n,Ratio))2

The quality of the estimates provided by the three estimation methods in the configu-
ration (n,Ratio) is measured by both Mean(n,Ratio) and SD(n,Ratio).
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Fig. 2 Example of results of the three PEP estimation methods in one simulation. a Estimated and theoretical
distributions. The dotted line represents πG0fG0(x) and the solid line represents πG1fG1(x). b Estimated and
theoretical PEPs

Table 1 shows the results. When the number of scores from fG1(x) was small (n =
1, 10, 20, 50), both the mean and SD of MSE were very large for the combined PEP, espe-
cially for the high-score regions. The separate PEPwasmuch better, but still deviated from
the theoretical PEPG when the number of scores from fG1(x)was too small (n = 1, 10, 20),
especially for the high-score regions. For all the configurations of Ratio and n, the trans-
fer PEP estimated the PEPG accurately. With increasing n and Ratio, the performances of
both the combined PEP and the separate PEP gradually approached the performance of
transfer PEP.

Simulated MS/MS data

We designed a simulation experiment for identification of variant peptides, i.e. peptides
containing single amino acid variations. The simulated MS/MS spectra used here were
part of the data used in [19].
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Table 1 The PEP estimation errors of three methods on the simulated data

Method
Ratio=1% Ratio=5% Ratio=10% Ratio=20% Ratio=100%

Mean SD Mean SD Mean SD Mean SD Mean SD

n=1 Combined 71.88 4.53 33.75 3.08 19.75 1.89 10.71 1.02 2.27 0.20
Separate 7.02 5.67 1.81 1.46 0.98 0.80 0.52 0.43 0.11 0.09
Transfer 4.33 4.14 1.21 1.14 0.68 0.64 0.37 0.35 0.08 0.08

n=10 Combined 56.71 3.54 31.91 2.75 18.93 1.76 10.31 0.96 2.19 0.19
Separate 4.86 4.20 1.38 1.20 0.76 0.66 0.41 0.36 0.09 0.08
Transfer 2.78 2.70 0.89 0.90 0.51 0.52 0.28 0.29 0.06 0.06

n=20 Combined 41.11 3.75 29.73 2.59 18.00 1.74 9.87 0.98 2.11 0.19
Separate 3.78 3.41 1.24 1.13 0.70 0.65 0.38 0.36 0.08 0.08
Transfer 2.00 1.88 0.76 0.81 0.46 0.49 0.26 0.28 0.06 0.06

n=50 Combined 8.41 3.62 25.67 2.14 16.36 1.53 9.10 0.86 1.95 0.17
Separate 2.04 1.51 1.02 0.90 0.59 0.54 0.33 0.31 0.07 0.07
Transfer 1.01 0.81 0.66 0.70 0.41 0.44 0.23 0.26 0.05 0.06

n=100 Combined 0.03 0.05 19.10 1.68 13.77 1.36 7.87 0.78 1.70 0.15
Separate 0.13 0.23 0.80 0.66 0.47 0.41 0.26 0.23 0.06 0.05
Transfer 0.05 0.07 0.49 0.50 0.32 0.35 0.19 0.21 0.04 0.05

Notes: Mean and SD, the mean and standard deviation of mean squared errors (MSEs) of estimates; n, the number of correct
scores in group G; Ratio, the percentage of top scores whose MSEs were evaluated

A total of 1,038,743 random tryptic peptide sequences were first generated. These pep-
tides served as the non-variant peptides in the database to be searched. Then for each
of these peptides, a variant peptide was generated by mutating one randomly selected
amino acid of the peptide. Amino acids Isoleucine and Leucine were not allowed to be
mutated between each other, and the peptide C-terminals were not allowed for muta-
tion. The combination of these non-variant and variant peptides constituted the target
database that was searched.
The simulated MS/MS spectra were composed of three parts: 20,000 variant spectra,

20,000 non-variant spectra and 80,000 noise spectra. The variant and non-variant spectra
were theoretically generated from variant and non-variant peptides, respectively, which
were randomly selected from the target database. The noise spectra were generated from
additional sequences that were out of the target database.
In spectrum simulation, the mass-to-charge ratio (m/z) values of singly charged frag-

ment ions of b and y types were predicted. The intensities of the fragment ions are
randomly sampled from the uniform distribution. A number of noise peaks were gener-
ated and combined with fragment ions to form theMS/MS spectrum of the peptide.More
details about the method to generate the simulated spectra can be found in Ref [14].
In each experiment, a dataset was constructed by including n(=1, 5, 10, 20, 50, 100)

randomly selected variant spectra and 15000 randomly selected non-variant and noise
spectra. The experiment was repeated 1000 times.
Mascot(v2.5.1) [27] was used as the search engine. Trypsin was specified as the pro-

