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Abstract

Background: Quality assessment of protein tertiary structure prediction models, in
which structures of the best quality are selected from decoys, is a major challenge in
protein structure prediction, and is crucial to determine a model’s utility and
potential applications. Estimating the quality of a single model predicts the model’s
quality based on the single model itself. In general, the Pearson correlation value of
the quality assessment method increases in tandem with an increase in the quality
of the model pool. However, there is no consensus regarding the best method to
select a few good models from the poor quality model pool.

Results: We introduce a novel single-model quality assessment method for poor
quality models that uses simple linear combinations of six features. We perform
weighted search and linear regression on a large dataset of models from the 12th
Critical Assessment of Protein Structure Prediction (CASP12) and benchmark the
results on CASP13 models. We demonstrate that our method achieves outstanding
performance on poor quality models.

Conclusions: According to results of poor protein structure assessment based on six
features, contact prediction and relying on fewer prediction features can improve
selection accuracy.

Keywords: Protein structure ranking, Protein model quality assessment, Poor quality
protein structural, Linear combination

Background
Proteins are large, important biological molecules. Direct prediction of a protein’s ter-

tiary structure based on amino acid sequence is a challenging problem that has a sig-

nificant impact on modern biology and medicine. The results of such predictions play

key roles in understanding of protein function, design of proteins for new biological

functions, and research and development of new drugs. With the completion of the

Human Genome Project, more proteins’ amino acid sequences have been analysed by

genome-sequencing technologies. Although the number of known protein amino acid

sequences is increasing rapidly, the number of experimentally determined structures

has lagged far behind the speed of amino acid analysis [1]. Meanwhile, scientific re-

searchers have continued exploring and practicing. The main experimental methods
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are currently X-ray crystallography [2], NMR (Nuclear Magnetic Resonance), and

Cryo-EM [3]. These existing methods often require much time and expensive re-

sources, which prevents the speed of experimental protein structure determination

from keeping up with the explosive growth in the number of available sequences [4].

One major challenge in structure prediction is selection of the best model from a pool

of generated models. Protein structure prediction applications such as Rosetta [5–8] gen-

erate a large number of models of highly variable quality, but it is difficult to predict which

is the closest to the native structure. There are currently two main types of model ranking.

The first type is consensus methods, which calculate the model’s average similarity score

against that of other models and usually assume that the pool’s higher-quality models

have higher similarity with the other models in the pool. Consensus methods can usually

achieve better performance, but experiments have shown that to realize this advantage, a

large number of structural models of the same protein are required. The time complexity

of consensus methods is O(n^2). If the number of structural models of the same kind of

protein target is very large, the time and resources required for its calculation also become

huge. In addition, these methods do not work when evaluating a single or few structural

models of the same kind of protein target. The other type of ranking method is single-

model quality assessment, which does not need to rely on other structural models. Cur-

rently, most single-model quality assessment methods use physics-based knowledge and

evolutionary information from the sequences and can produce extracted output in the

formats of features from other tools. For example, ProQ3 [9] extracts several features

from sequence and energy terms produced by Rosetta in a format that can serve as input

to a Support Vector Machine model. Another single-model quality assessment method,

DeepQA [10], applies a belief network to 16 features. It relies on features from other tools,

so when those tools have errors, increasing dependency on them does not improve accur-

acy. In summary, the existing single-model assessment methods use dozens of features

obtained from other tools, and the more inaccurate features may cause the prediction re-

sults to be less credible. In addition, most model quality assessment methods and energy

scoring functions perform well when model quality is better, but they often have bad per-

formance on models of poor quality.

Therefore, we hope to explore a single-model quality assessment method that uses a few

features as input to choose the best quality examples possible from the poor quality model

set, which becomes the original motivation. In this paper, we propose a novel method for

assessment of poor quality models that combines physics-based knowledge, tertiary struc-

ture properties, and physical properties derived from amino acid sequences. The total score

is obtained by simple linear combinations rather than complex models such as machine

learning. After performing a linear fit and weight random search on a large amount of data,

ab initio models were generated using Rosetta and poor quality models from the 13th Crit-

ical Assessment of Protein Structure Prediction (CASP13) were used for benchmarking.

