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Abstract
Background: Feature screening plays a critical role in handling ultrahigh dimensional
data analyses when the number of features exponentially exceeds the number of
observations. It is increasingly common in biomedical research to have case-control
(binary) response and an extremely large-scale categorical features. However, the
approach considering such data types is limited in extant literature. In this article, we
propose a new feature screening approach based on the iterative trend correlation
(ITC-SIS, for short) to detect important susceptibility loci that are associated with the
polycystic ovary syndrome (PCOS) affection status by screening 731,442 SNP features
that were collected from the genome-wide association studies.
Results: We prove that the trend correlation based screening approach satisfies the
theoretical strong screening consistency property under a set of reasonable conditions,
which provides an appealing theoretical support for its outperformance. We
demonstrate that the finite sample performance of ITC-SIS is accurate and fast through
various simulation designs.
Conclusion: ITC-SIS serves as a good alternative method to detect disease
susceptibility loci for clinic genomic data.

Keywords: Feature screening, Ultrahigh dimensionality, Sure screening consistency,
Categorical data analysis, GWAS

1 Background
Ultrahigh dimensional data with binary response and categorical features has become
increasingly prevalent in various fields. Applications using such data exist in genome-
wide association studies (GWAS), medical imaging, finance, text mining, among others
[1, 2]. The most prevailing gene selection approaches used in genome-wide association
studies consider an association of each of the genetic variant using univariate models (i.e,
single-SNP models); however, they evaluate the association of each SNP in isolation from
the others and hence ignore combined joint effects of multi-loci [3–7]. As a matter of fact,
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most complex diseases are reported to be mediated through multiple genetic variants,
each conferring a small or moderate effect with low penetrance, which obscures the indi-
vidual significance of each variant [8, 9]. Furthermore, 70 − −80% of genomes showing
regions of high linkage disequilibrium (LD), which is the nonrandom association of alle-
les at nearby loci [10–12]. Malo et al. (2008) claimed that single-SNP approaches failed
to differentiate truly influential SNPs from spurious SNPs that were merely in LD with
the influential SNPs [13]. Therefore, although widely used in GWAS data analyses for its
simplicity, single-SNP models have limited power and yield both high false-positive and
false-negative results [13–15].
Many joint models can be applied to analyze the association between categorical fea-

tures and binary response if the dimension is moderate. For example, random forests
[16, 17], k-nearest neighbors [18], and support vector machines [19, 20], etc. However,
these methods may lose power or become increasingly unstable, and hence intractable,
as the dimension of feature space becomes ultrahigh [21]. To fully address the joint effect
of multi-loci together with confounding caused by LD for high dimensional data, the
penalized regression approaches have been well established and widely used in gene selec-
tions [13, 22, 23]. Through intensively investigating 48 different settings with varied LD
strength, minor allele frequency, and dimensionality, Michelle et al. empirically verified
that the running time and selection success rates decreased dramatically as the dimen-
sion of SNPs is greater than 1000 and even worse for 10,000 when applying a multiple
logistic penalized ridge regression to gene selection [15]. Furthermore, the computational
expediency, statistical accuracy and theoretical disadvantages of penalized regression
approaches were concerned for ultrahigh dimensional data analyses [21, 24], which rep-
resent the true need for genome-wide association studies. As commented by Fan et al.
[21, 25], the fundamental challenges of big data come from the accumulation of aggre-
gate error rates due to a preponderance of noise features. Actually the majority of the
information in ultrahigh dimensional data is represented by only a small amount of truly
influential features.
Feature screening has garnered considerable attention in recent statistic literature. It

filters out a substantial amount of noise features to truly reflect the sparsity principle
of the ultrahigh dimensional data. In their seminal paper, Fan and Lv established the
underpinnings for what they termed sure independent screening (SIS) and introduced
the conceptual framework of the bulk of feature screening literature that come thereafter
[26]. Even though many approaches stemming from [26] relaxed the model specification
assumptions (see an overview in [27]), many existing SIS-based procedures still tacitly
require that the feature variables and the response are continuous [28–31]. Notably, this
implicit presupposition of continuity of the variables can be limiting in several application
directions, for example in GWAS area.
Motivated by a polycystic ovary syndrome (PCOS) data with 4,099 observations (1,043

cases and 3,056 controls) and 731,442 single nucleotide polymorphisms (SNPs) (p >> n),
in this article we propose a new feature screening method based on the iterative trend
correlation (we call it ITC-SIS for short). We prove that trend correlation based strong
independence screening (TC-SIS) satisfies the strong screening consistency property
under a set of reasonable conditions, which is a much stricter criterion than the generally
proved sure screening property. Since TC-SIS is a marginal approach, the iterative process
on TC-SIS is applied to detect the multi-loci effect each having weak main effects, and
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separate the individual variants that are truly influential from those confounding spuri-
ous variants that are irrelevant to the response but highly correlated with the causative
loci due to LD.
There are three existing methods in the statistic feature screening literature that also

admit a binary response and categorical features for ultrahigh dimensionality: the max-
imum marginal likelihood estimator based approach (MMLE-SIS) [32], the distance
correlation based approach (DC-SIS) [24], and the Pearson’s chi-squared test based
approach (PC-SIS) [2]. We compare TC-SIS with these three most relevant methods and
demonstrate that TC-SIS has agreeable accuracy and speed in handling the motivated
setting with categorical feature and binary outcome through various finite sample simula-
tion studies. We also demonstrate the ITC-SIS indeed improves TC-SIS through iterative
process.

