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“Computer Science Division, Background: Screening of the brain computerised tomography (CT) images is a
ggg;;:gj’;gﬁu' Alzuwakamatsu primary method currently used for initial detection of patients with brain trauma or
Full list of author information is other conditions. In recent years, deep learning technique has shown remarkable
available at the end of the article advantages in the clinical practice. Researchers have attempted to use deep learning

methods to detect brain diseases from CT images. Methods often used to detect
diseases choose images with visible lesions from full-slice brain CT scans, which need
to be labelled by doctors. This is an inaccurate method because doctors detect brain
disease from a full sequence scan of CT images and one patient may have multiple
concurrent conditions in practice. The method cannot take into account the
dependencies between the slices and the causal relationships among various brain
diseases. Moreover, labelling images slice by slice spends much time and expense.
Detecting multiple diseases from full slice brain CT images is, therefore, an important
research subject with practical implications.

Results: In this paper, we propose a model called the slice dependencies learning
model (SDLM). It learns image features from a series of variable length brain CT images
and slice dependencies between different slices in a set of images to predict
abnormalities. The model is necessary to only label the disease reflected in the full-slice
brain scan. We use the CQ500 dataset to evaluate our proposed model, which contains
1194 full sets of CT scans from a total of 491 subjects. Each set of data from one subject
contains scans with one to eight different slice thicknesses and various diseases that
are captured in a range of 30 to 396 slices in a set. The evaluation results present that
the precision is 67.57%, the recall is 61.04%, the F1 score is 0.6412, and the areas under
the receiver operating characteristic curves (AUCs) is 0.8934.

Conclusion: The proposed model is a new architecture that uses a full-slice brain CT
scan for multi-label classification, unlike the traditional methods which only classify
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the brain images at the slice level. It has great potential for application to multi-label
detection problems, especially with regard to the brain CT images.

Keywords: Bioinformatics, Brain computerised tomography, Machine learning, Deep
learning, Computer aided diagnosis

Background

Brain computerised tomography (CT) scans are the most commonly used diagnostic tools
for patients with brain trauma or brain diseases, such as brain tumour, intracranial haem-
orrhage, calvarial fracture, and other injuries. Brain CT is also the first choice of imaging
tool to learn the brain structure, and CT device is a common service available in most
hospitals. CT scans present the great quality of visual information on internal organs. The
advantage of using brain CT scans lies on its low cost and time-saving, so it is a great tool
for preliminary diagnoses. As the brain CT scans have become widely available, doctors
spend a considerable amount of time in reading and interpreting the results. Such delays
in the diagnostic process can worsen injuries and cause unnecessary harm to the patients.
Many researchers are therefore trying to use computer technologies to aid in diagnoses
and treatments.

Nowadays, artificial intelligence techniques are developing rapidly. Deep learning mod-
els can learn a hierarchy of features by building high-level attributes from low-level ones.
Utilising deep learning methods with medical knowledge is a valuable direction of study
and presents an extraordinary potential for auxiliary medical treatment. Rajpurkar’s team
has proposed an algorithm to detect the presence of 14 different pathologies from chest
radiographs [1]. Jeffrey’s team developed an architecture that can be used for more than
50 common diagnoses using optical coherence tomography (OCT) [2]. These study works
show that medicine as a field can benefit from deep learning method. Some algorithms
can detect brain diseases. Gao’s team aimed to provide a method for early diagnosis of
Alzheimer’s disease (AD) [3]. They used CT sets and clustered them into three groups as
AD, lesions (e.g., tumour), and normal. They manually chose some images that contained
visual lesion features (e.g., tumour) from full-slice brain CT as the experimental data.
Their method used both two-dimension (2-D) and 3-D images for evaluation. In refer-
ence [4], the investigators utilised 904 cases containing 14,758 brain CT images to obtain
excellent performance on their retrospective and prospective dataset.

Most methods select samples from a set of brain CT images for classification and this
requires labelling the images one by one. More importantly, if we consider the images in a
set of brain CT scans separately, the dependence information between each slice is miss-
ing. In clinical diagnoses, a doctor provides a final diagnosis conclusion by observing a full
sequence of brain CT images. A patient may have multiple brain diseases concurrently,
and these brain diseases may have a causal relationship. Certain diseases can cause other
pathological and structural changes in the brain, which can further cause or precipitate
other diseases. However, traditional multi-class classifications cannot take into account
the relationships between diseases. They consider each disease category separately, which
can not apply to patients with multiple brain diseases, as commonly encountered in clin-
ical cases. Current researches on brain CT for brain disease detection mainly focus on a
single image slice, i.e., single-image-based detection, where the target images are selected
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from a full set of slices by a clinical expert. In practice, the doctor generally detects dis-
eases by quickly browsing the full set of slices and selecting one or several images for
detailed checks to make a decision. Our research philosophy is motivated from this obser-
vation, i.e., we attempt to directly use a full set of slices for detection of brain diseases or
conditions, where the single-image-based features and slice dependencies are combined
to build a multi-label prediction model. It presents one of the original contributions in
this work.