Our method shows outstanding performance on low-quality models.

Results
Performance comparison on FM domains

Parts of proteins with known tertiary structures have been obtained by experimental

methods. In most cases, homologous proteins have similar structures. Homology
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modelling is an effective method if a template with high homology similarity can be

found [11]. However, not all targets have similar sequences in the Protein Data Bank,

so the advantage of using a template is not applicable in all cases. In such situations,

we usually use ab initio modelling methods, which are difficult to predict, and the qual-

ity of their results is not good without any constraints. Therefore, this type of model is

our ideal evaluation target.

We evaluated our method on the CASP13 dataset and compared it with other open

source methods and some features of our method. We divided evaluation of the FM

domains dataset into two stages. The first stage was the generation of 1000 decoys for

each target using Rosetta ab initio. This simulated our method’s model selection ability

using real low quality prediction results.

We used the standard evaluation metrics: average per-target correlation and average

per-target quality based on GDT-TS. In addition, to compare the present method’s per-

formance with that of other methods, we selected the top 5 models for each method.

Then, the top 1 model and the best of the top 5 models were evaluated separately

(Table 1). In cases where the quality of the evaluation model was poor, all evaluation

metrics were better under our method than the other investigated methods. Our

model’s performance was significantly better than that of other methods, especially in

terms of the correlation and Z-score sum of the top 1 model. In addition, we used two

typical machine learning models using the same input feature for evaluation. Although

machine learning models used the same features as input, the performance was still

worse than linear combination. Table 1 shows that the effects of the two weighting

methods (Random Search and Linear Regression) are very similar. Therefore, in future

research, we will only use search weights as comparison results.

To evaluate the prediction models produced by various methods, we used the low-

quality models submitted by the CASP13 teams for Stage 2. Considering that the

models submitted by some teams were not complete, some of the PDB files had amino

acid residues missing. Therefore, the L value of the contact penalty term and the N

value of the binary classification penalty term were determined on the basis of the

amino acid residue sequences parsed from the PDB files. As shown in Table 2, the

TM-score was also used as one of the evaluation metrics. In terms of the average

Table 1 Comparison results of various QA methods from Stage 1

QA methods Corr. on stage 1 Top 1 GDT-TS on
stage 1 / Z-score sum

Best model GDT-TS
on stage 1 / Z-score sum

Ours (Random Search) 0.42 27.02/59.62 29.43/89.74

Ours (Linear Regression) 0.42 27.42/59.62 29.18/89.74

Ours (Random Forest) 0.32 22.66/14.27 26.65/58.09

Ours (Multilayer Perceptron) 0.37 25.24/45.25 29.15/85.34

DOPE 0.21 23.06/22.11 26.53/51.61

GOAP 0.21 23.48/23.79 27.09/63.87

ProQ4 0.22 23.45/22.58 27.38/61.14

ProQ3D 0.22 23.88/33.54 26.87/64.30

DeepQA 0.21 22.65/14.88 26.07/51.27

Z-score is calculated from the GDT-TS of the selected model and the GDT-TS of all models of the target. Sum the Z
scores of each target to get the Z-score sum
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Pearson correlation and the results for the top 1 model and top 5 models, our method

still performs better than other methods.

Performance comparison on TBM-hard domains

Generally, target domains with good server predictions have close template homologs

and are classified as TBM. To evaluate the accuracy of our method on TBM domains,

we benchmarked our method’s performance on TBM-hard domains from CASP13

models in which GDT-TS is not greater than 50. As shown in Table 3, our method

achieves good performance in terms of correlations with both GDT-TS and TM-scores.

Although the average per-target quality of ProQ3D on the top 1 match was better than

ours, the different quality distributions of the ProQ3D model under different domains

give our method an advantage in terms of Z-score sum. Our method’s per-target aver-

age quality on the top 5 models based on TM-score was better than that of all other

QA methods.