2 Methods
2.1 Some preliminaries

Trend correlation was applied to measure association between two categorical variables
[33, 34]. Specifically, let Y be the response variable and Xj, j = 1, . . . , p, be the jth categor-
ical feature variable. Define v(j)

k be the numeric score assigned to each level of Xj, where
k = 1, . . . ,Kj. Here p is the total number of features and Kj is the number of levels for Xj,
for which we allow for various number of levels for different features. Letm = 0, 1 be the
encoding of the case-control response Y .
The trend correlation �j between the response Y and featureXj is defined as follows [35]
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where

p(j)
k = P(Xj = k), pm = P(Y = m), p(j)

km = P(Xj = k,Y = m)

are the frequencies of each level of the feature, response, and individual cell of the contin-
gency table, respectively. We are motivated to utilize � as a feature screening procedure
because it possesses the rather salient property of being equal to zero if and only if the
two involved variables are independent [35].

2.2 A new independence ranking and screening procedure

Here we describe the details of the proposed TC-SIS screening procedure. For a sample
of n observations, we will denote the sample mean score of Xj by v̄(j) and sample mean of
Y as Ȳ . We then estimate the trend correlation between Xj and Y as [35]
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km

∣
∣
∣
∣
∣

√
√
√
√

(
Kj∑

k=1
(v(j)

k − v̄(j))2p̂(j)
k

)( 1∑

m=0
(m − Ȳ )2p̂m
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where p̂(j)
km, p̂

(j)
k , and p̂m represent the sample proportions that are used to estimate the

corresponding population proportions p(j)
km, p

(j)
k , and pm, respectively.

When the features are ordinal, we can interpret �̂j as estimating the linear trend between
Xj and Y, e.g., an increase in the observed level of Xj tends to be associated with decreas-
ing or increasing levels of Y [35]. Therefore, it is suggested that the ordering of and the
distance between the v(j)

k scores conform to those of the categorical levels.
The sparsity principle of ultrahigh dimensional data indicates that only a small number

of the features truly influence the response. Define SF as the set of the full model, i.e.,
all features in the candidate pool. Let S be a subset of SF , i.e., an arbitrary model under
consideration.
We use �̂j as a marginal utility to rank the importance of each Xj according to its associ-

ations with the response, where higher �̂j values correspond to stronger association. Note
that �̂j is non-negative because the absolute values are used in the numerator. As a output
of the TC-SIS feature screening procedure, the selected model are given by

Ŝ = {j : �̂j > c, for 1 ≤ j ≤ p}, (3)

where c is a pre-specified threshold value.
The aim of feature screening is to select the true model or at least select a model that

contains the true model. As a matter of further notation, we will denote the true model
by ST and the selected model output from TC-SIS by Ŝ .

2.3 Theoretical properties

In this section the theoretical properties of the proposed independence screening pro-
cedure TC-SIS will be studied. We first define two conditions to facilitate the technical
proofs:
(C1) Bounds on the standard deviations. Assume that there exists a positive constant

σmin such that for all j,
min(σj, σY ) ≥ σmin > 0.

This excludes unusual or unreasonable features that are constant and hence have a
standard deviation of zero. It should further be noted that an upper bound on σj
and σY can also be obtained, by use of Popoviciu’s inequality on variances (see [36]):

max(σj, σY ) ≤ σmax = max
{
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.

(C2) Lower bound on the covariance. Assume that �j = 0 for any j �∈ ST . Assume that
there exists a positive constant ωmin such that

min
j∈ST
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which indicates that the correlation between each truly influential feature and the
response is not trivial.

When these two conditions are satisfied, we can establish the following theorems that
support the strong screening property for the TC-SIS procedure.

Theorem 1 (Sure Screening Property). Under condition (C1) and removing from (C2)
only the assumption that �j = 0 for any j �∈ ST , there exists a positive constant c > 0 such
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that

P

(

ST ⊆ Ŝ
)

→ 1 asn → ∞.

(However, P
(

Ŝ ⊆ ST
)

may not converge to 1 as n approaches infinity).

Theorem 2 (Strong Screening Consistency). Given conditions (C1) and (C2), there exists
a positive constant c > 0 such that

P

(

Ŝ = ST
)

→ 1 asn → ∞.

The property of strong screening consistency is much harder to achieve than the (weak)
sure screening property because it not only guarantees that the true model is contained in
the selected subset, but also ensures that the selected subset is the minimum one contain-
ing the true model asymptotically. The proofs of these two theorems are presented in the
Supplement file. In addition to the aforementioned two theorems, we also draw two
corollaries, which are not themselves related to sure screening, but they are nevertheless
important conclusions related to the screening criterion of the TC-SIS method.

Corollary 1 There exists a positive value �min > 0 such that for any j ∈ ST , we have
�j > �min > 0. This will be shown in Step 1 of the proofs of Theorems 1 and 2.

Corollary 2 The estimator �̂j converges uniformly in probability to �j. In other words,

P

(

max
1≤j≤p

|�̂j − �j| > ε

)

→ 0 asn → ∞

for any ε > 0. This will be shown in Step 2 of the proofs of Theorems 1 and 2.