teolytic enzyme and no missed cleavage was allowed. The precursor and fragment mass
matching tolerances were both 0.01 Da. No fixed or variable modifications were set for
search. The database was searched in the target-decoy strategy by combining the target
sequences with their reversed versions.
Figure 3 gives examples of the linear fitting results of γG(x) and λG(x). As shown, γ̂G(x)

is closely around the constant 0.5, and λ̂G(x) is closely around the constant 0.1. Thus, it
was assumed that fG0 = f0 and fG1 = f1 held.
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Fig. 3 Examples of linear fitting results of a γG(x) and b λG(x) in the variant-peptide identification simulation
study. The x-axis represents the score threshold, and the y-axis represents a the proportion of decoy variant
PSMs among all decoy PSMs, or b the estimated proportion of correct variant PSMs among all variant PSMs
above the score threshold x

Figure 4 plots the estimated iCombined FDR, iSeparateFDR and iTransfer FDR against
the real FDR at different FDR control levels (1–10%) for different group size n of variant
spectra. As shown, iTransfer FDR was closest to the real FDR among the three estimates.
Both iCombined FDR and iSeparate FDR remarkably deviated from the real FDR when
the number of variant spectra was small. iSeparate FDR gradually approached to iTransfer
FDR with increasing n, but iCombined FDR didn’t.
Table 2 compares the three FDR estimation methods, in terms of the mean and SD of

the estimation errors as well as the average numbers of all and false variant PSMs obtained
at 1% FDR control level. As shown, iCombined FDR dramatically deviated from the real
FDR. iSeparate FDR was much better, but still deviated from the real FDR when the num-
ber of variant spectra was small (n = 1, 5, 10, 20). The results of iCombined and iSeparate
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Fig. 4 Comparison between the estimated and real variant FDRs at different FDR control level (1–10%) in the
simulation study. The black dotted line represents y = x. Being close to or under the dotted line indicates
that the FDR was successfully estimated or controlled

FDR gradually approached to those of iTransfer FDR with increasing n. iTransfer FDR
was the best among these three methods for all the numbers of variant spectra.
As the size of the group increases, the advantage of transfer PEP over other methods

decreases. When the group size is large enough, the advantage vanishes. However, it is
hard to say there is a fixed threshold at which the advantage disappears. It depends on the
problem addressed, the dataset analyzed and other experimental conditions. According
to our results, our method seems to be most effective when the group size is <50, and
become comparable with other methods when the group size is >100.

Table 2 Results achieved with the three methods for estimating variant FDRs on simulated data,
with the FDR control level at 1%

n

iCombined FDR iSeparate FDR iTransfer FDR

Ave.#I.D.s Est.error(%) Ave.#I.D.s Est.error(%) Ave.#I.D.s Est.error(%)

(false/all) Mean SD (false/all) Mean SD (false/all) Mean SD

1 10.22/10.70 -94.36 5.13 0.21/0.55 -16.95 34.64 0.00/0.25 0.00 0.02

5 10.76/13.09 -80.95 8.84 0.30/2.05 -11.09 20.57 0.00/1.24 0.01 0.07

10 10.09/14.87 -66.43 9.50 0.60/4.17 -12.92 11.63 0.00/2.50 0.04 0.14

20 10.90/20.57 -51.64 9.08 0.72/ 8.07 -8.86 6.31 0.00/5.30 0.08 0.19

50 10.53/34.44 -29.25 6.87 0.73/19.07 -3.60 2.57 0.00/13.28 0.20 0.27

100 10.67/58.64 -17.09 4.54 0.73/38.27 -1.43 1.25 0.00/27.40 0.42 0.35

Note: n, the number of variant mass spectra; Ave.#I.D.s, average number of false/all identifications of variant peptides from the
target database at 1% estimated FDR; Est.error, the difference between the estimated FDR and the real FDR; Mean and SD, mean
and standard deviation of the Est.error as percentage
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Real MS/MS data

In this section, we compared the three PEP estimation methods on a real MS/MS dataset.
The objective judgement of the identification correctness is absent, so we used the trans-
fer FDR [21] as the comparative reference. Two datasets were used for identification of
methylated peptides and variant peptides, respectively.