Discussion
The predicted distance potential can also be used for model quality assessment, which

improves prediction accuracy greatly [12]. The more accurate the distance prediction,

the better the quality of the models and the more accurate model quality assessment

using distance potential. However, not all distances can be accurately predicted, leading

to incorrect distance prediction that is not conducive to correct modelling. Our method

Table 2 Performance of various QA methods measured by GDT-TS and TM-scores (CASP13 FM
domains, poor quality dataset)

QA methods Corr. TM-
score on
stage2

Corr.
GDT-TS
on stage 2

Top 1 TM-score
on stage 2 / Z-
score sum

Top 1 GDT-TS
on stage 2 / Z-
score sum

Best model TM-
score on stage 2 /
Z-score sum

Best model GDT-
TS on stage 2 / Z-
score sum

Ours 0.79 0.80 44.91/45.43 39.58/49.17 51.33/66.94 44.16/66.47

DOPE 0.48 0.48 40.05/29.04 34.67/31.73 44.27/42.28 38.32/44.79

GOAP 0.40 0.42 33.70/11.66 28.94/11.87 42.77/39.61 36.89/40.07

ProQ4 0.47 0.43 32.70/13.74 27.87/12.80 43.93/45.57 37.70/45.93

ProQ3D 0.61 0.62 42.26/41.89 36.52/45.08 48.94/61.72 42.39/64.74

DeepQA 0.55 0.55 34.23/13.92 29.33/16.21 47.05/55.47 40.22/56.76

Z-score is calculated from the GDT-TS of the selected model and the GDT-TS of all models of the target. Sum the Z
scores of each target to get the Z-score sum

Table 3 Performance of various QA methods measured by GDT-TS and TM-scores (CASP13 TBM-
hard domains, poor quality dataset)

QA methods Corr. TM-
scores on
stage2

Corr.
GDT-TS
On stage 2

Top 1 TM-score
on stage 2 / Z-
score sum

Top 1 GDT-TS
on stage 2 / Z-
score sum

Best model TM-
score on stage 2 /
Z-score sum

Best model GDT-
TS on stage 2 / Z-
score sum

Ours 0.72 0.72 49.22/22.93 41.10/21.45 55.88/28.86 45.16/28.66

DOPE 0.42 0.41 47.31/13.09 38.25/15.03 53.25/21.36 43.05/22.84

GOAP 0.34 0.36 45.51/12.67 37.00/14.07 50.89/20.15 41.12/20.78

ProQ4 0.44 0.48 36.26/1.39 27.76/0.99 41.25/21.85 53.14/23.34

ProQ3D 0.68 0.68 52.92/20.78 41.27/20.22 56.02/24.51 43.90/24.01

DeepQA 0.46 0.47 39.76/0.61 29.35/0.14 47.77/11.68 31.16/11.64

Z-score is calculated from the GDT-TS of the selected model and the GDT-TS of all models of the target. Sum the Z
scores of each target to get the Z-score sum
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uses more mature contact predictions as a feature to evaluate model quality. Contact

prediction can reduce distance prediction error by confining distance prediction within

a certain range. Poor quality structural prediction models often have low distance pre-

diction accuracy. It is not optimal to use inaccurate distance predictions in model selec-

tion. Thus, accurate distance prediction is not required for quality assessment of poor

quality models, and fuzzy contact prediction is more appropriate.

To reduce complexity as much as possible, our method uses only six features as in-

put. Many current quality assessment methods use deep learning. Because the predic-

tion results of other tools are often used as feature inputs, the use of too many features

may not improve accuracy. Moreover, most tools have bad prediction performance in

terms of correlations with poor quality models (e.g. Table 1). ML models training using

inaccurate feature input may not generate good results, so we use as few features and

as simple of a model as possible to achieve the best results. Nevertheless, when the pre-

dictions of the tools that our method relies on have significant errors, the effect is still

not satisfactory. In future work, to avoid inaccurate tool predictions, we will consider

intercepting contact information from aligned homologous protein structures and rely

on physical and chemical features that can be directly extracted from the protein struc-

ture as much as possible.