2.4 Iterative process

Although the proposed TC-SIS approach is powerful at filtering out noise and selecting
the truly influential features for high dimensional setting of p > n, it may neglect some
important features that are jointly associate with the response but have weak individual
effects. Furthermore, as a marginal approach, it may rank highly some unimportant SNPs
that are spuriously correlated with the response due to their strong collinearity with other
influential features [26, 37]. To overcome these shortcomings, we use the iterative process
to address possible complex situations of SNPs that can exist.
The main difference between TC-SIS and ITC-SIS is that TC-SIS finalizes the first d

members ofXŜ by only one step while IDC builds upXŜ gradually with several steps [37],
i.e. XŜ = XŜ1

⋃
. . .

⋃
XŜk

, with d = d1 + d2 + . . . + dk , where XŜi
stands for the SNPs

selected at ith step and di is the number of SNPs for each setXŜi
, for i = 1, . . . , k. Themain

idea of ITC-SIS is to iteratively adjust residuals obtained from regressing all remaining
SNPs onto the selected ones contained in XŜ . Regressing unselected on selected, and
adjusting residuals, effectively breaks down original complex correlation structure among
SNPs. The iterative steps of ITC-SIS can be summarized as:

• Step 1: Use �̂j, j = 1, . . . , p to rank all SNPs based on their individual trend
correlations with the response, and then input the first d1 members into XŜ(

i.e.XŜ = XŜ1

)

, where d1 < d.
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• Step 2: Define Xr =
{

In − XŜ

(

XT
Ŝ
XŜ

)−1
XT

Ŝ

}

XC
Ŝ
, where XC

Ŝ
is the complement set

of XŜ . Then choose the second d2 members into XŜ

(

i.e.XŜ = XŜ1

⋃
XŜ2

)

using
TC-SIS to rank all candidates of Xr for Y, where d1 + d2 ≤ d.

• Step 3: repeat step 2 until the size of XŜ reaches the pre-specified number d.

See more details of the iterative process from Zhong et al. [37].
We refer the reader to an example of a single gene with strong SNP.

3 Results
In this section, we assess the performance of TC-SIS by four empirical Monte Carlo
simulation studies under various designs, and also a real data analysis examining the
genome-wide association studies on PCOS affection status. We evaluate the performance
of the screening procedures through the following three criteria [24]:

• Average MinimumModel Sizes
(

|M̂|
)

: The average of the minimum number of
features that are required by each screening procedure to select all truly influential
features across all simulation replicates. The closer to the true model size for the
estimated |M̂| is, the better the screening procedure is determined to be.

• Individual Success Rates
(

PXi

)

: The proportion of each truly influential feature is
correctly selected by the screening method within the threshold d across all
simulation replicates. This requires that the screening score of each truly influential
feature ranks within the top d among all p features.

• Simultaneous Success Rates (Pa): The proportion of replicates in which all of the
truly influential features are simultaneously selected by the screening method within
the threshold d. This requires that the screening scores of all truly influential features
rank within the top d among all p features. The closer to one that this proportion is,
the better the screening procedure is determined to be.

3.1 Simulation study 1

In this Simulation Study we directly adopt a published real genome-wide association
data collected from rice accessions, including 36,901 SNPs and 272 samples [38]. We set
the first five SNPs as the truly influential ones, and notice that the correlations among
them are complex, ranging from 0.19 (slightly correlated) to 1 (perfectly correlated). The
remaining 36,896 SNPs serve as confounding noise, representing a complicated genome
simulation setting. We design a joint effect of these five loci by generating the response
from a multiple logistic regression model as

log
P(Y = 1)

1 − P(Y = 1)
= Xβ + ε,

where the residual term ε is generated fromN(0, 1). The coefficients of the five influential
SNPs, βi(i = 1, ...5), are randomly selected from a mixed Gaussian distribution:

βi ∼ N(5Zi, 1), where Zi = {−1, 1} ∼ Bernoulli(0.5).

In Simulation Study 1, we replicate each simulation 100 times, and compare four meth-
ods: DC-SIS, MMLE-SIS, TC-SIS, and ITC-SIS. For ITC-SIS, d1 is set to be 6, k = 2, and
d2 = d − d1. The results are summarized in Table 1. Given each of the same thresholds,
TC-SIS achieves higher individual success rates than DC-SIS and MMLE-SIS. However,
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Table 1 Success rates of four feature screening approaches in selecting each and all truly influential
feature Xj within thresholds d = 20, 40, 60 for Simulation Study 1