Methylated peptide identification

The MS/MS spectra in this dataset were from the draft map of human proteome
described in Kim et al. [28], and were downloaded from the PRIDE data repository
(https://www.ebi.ac.uk/pride/, dataset identifier PXD000561). Briefly, this draft map was
from protein samples of 30 human tissues which were analyzed on high-resolution
Fourier-transform mass spectrometers using HCD fragmentation. In this paper, only the
spectra of brain tissue were analyzed which included 24 RAW files.
Mascot(v2.5.1) [27] was used to identify the spectra. The protein sequence database

searched was UniProt human protein database (v201506). All cysteines were assumed
to be carbamidomethylated, and methionines were allowed to be oxidized. N-termini of
peptides starting with glutamine residues were allowed to be pyroglutamined. N-termini
of proteins were allowed to be acetylated. Both lysines and arginines were allowed to be
methylated. Precursor and fragment mass matching tolerances were set as 10 ppm and
0.05 Da, respectively. Trypsin was specified as the proteolytic enzyme and up to two
missed cleavages were permitted.
The linear fitting results of γG(x) and λG(x) are shown in Fig. 5. We can see that γ̂G(x)

varies in the interval [0,0.5], and λ̂G(x) is almost constant at 0.0028. Thus, we assumed
fG0 �= f0 and fG1 = f1.
Figure 6 shows the numbers of identified methylated PSMs after filteration by the three

FDR methods (iCombined FDR, iSeparate FDR and iTransfer FDR) at different FDR con-
rol levels (1–10%). Figure 7a shows the consistency of the three methods with transfer
FDR. It is clear that iTransfer FDR was the most conservative and consistent with transfer
FDR, iSeparative FDR was comparable but a little liberal, and iCombined FDR seriously
underestimated the FDR.

Variant peptide identification

The data used for identification of variant peptides, i.e. peptides containing single amino
acid variations, was part of a colorectal cell line dataset, which has been described in detail
in Li et al. [24]. Proteins were digested by trypsin and analyzed on an LTQ-Orbitrap mass
spectrometer. Only the spectra of SW480 sample were analyzed in this paper.
Mascot(v2.5.1) [27] was used to identify the spectra. The protein sequence database

searched wasMS-CanProVar(v1.0) [24], which can be downloaded from http://canprovar.
zhang-lab.org/. All cysteines were assumed to be carbamidomethylated, and methionines
were allowed to be oxidized. N-termini of peptides starting with glutamine residues were
allowed to be pyroglutamined. Precursor and fragment mass matching tolerances were
set as 10 ppm and 0.5 Da, respectively. Trypsin was specified as the proteolytic enzyme
and two missed cleavages were permitted.
The linear fitting results of γG(x) and λG(x) are shown in Fig. 8. Accordingly, we

assumed fG0 �= f0 and fG1 = f1 for this dataset. With the FDR control level set at
1%, 42, 36 and 32 variant PSMs were obtained by iCombined, iSeparate, and iTransfer

https://www.ebi.ac.uk/pride/
http://canprovar.zhang-lab.org/
http://canprovar.zhang-lab.org/
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Fig. 5 The linear fitting results of a γG(x) and b λG(x) on the human proteome draft dataset. The x-axis
represents the score threshold, and the y-axis represents a the proportion decoy methylated PSMs among all
decoy PSMs, or b the estimated proportion of correct methylated PSMs among all methylated PSMs above
the score threshold x

Fig. 6 The numbers of methylated PSMs obtained with the three FDR methods at 0–10% FDR control level
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Fig. 7 Comparison of the three FDR estimation methods with the transfer FDR in the amethylated peptides
and b variant peptides identification studies

Fig. 8 The linear fitting results of a γG(x) and b λG(x) on the colorectal cell line dataset. The x-axis represents
the score threshold, and the y-axis represents a the proportion decoy variant PSMs among all decoy PSMs, or
b the estimated proportion of correct variant PSMs among all variant PSMs above the score threshold x
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FDRs, respectively. Figure 7b shows that, similar to the result of methylated peptide
identification, iTransfer FDR was the most consistent with transfer FDR.

Conclusions
In this paper, we have presented transfer PEP, the first solution to the problem of PEP
estimation for small groups of peptide identifications in proteomics. By using the empir-
ical relationship between the combined null distribution and the group null distribution
of identification scores, transfer PEP makes possible accurate PEP estimation for data
of very limited sample size. The small groups are not uncommon in proteomics. For
example, when one focuses on identifying amino acid mutations [19] or open search-
ing of PTMs [22, 29], the concerned group is often very small, typically <50. Given
the group null distribution, transfer PEP uses an iterative semi-parametric method to
estimate the group alternative distribution and the null proportion. Because kernel den-
sity estimation is used, transfer PEP does not require the distribution forms to be
known and thus is applicable to different scoring functions. The performance of trans-
fer PEP was validated on both the simulated data and the real mass spectra datasets.
Compared with the combined and separate PEPs, transfer PEP showed much more accu-
racy in estimating the PEP of small groups without loss of power. Estimation of PEP
enables evaluation of the confidence of individual peptide identifications, which is desir-
able in many circumstances, e.g. protein inference [30]. Finally, it is worthwhile to note
that transfer PEP is in principle adaptable to the small-group PEP estimation prob-
lems in other fields, as long as γG(x) can be estimated, which is not limited to the
linear form.
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