Conclusion
In this paper, we have developed a single-model quality assessment method of protein

tertiary structure prediction for poor quality models. It ranks models using a linear

combination of six features. This method achieves good performance on CASP13 sub-

mission models and ab initio models generated by Rosetta. We believe that contact pre-

diction is important information and that using it appropriately could further improve

performance on poor quality models.

Methods
Input features

To reduce model complexity and improve accuracy on poor quality models, we selected

six features as inputs for our method. These features statistically describe the potential,

physio-chemical, and structural attributes of a protein model. DOPE (Discrete Opti-

mized Protein Energy) [13], a representative statistical potential scoring method, ob-

tains relevant statistics about atomic distances from known native protein structures. It

also assists researchers with quality assessment, supported by probability theory. GOAP

(Generalized Orientation-dependent All-atom Potential) [14] is another scoring method

based on atomic distance and angle-related statistical knowledge, which can supple-

ment DOPE.

Secondary structure information is essential to describe the physio-chemical proper-

ties of proteins. Although the number of possible conformations of a polypeptide chain

is quite large, the conformational space would be vastly reduced if the secondary struc-

ture can be determined. At present, the best secondary structure prediction methods

can reach accuracy rates of more than 80%. In this study, we use PSSpredv4 [15, 16] to

predict secondary structure and use it as a benchmark to evaluate structure. Another

important physical property of proteins is solvent accessibility. Here, we use SSPro4

Ouyang et al. BMC Bioinformatics          (2020) 21:157 Page 5 of 10



[17, 18] to predict the solvent accessibility of the target protein and then compare the

result with the estimated structure to impart a scoring penalty. Finally, accurate contact

predictions can help us to limit the number of conformational searches at atomic dis-

tance. In recent years, with the development of deep learning, prediction of protein

contact has become more accurate. As a representative protein contact prediction

method, we use RaptorX [19–22] to calculate the penalty term for contact.

Preprocessing

Table 4 is a summary table of all features. The quality assessment method consists of

six parts, and the total score is obtained by weighting the sum of each part:

E ¼ ω1Edope þ ω2Egoap þ ω3Ess hþ
ω4Ess e þ ω5Esa þ ω6Econtact# 1ð Þ

The Ess prefix indicates the penalty term of the secondary structure, and there is sub-

division between the α-helix and β-strand penalty terms, indicated by Ess _ h and Ess _ e.

The solvent accessibility penalty term is Esa. We predict this term by ACCPro4, which

returns a sequence result for each residue in binary classification format, indicating

each residue’s solubility. With a solvent accessibility threshold of 25%, each residue is

normalized to the maximum exposed surface area calculated using DSSP [23]. Econtact
indicates the contact penalty. After the contact prediction results are sorted by confi-

dence level, the top L residue pairs are taken, where L is the length of the amino acid

sequence. We then find the corresponding residue pair in the structure and calculate

the distance between the residues’ Cβ atoms (Cα for GLY). If the actual distance is no

more than 8 Å, the position is consistent with the predicted structure.

DOPE and GOAP use the number of amino acid residues for normalization. In the

above binary classification penalty items, the penalty score is:

PN
i¼i xi⨁pið Þ

N
# 2ð Þ

Here, xi is the parsing result of each amino acid residue, and pi is the corresponding

prediction. The penalty term calculates the XOR value between the prediction of the

corresponding amino acid residue position and the parsing result. Occasionally, if a fea-

ture cannot be calculated because of a tool failure, its value is set to 0.5.

Table 4 Six features of our method

Feature Name Descriptions

DOAP score A statistical potential score for assessment and prediction of protein
structures.

GOAP score A generalized orientation-dependent, all-atom statistical potential score.

Secondary structure penalty
score for helix

Calculate different ratios of predicted alpha-helix from amino acid sequence
and a model parsed by DSSP.