d = 20

Pa |M̂| PX1 PX2 PX3 PX4 PX5 Run Time

DC-SIS 0 20927.89 0.45 0.46 0.27 0.60 0.48

MMLE-SIS 0 13982.14 0.77 0.78 0.25 0.39 0.78

TC-SIS 0.03 28202.48 0.99 0.67 0.29 0.77 0.45 5.042s

ITC-SIS 0.22 31.69 1.00 0.99 0.47 0.76 0.99 11.025s

d = 40

Pa |M̂| PX1 PX2 PX3 PX4 PX5 Run Time

DC-SIS 0 20927.89 0.54 0.55 0.30 0.61 0.56

MMLE-SIS 0 13982.14 0.79 0.79 0.27 0.39 0.79

TC-SIS 0.03 28202.48 0.99 0.67 0.31 0.77 0.45 5.042s

ITC-SIS 0.89 31.69 1.00 1.00 0.95 0.94 1.00 11.025s

d = 60

Pa |M̂| PX1 PX2 PX3 PX4 PX5 Run Time

DC-SIS 0 20927.89 0.61 0.62 0.31 0.62 0.63

MMLE-SIS 0 13982.14 0.79 0.79 0.27 0.39 0.79

TC-SIS 0.03 28202.48 0.99 0.67 0.31 0.78 0.45 5.042s

ITC-SIS 0.94 31.69 1.00 1.00 0.97 0.97 1.00 11.025s

the simultaneous success rates of all the first three methods are all very low (close to zero)
because they are trapped by a couple of influential loci each having very weak individ-
ual effect but associating with the response by joint effects with other loci. Therefore,
a large amount of confounding SNPs that are not actually associated with the response
but appear to be important because of their high LDs with the other loci act as a role
to confuse the individual/marginal approaches (the first three) to include 13000 SNPs on
average to locate all of the five true loci. Compared to these three individual approaches,
ITC-SIS requires an average model size of only 31.69 to simultaneously select all of the
five truly influential loci from 36,901 SNP candidates across the 100 simulation replicates.
It is a striking improvement because 31.69 is only 2 thousandth (0.002) of the model size
needed by the first three approaches. It indicate that the iterative process is very effective
in successfully detecting the true multi-loci without being trapped by spurious associa-
tions caused by LD. The running time of one replicate for ITC-SIS is around 11 seconds
on a MacBook Pro with 2.2 GHz Intel Core i7 and 16GB RAM.
For each of the following three simulation designs, we fix the sample size, n, to be 200

and set the number of features, p, to be 5,000. We replicate each simulation 500 times
and compared four approaches, MMLE-SIS, DC-SIS, PC-SIS, and TC-SIS. To be fair, we
compared only these four marginal approaches without applying iterative process for any
of them.

3.2 Simulation study 2

Each observation of the response, Yi, will be generated by a Bernoulli process with P(Y =
1) = py, where py ∼ Unif(0.05, 0.95) is chosen anew for each replicate of the simulation.
We design the first ten features to be truly associated with the response Y, i.e., ST =
{1, . . . , 10}. Similar to Example 1 of [2], we generate these first ten features as

{

Xij | Yi = m
} ∼ Binomial

(

2,πmj
)

; m = 0, 1; j ∈ ST , i = 1, . . . , n,
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with the values of πmj being given by Table 2. This means that each causative Xj will take
on values of 0, 1, or 2 (representative of three ordinal levels, with 0 ≺ 1 ≺ 2). For any
j �∈ ST , we generate Xj ∼ Binomial

(

2,πj
)

with πj ∼ Unif(0.05, 0.95). The value of πj is
chosen anew with each replicate of the simulation. This means that these non-causative
features will have no association with Y.
The results are summarized in Table 3. For this simulation, TC-SIS results in the small-

est average model size of 54.674 to contain all the ten truly influential features, which is
ten features less than the next closest method (DC-SIS for 64.990). The average minimum
model sizes of PC-SIS and MMLE-SIS nearly double or triple that required by TC-SIS,
respectively. In the case of TC-SIS versus MMLE-SIS, the individual success rates are at
times nearly fourfold more favorable towards our method.

3.3 Simulation study 3

Inspired by the concept of discretization of a continuous random variable as found in
Example 3 of [2], we connect the influential features with the response via an indirect way.
Similar to Simulation Study 2, we generate the response Yi from a Bernoulli process with
P(Yi = 1) = py, where py ∼ unif(0.05, 0.95) is again chosen anew for each replicate of the
simulation. Given Yi = m, we generate a latent variable Zij independently distributed as
N(Yi, 1) for the first ten truly influential features j ∈ ST . The first ten influential features
Xij are then discretized from Zij based on the cutoffs

(

κLj, κUj
)

listed in Table 4 as:

Xij =

⎧

⎪⎨

⎪⎩

0 ifZij < κLj,
1 ifκLj ≤ Zij ≤ κUj, i = 1, . . . , n; j = 1, . . . , 10.
2 ifZij > κUj.

These cutoffs in Table 4 are set to establish weaker associations between the response
Y and each of the influential feature to increase the difficulty level in recognizing the true
model. It should be noted that this method of generating the truly influential features
results in a trend association between each of the truly influential feature and response:
namely, lower values ofXj are associated with Y = 0 and higher values ofXj are associated
with Y = 1. For any j �∈ ST , we generate Xj ∼ Binomial

(

2,πj
)

with πj ∼ Unif(0.05, 0.95).
The results are summarized in Table 5. TC-SIS here results in the smallest average min-

imum model size of 112.627 to get the true model. This leads us to the conclusion that
TC-SIS does a better job than other approaches at avoiding ballooning models. Of espe-
cial note here, MMLE-SIS fails on average to produce a selected model smaller than the
sample size of n = 200 and its success rates are at many times less than 0.1 (versus 0.8
of TC-SIS). These results demonstrate the capability of TC-SIS to obtain excellent results
when trend correlation exists between the feature and response. The performance of
DC-SIS is comparable in the success rates but at the cost of a relatively larger model.

Table 2 Values of πmj used to simulate data in Simulation Study 2

πm1 πm2 πm3 πm4 πm5 πm6 πm7 πm8 πm9 πm,10

Y = 0 0.3 0.4 0.6 0.7 0.2 0.4 0.3 0.8 0.4 0.2

Y = 1 0.6 0.1 0.1 0.4 0.8 0.7 0.9 0.2 0.7 0.6
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Table 3 Success rates of four feature screening approaches in selecting each truly influential feature
Xj within thresholds d = 15, respectively for Simulation Study 2

d = 15

|M̂| X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
MMLE-SIS 150.340 0.384 0.746 0.756 0.404 0.822 0.844 0.354 0.742 0.320 0.400

DC-SIS 64.990 0.900 0.984 0.990 0.898 0.998 0.998 0.894 0.984 0.888 0.894

PC-SIS 93.018 0.862 0.974 0.980 0.864 0.994 0.998 0.860 0.966 0.854 0.862

TC-SIS 54.674 0.916 0.988 0.994 0.922 1.000 0.998 0.912 0.982 0.904 0.908

3.4 Simulation study 4

In this simulation, we generate the sample data using a logistic regression model, which
is the fundamental basis of MMLE-SIS. We first generate each feature Xj (1 ≤ j ≤ p) by
uniformly sampling from the set {0, 1, 2} with equal probability. We then connect a binary
response Y with the first five features by letting

Li =
5

∑

j=1

[

I
(

Xij = 0
) × βXj=0 + I

(

Xij = 1
) × βXj=1 + I

(

Xij = 2
) × βXj=2

]

,

and using
P (Yi = 1|Xi) = 1

1+exp(−Li) ,
to sample the binary response. The coefficients βXj=k are as given in Table 6. The results

are summarized in Table 7. For this example, we once again obtain a smaller required
average minimum model size than DC-SIS and PC-SIS (46.470 for DC-SIS, 93.270 for
PC-SIS, as compared to 41.976 for TC-SIS). Unlike the first two examples, MMLE-SIS
recoups its earlier collapses and matches TC-SIS nearly perfectly in both success rates
and average minimum model sizes in Example 3. Although it is the specific strength of
MMLE-SIS to handle logistic regression model, TC-SIS still produces results abreast with
that of MMLE-SIS. In addition, it should be noted that since MMLE-SIS requires solving
an optimization problem to produce its screening statistics, TC-SIS is significantly faster
in computational run time. Thus, when run time is an issue, we suggest the use of TC-SIS
over MMLE-SIS, even when the logistic regression model holds.

3.5 Real data analyses

We apply the proposed ITC-SIS screening procedure to a clinical dataset pertaining to
the genome-wide association studies on the PCOS affection status (dbGaP Study Acces-
sion: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000368.
v1.p1). This data consists of 4,099 subjects (1,043 cases and 3,056 controls) and 731,442
SNPs. The goal of this analysis is to identify the most influential susceptibility loci that
affect PCOS status for European Caucasian population. The response for this data is
PCOS affection status (binary) and the features are the encoded SNP genotype values
(categorical), which exactly represents a problem that the ITC-SIS is originally motivated.

Table 4 Values of (κLj , κUj) used to simulate data in Simulation Study 3

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

κLj 0 0 0.2 0 -0.2 0.2 0 0.1 -0.2 0.2

κUj 0.7 1 0.8 0.9 1.2 1 1 1 1.2 0.8

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000368.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000368.v1.p1
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Table 5 Success rates of four feature screening approaches in selecting each truly influential feature
Xj within thresholds d = 15, respectively for Simulation Study 3

d = 15

|M̂| X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
MMLE-SIS 508.672 0.072 0.060 0.066 0.078 0.554 0.054 0.388 0.098 0.032 0.204

DC-SIS 125.258 0.876 0.884 0.886 0.904 0.886 0.880 0.880 0.910 0.878 0.906

PC-SIS 171.829 0.820 0.806 0.816 0.842 0.876 0.806 0.876 0.830 0.820 0.858

TC-SIS 112.627 0.876 0.876 0.882 0.904 0.924 0.874 0.920 0.906 0.878 0.900

We removed rare alleles that have minor allele frequency (MAF) less than 0.1 before
performing the ITC-SIS. To determine the optimal value d1 for the fist iterative process,
we investigate each value among a set of d1 = 1, 2, . . . , 3

[

n4/5/log
(

n4/5
)] = 351 and

check the mean square prediction error (MSPE). The prediction is assessed by a cross
validation process, with 75% of the observed data for training and 25% for testing. As
shown in Fig. 1, as the model size increases, the MSPE first drops and then stays flat.
We choose d1 as the minimum model size whose MSPE falls into one standard deviation
plus the minimum MSPE. As demonstrated in Fig. 1, we select d1=175 SNPs in the first
iteration, d2 = 351 − 175 = 176 SNPs in the second iteration, and number of iterations
k = 2. The remaining 731,091 SNPs are filtered out as noise.
After the completion of ITC-SIS, high dimensionality is not an issue any more (n =

4099, d = 351). Then we apply the multiple logistic regression model to estimate the
multi-loci joint effects of these promising candidates, which is able to assess the signif-
icance level of each SNP through p-values. We compare the results of multiple logistic
regression after integrating it with each of the DC-SIS, TC-SIS, and ITC-SIS screening
process (see Table 8). Three model selection criteria are used: model size, Akaike’s Infor-
mation Criterion (AIC), and misclassification rate, which is computed as the percentage
of incorrectly predicted affection status after applying the multiple logistic regression
model to fit the selected 351 SNPs that are selected by each screening procedure.
As expected, ITC-SIS +multiple logistic regression yields the best model with the small-

est misclassification rate and the smallest AIC. It suggests 88 influential SNPs that was
highlighted as red triangle in Fig. 2. Figure 2 is very different from the traditional Manhat-
tan plot that was obtained by single-SNP approaches from several aspects: 1) It is much
less dense because the iterative feature screening process dramatically shrinks noise SNPs
into zero that makes 99.9% of SNPs disappeared from current plot. The noise SNPs built
up a very tall and dense base in traditional Manhattan plot. 2) Unlike traditional Manhat-
tan plot, the vertical axis demonstrates ITC-SIS scores instead of p-values. As a two-stage
approach that explore the complex structure of the data, individual p-value will not be
meaningful in this plot. 3) It separates important SNPs from noise SNPs in a much strik-
ing way. Specifically, noise SNPs are in the bottom line that makes the selected SNPs
substantially stand out. 4) It revolutionizes the traditional selection rule that only select