Secondary structure penalty
score for strand

Calculate different ratios of predicted beta-strand from amino acid sequence
and a model parsed by DSSP.

Solvent accessibility penalty
score

The difference of solvent accessibility prediction and model parsed by DSSP.

Contact penalty score The percentage of contact prediction matching with the model structure.
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Dataset and weights

We collected CASP12 models from the CASP website http://predictioncenter.org/

download_area/CASP12/predictions. We also downloaded the corresponding score

table from the CASP website. The official CASP uses GDT-TS [24] (based on the LGA

[25] package) as an important evaluation criterion. We extracted GDT-TS from the

score table as the quality score. After excluding targets without the score table file, all

remaining data models contain 75 whole chain targets, and the average target has 400

decoys. In total, we used 28,879 structural decoys covering a wide range of qualities to

search weights.

To evaluate the performance of our method, we used 18,717 models in which GDT-

TS was not greater than 50, they are from CASP13 human groups’ 31 FM (Free model-

ling) domains and 18 TBM (Template-based modelling)-hard domains (because of the

limitation of RaptorX server on the length of the amino acid sequence, we discard

Fig. 1 GDT-TS range of ab initio predictions made using Rosetta for targets in 31 FM (Free Modelling)
domains of CASP13. The range of the generated decoys for each target is represented by a box plot, with
the minimum, lower quartile, median, upper quartile, and maximum values in turn from left to right
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T0985-D1). In addition, we used Rosetta ab initio to generate 1000 decoys for each FM

domain from CASP13. For discontinuous domains, such as 77–134 and 348–520, we

took the minimum and maximum of the interval to obtain 77–520. The GDT-TS score

range for these data is shown in Fig. 1. Most of the generated decoys had GDT-TS

scores below 50, and the lowest score was between 10 and 20. The best decoy quality

in T0990-D1 was 64.8. Dataset can be downloaded from Google Drive, https://drive.

google.com/file/d/12YscAvt1ZQCupdKopW8k9c1VUZu6NR03.

We developed two methods to obtain the weight values: one is to use linear regression,

and the other is to perform a random search on the weights to obtain the maximum total

correlation. We used 75 targets from the CASP12 dataset together to search for the opti-

mized weights. The correlation matrix of each of our scores with the CASP12 data shows

that the contact score had the best correlation, and the secondary structure folding score had

the worst (Fig. 2). We calculated the MSE for GDT-TS using linear fit, obtaining values of

1.50, 1.79, 2.57, 2.54, 1.35, and 4.17 for DOPE, GOAP, SA, SS_E, SS_H, and Contact, respect-

ively. Because our goal was to rank the structural models, we did not need the intercept value

obtained from the linear regression. The goal of the weight random search is to optimize the

sum of the correlation coefficients of all targets. Considering that the weights have a different

impact on each target’s relevance, we used a random search method. The starting weights of

the six features are float type variables in the range [0,1], and then random weight searches

are performed to maximize the sum of the target correlation coefficients.

The random search was performed in 3 rounds, with each round lasting 10,000 steps.

After each round of searching, we extracted the top 100 weight combinations and used

Fig. 2 Correlation matrix of our method’s features obtained using CASP12 data, the true scores
corresponding to the ground truth GDT-TS score
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their maximum and minimum values for each weight as the range for the next round of

searching. If a weight’s search value is focused on the range boundary, the next round of

search expands or reduces the weight’s range by 10 times. After three rounds of weight

search, the sum of the correlation coefficients had risen to 54.39. We extracted the top 50

weight combinations in terms of correlation coefficients after the third round of searching

(Fig. 3). The contact penalty term was given a larger weight, and the resulting distribution

was more concentrated. A small weight was assigned to GOAP to reduce its impact on

the results. We assigned the average value of each weight from the top 50 weight combi-

nations as the final result. The final values were 4.96, 0.4, 70.65, 65.5, 76.5, and 168.16 for

DOPE, GOAP, SA, SS_E, SS_H, and Contact, respectively.
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