Table 6 Values of βXj=k used to simulate data in Simulation Study 4

βX1 βX2 βX3 βX4 βX5

Xj = 0 0 -5 2 -6 1

Xj = 1 3 -3 4 -4 3

Xj = 2 5 -1 6 -2 5
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Table 7 Success rates of four feature screening approaches in selecting each truly influential feature
Xj within thresholds d = 15, respectively for Simulation Study 4

d = 15

|M̂| X1 X2 X3 X4 X5
MMLE-SIS 41.934 1.000 0.856 0.868 0.842 0.870

DC-SIS 46.470 1.000 0.860 0.850 0.838 0.866

PC-SIS 93.270 1.000 0.794 0.758 0.778 0.790

TC-SIS 41.976 1.000 0.860 0.858 0.842 0.862

the significance from the top of the traditional Manhattan plot. You may wonder why
several SNPs with very small scores are selected but others with higher scores are not
selected. It actually reflects the joint effects of multi-loci and confounding issue of LD
described in early sections of this article. Specifically, PCOS is a complex disease that are
affected by multi-loci each having small individual effects, meanwhile many noise SNPs
may have strong signals because they are in strongmulticollinearity with other truly influ-
ential SNPs but they actually do not directly associated with the disease. To show the
data-driven nature of our proposed approach, we refer the readers to a publication that
also used iterative feature screening for GWAS data but worked on a single-gene trait
with strong individual effects. As you can see, their SNPs were selected based on scores
locating on the top of the Manhattan plot [15].
There are over 50 genes being located from these 88 informative SNPs. Additional file 1:

Table 1 in the Supplement file summarizes the estimated ITC score, β̂ coefficient, p-value,
corresponding gene name, Allele type, and detailed position for each of the 53 selected
influential SNPs that could locate nearby genes. In addition to confirming many genes
(FSHR, LHCGR, C9orf3, RPS26, RAB5B, SUOX, ERBB3, TOX3, ApoB, ROBO2, NEIL2)
that were reported to be directly associated with PCOS, we also detect several new genes.
Specifically, we find that the SNP rs7559066 located at Chr 2 lies within the FSHR gene

Fig. 1 The MSPE used to select d1 in Real Data Analyses
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Table 8Model Selection of Three approaches Applied in Real Data Analyses

Two-stage Method Model size AIC Misclassification Rate

DC-SIS + Multiple Logistic Regression 70 4188.33 21.74%

TC-SIS + Multiple Logistic Regression 86 3601.02 19.51%

ITC-SIS (d1 = 175) + Multiple Logistic Regression 88 3581.96 19.27%

and the SNP rs12235316 located at Chr 9 lies within the C9orf3 gene. The FSHR and
C9orf3 gene have been reported by numerous studies to be strongly associated with PCOS
in women and erectile dysfunction in men for both Han Chinese population [39] and
European Caucasian population [40], which appear in individuals who have either inade-
quate or excessive amounts of sexual hormones. Adolescent girls with obesity and PCOS
were found to have elevated fasting and postprandial plasma TG and ApoB-lipoprotein
remnants [41]. ROBO2 gene were found differentially expressed between obese women
without PCOS and obese women with PCOS [42]. NEIL2 gene may help identify path-
ways that link specific PCOS related traits with greater metabolic risk [43]. ERBB3 is T2D
candidate gene, implicated in the process of female gamete generation and determining
function of antigen-presenting cells [39].
The new genes detected from this data analyses could be found in

Table 1 of the supplement file. To name a few, TACR1 and GASK1A have broad expres-
sion in endometrium. LTBP2 has broad expression in ovary (RPKM 21.5). NR2C2
encodes a protein that belongs to the nuclear hormone receptor family [43]. MSH6 and
BRCC3 were found to be relevant for PCOS related phenotypes by a new protein-protein
interaction network analysis [44]. NR2C2 encodes a protein that belongs to the nuclear
hormone receptor family functioning in development, cellular differentiation and home-
ostasis. In summary this analysis confirm many genes that were reported to be associated

Fig. 2 The Manhattan plot of the ITC scores in Real Data Analyses
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with PCOS and also locate several new genes that are related to endometrium, hormones,
organ growth, and cell division. Their functions in PCOS need further investigations by
molecular and functional genetics.

4 Discussion
In this paper, we propose a new feature screening procedure using trend correlation,
whose finite performance is demonstrated via performing multiple simulation studies
with various designs and also comparing with three other relevant extant approaches. We
furthermore illustrate the performance of TC-SIS through real data analyses pertaining
to genome-wide association studies on PCOS disease. We establish the strong screening
consistency for this procedure when the number of features diverges exponentially with
respect to the sample size. Strong screening consistency is much harder to achieve than
the sure screening property, as it guarantees that not only the selected model contains the
true model, but also that the selected model equals to the true model asymptotically.
The proposed TC-SIS method can be easily extended to a categorical response hav-

ing greater than two levels if needed; however, we only consider binary Y here because
this allows for some simplification of our notation and proofs. It has been noted that the
choice of a threshold d, the number of SNPs to keep, is of importance in feature screen-
ing literature. Several methods have been proposed to determine such a threshold, e.g.
[2, 29, 45, 46]. We follow the rule of thumb proposed by Liu et al. [47], and set the cutoff
of model size as multiplier of d = [

n4/5/log
(

n4/5
)]

. In the simulation study 1 (a harder
case), we test the cutoffs d = 20, 2d = 40, and 3d = 60 for n = 272. We set d = 15 when
n = 200 for all other simulation studies. In the real data example, we choose a model size
3d = 351 when n = 4099 to avoid missing influential candidate from the beginning, and
then test the significance of these candidate SNPs by a joint model that performs well if
high dimensionality is not an issue.
In addition to the general association detected by other methods, TC-SIS excels in

exploring the trend association between the response and the features, e.g., larger feature
values tends to be associated with larger (or conversely, smaller) response values in cer-
tain practices. Another appealing advantage that we observe from the simulation studies
is the relative stability of TC-SIS (compare to other methods) in the face of a potentially
large unbalance in the number of positive (Y = 1) responses. TC-SIS assumesmilder con-
ditions than other approaches in that it neither requires any regression model structure
nor assumes any specific distribution of the data.

5 Conclusion
Detecting importantmulti-loci that are associated with the complex disease is challenging
because each locus may have weak effect. The ITC-SIS following by a multiple regres-
sion model serves as a good alternative method to detect disease susceptibility loci for
clinic genomic data. It confirms around ten genes that were reported to be associated with
PCOS and also detects many new genes after scanning a high dimensional set of SNPs.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3492-z.

Additional file 1: In the Supplementary Materials we present in full the proofs for Theorems 1 and 2 given at
“Theoretical properties” section of the main text, and additional results from real data analyses.
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Dai et al. BMC Bioinformatics          (2020) 21:177 Page 14 of 15

Abbreviations
TC-SIS: Trend correlation based sure independence screening; ITC-SIS: Iterative based TC-SIS procedure; GWAS:
Genome-wide association studies; PCOS: Polycystic ovary syndrome; LD: Linkage disequilibrium

Acknowledgments
We thank David Z Collins for correcting English grammar for this article. The dataset(s) used for the analyses described in
this manuscript were obtained from the database of Genotype and Phenotype (dbGaP) found at http://www.ncbi.nlm.
nih.gov/gap through dbGaP accession number phs000368. Samples and associated phenotype data for the
Genome-Wide Association Scan (GWAS) of Polycystic Ovary Syndrome Phenotypes were provided by Andrea Dunaif, M.D.

Authors’ contributions
GF conceived the research; XD wrote the programming code, and performed the real data analyses; XD and RR designed
and run the simulations; RR proved the theoretical properties; GF wrote the manuscript; All authors participated in
discussions, read and revised the manuscript, and agreed to the submission.

Funding
Not applicable.

Availability of data andmaterials
The program code for the current study are available from the corresponding author on reasonable request. The dataset
is free download.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Mathematical Sciences, SUNY Binghamton University, New York, USA. 2Idaho National Laboratory, Idaho,
USA.

Received: 3 November 2019 Accepted: 13 April 2020

References
1. Guan G, Guo J, Wang H. Varying Naïve Bayes models with applications to classification of chinese text documents. J

Bus Econ Stat. 2014;32(3):445–56.
2. Huang D, Li R, Wang H. Feature screening for ultrahigh dimensional categorical data with applications. J Bus Econ

Stat. 2014;32(2):237–44.
3. Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex

diseases. Nat Genet. 2005;37(4):413–7.
4. Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7(10):781–91.
5. Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of

polymorphisms in candidate genes. JAMA. 2008;299(20):2423–36.
6. Jo UH, Han SG, Seo JH, Park KH, Lee JW, Lee HJ, Ryu JS, Kim YH. The genetic polymorphisms of HER-2 and the risk

of lung cancer in a Korean population. BMC Cancer. 2008;8(1):359.
7. Xie M, Li J, Jiang T. Detecting genome-wide epistases based on the clustering of relatively frequent items.

Bioinformatics. 2012;28(1):5–12.
8. Yoo I, Alafaireet P, Marinov M, Pena-Hernandez K, Gopidi R, Chang J-F, Hua L. Data mining in healthcare and

biomedicine: a survey of the literature. J Med Syst. 2012;36(4):2431–48.
9. Mullin BH, Mamotte C, Prince RL, Spector TD, Dudbridge F, Wilson SG. Conditional testing of multiple variants

associated with bone mineral density in the FLNB gene region suggests that they represent a single association
signal. BMC Genetics. 2013;14(1):107.

10. Wall JD, Pritchard JK. Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet. 2003;4(8):
587–97.

11. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns.
Nat Rev Genet. 2005;6(2):109–18.

12. McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P. The fine-scale structure of recombination rate
variation in the human genome. Science. 2004;304(5670):581–4.

13. Malo N, Libiger O, Schork NJ. Accommodating linkage disequilibrium in genetic-association analyses via ridge
regression. Am J Hum Genet. 2008;82(2):375–85.

14. Manolio TA, Rodriguez LL, Brooks L, Abecasis G, Ballinger D, Daly M, Donnelly P, Faraone SV, Frazer K, Gabriel S.
New models of collaboration in genome-wide association studies: the Genetic Association Information Network.
Nat Genet. 2007;39(9):1045–51.

15. Carlsen M, Fu G, Bushman S, Corcoran C. Exploiting linkage disequilibrium for ultrahigh-dimensional genome-wide
data with an integrated statistical approach. Genetics. 2016;202(2):411–26.

http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap


Dai et al. BMC Bioinformatics          (2020) 21:177 Page 15 of 15

16. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
17. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22.
18. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning, 2nd edn. New York: Springer; 2009.
19. Tong S, Koller D. Support vector machine active learning with applications to text classification. J Mach Learn Res.

2001;2:45–66.
20. Kim H, Howland P, Park H. Dimension reduction in text classification with support vector machines. J Mach Learn

Res. 2005;6:37–53.
21. Fan J, Han F, Liu H. Challenges of big data analysis. Natl Sci Rev. 2014;1:293–314.
22. Austin E, Pan W, Shen X. Penalized regression and risk prediction in genome-wide association studies. Stat Anal

Data Mining: The ASA Data Sci J. 2013;6(4):315–28.
23. Waldmann P, Mészáros G, Gredler B, Fuerst C, Sölkner J. Evaluation of the lasso and the elastic net in genome-wide

association studies. Front Genet. 2013;4:270.
24. Li R, Zhong W, Zhu L. Feature screening via distance correlation learning. J Am Stat Assoc. 2012;107(499):1129–39.
25. Fan J, Li R. Statistical Challenges with High Dimensionality: Feature Selection in Knowledge Discovery. In: Sanz-Sole

M, Soria J, Varona JL, Verdera J, editors. Proceedings of the International Congress of Mathematicians, vol. III. Zurich:
European Mathematical Society; 2006. p. 595–622.

26. Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Ser B. 2008;70(5):
849–911.

27. Liu J, Zhong W, Li R. A selective overview of feature screening for ultrahigh-dimensional data. Sci China Math.
2015;58(10):1–22.

28. Fan J, Feng Y, Song R. Nonparametric independence screening in sparse ultra-high dimensional additive models. J
Am Stat Assoc. 2011;106(494):544–57.

29. Zhu L-P, Li L, Li R, Zhu L-X. Model-free feature screening for ultrahigh dimensional data. J Am Stat Assoc.
2011;106(496):1464–75.

30. Balasubramanian K, Sriperumbudur BK, Lebanon G. Ultrahigh Dimensional Feature Screening Via RKHS
Embeddings. In: Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS),
vol. 31. Scottsdale, AZ, USA; 2013. p. 126–34.

31. Cui H, Li R, Zhong W. Model-free feature screening for ultrahigh dimensional discriminant analysis. J Am Stat Assoc.
2015;110(510):630–41.

32. Fan J, Song R. Sure independence screening in generalized linear models with NP-dimensionality. Ann Stat.
2010;38(6):3567–604.

33. Cochran WG. Some methods for strengthening the common χ2 tests. Biometrics. 1954;10(4):417–51.
34. Armitage P. Tests for linear trends in proportions and frequencies. Biometrics. 1955;11(3):375–86.
35. Agresti A. An Introduction to Categorical Data Analysis, 2nd edn. Hoboken, NJ: Wiley; 2007.
36. Popoviciu T. Sur les équations algébriques ayant toutes leurs racines réelles. Mathematica (Cluj). 1935;9:129–45.
37. Zhong W, Zhu L. An iterative approach to distance correlation-based sure independent screening. J Stat Comput

Simul. 2015;85(11):2331–45.
38. Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J.

Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat
Commun. 2011;2(1):1–10.

39. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, Zhang B, Liang X, Li T, Chen J. Genome-wide association study identifies
eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020.

40. Hayes MG, Urbanek M, Ehrmann DA, Armstrong LL, Lee JY, Sisk R, Karaderi T, Barber TM, McCarthy MI, Franks S.
Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in
European ancestry populations. Nat Commun. 2015;6(1):1–13.

41. Vine DF, Wang Y, Jetha MM, Ball GD, Proctor SD. Impaired ApoB-lipoprotein and triglyceride metabolism in obese
adolescents with polycystic ovary syndrome. J Clin Endocrinol Metab. 2017;102(3):970–82.

42. Desai A, Madar IH, Asangani AH, Al Ssadh H, Tayubi IA. Influence of PCOS in Obese vs. Non-Obese women from
Mesenchymal Progenitors Stem Cells and Other Endometrial Cells: An in silico biomarker discovery. Bioinformation.
2017;13(4):111.

43. Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, Kraft P, Lin N, Huang H, Broer L. Large-scale genome-wide
meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria.
PLoS Genet. 2018;14(12):1007813.

44. Ramly B, Afiqah-Aleng N, Mohamed-Hussein Z-A. Protein–protein interaction network analysis reveals several
diseases highly associated with polycystic ovarian syndrome. Int J Mol Sci. 2019;20(12):2959.

45. Zhao SD, Li Y. Principled sure independence screening for Cox models with ultra-high-dimensional covariates. J
Multivar Anal. 2012;105(1):397–411. https://doi.org/10.1016/j.jmva.2011.08.002.

46. Kong J, Wang S, Wahba G. Using distance covariance for improved variable selection with application to learning
genetic risk models. Stat Med. 2015;34(10):1708–20.

47. Liu J, Li R, Wu R. Feature selection for varying coefficient models with ultrahigh-dimensional covariates. J Am Stat
Assoc. 2014;109(505):266–74.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jmva.2011.08.002

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Some preliminaries
	A new independence ranking and screening procedure
	Theoretical properties
	Iterative process

	Results
	Simulation study 1
	Simulation study 2
	Simulation study 3
	Simulation study 4
	Real data analyses

	Discussion
	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3492-z.
	Additional file 1

	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