In this paper, we propose a model called the slice dependencies learning model (SDLM)
that composes image feature learning and slice dependencies learning for multi-label
classifications from variable-length series of brain CT images. Our model can effectively
learn image features and slice dependencies in an end-to-end manner and only requires
labelling of a full set of CT images. This is a very convenient and time-saving method
when labelling training data. The image feature learning part learns the full-slice brain
CT images using a convolutional neural network (CNN) called VGG [5], which is pre-
trained on ImageNet [6]. The feature learning model learns the features over classes
P(y|x1, %2, ..., x¢) given a sequence of inputs x1, X2, ..., x; together, rather than a single input
x. We use a recurrent neural network (RNN) called the gated recurrent unit (GRU) [7] in
the slice dependencies learning part. The slice dependencies between the variable length
slices and the causal relationship among multiple diseases are obtained from RNN. We
conducted experimental evaluations with different CNN and RNN settings to select a
better model configuration. The experiments present that the VGG16 and GRU perform
better than other pairs in our proposed method. The architecture of this model is shown
in Fig. 1.

In the following sections, we first review the related works on brain CT classifications
and multi-label image classification areas in the section of related works and techniques.
In the section of methods, we introduce the methods of image feature learning and
slice dependencies learning to design and construct our model and method architecture.
Section of experimental evaluations presents experiments with datasets, training details,
and the experiments between different CNN and RNN pairs. We also make a comparative
study on our model with the 3-D model. Section of results presents the primary discover-
ies of our work. In section of discussion, we discuss the evaluation results of our proposal
and explain how to assist medical diagnosis using our proposal. In section of conclusion,
we conclude our work and present some open topics and subjects for future work.

Related works and techniques

Our work is in the field of brain CT classification, especially the study of multi-label clas-
sification problems. In this section, we briefly review some related works in two subjects,
i.e., the brain image classification and the multi-label image classification.

Brain image classification

Brain CT classification using machine learning methods has great potential for the early
detection of brain injuries. In reference [8], the authors utilised wavelet energy to extract
features and used support vector machine (SVM) as a classifier to diagnose the magnetic
resonance (MR) brain images as normal or abnormal. The dataset consisted of 90 T2-
weighted MR brain images. The method obtained a high accuracy, but the images were

only clustered into two categories, i.e., normal and abnormal, which is in line with many
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Fig. 1 Example of the proposed model. We propose an architecture that utilizes a convolutional neural
network (CNN; VGG16) to learn image features from a variable-length series of brain CT scans and that uses a
recurrent neural network (RNN; GRU) to learn slice dependencies for predicting nine categories of brain CT
images simultaneously. The nine categories of brain CT images are denoted as intracranial haemorrhage,
intraparenchymal, intraventricular, subdural, extradural, subarachnoid, calvarial fracture, mass effect, and
midline shift

other kinds of research such as in references [9-11]. In reference [3], the investigators
aimed to provide supplementary information for early diagnosis of Alzheimer’s disease
(AD). This is a state-of-the-art method that uses both 2-D and 3-D images in their study.
Many research works, such as references [8—11], detect brain diseases from a single image
slice and train # classifiers for multi-class classification (# represents the categories of the
various diseases). An example of these methods is shown in Fig. 2. These works achieved
high accuracies, but they only used a single brain CT image as training and predict sample.
Brain CT images are different from other medical images. They are a sequence of data
consisting of a set of images, and often, slice dependencies exist between the different
slices.

Some researches attempt to utilize a 3-D model to consider the slice dependencies in a
full-slice scan. In the work of [12], they use 3-D MRI brain scans to classify Alzheimer’s
disease versus mild cognitive impairment and normal controls. It is a good attempt to con-
sider full-slice images in the brain scan. In the work of [13], they propose a fully automated
deep learning framework which learns to detect brain haemorrhage using cross-sectional
CT images. They created an ensemble of three different 3-D CNN architectures to
improve the classification accuracy. The AUC of the ensemble of three architectures was
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Fig. 2 A classical architecture for training n classifier for n diseases in a single slice of brain CT scan, which
ignores slice dependencies

0.87. In work of [14], they assemble the largest dataset ever used for training a deep 3-D
CNN to classify brain images as healthy, mild cognitive impairment (MCI) or Alzheimer’s
disease (AD). This model does not need for elaborate feature engineering and the work-
flow is considerably simpler, which increases clinical applicability. In work of [15], they
proposed a new multi-modal 3-D CNN model for classifying the Alzheimer’s disease.
They used structural MR and FDG-PET images to capture the rich features of 3-D MR
images and FDG-PET images. The four references ([12—15]), all use 3-D model to classify
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brain diseases. But, there is still a big challenge if a set of brain scan has multiply diseases
together.

Disease diagnosis from medical images requires high quality and accuracy, which is a
time-consuming task even for well-trained and experienced doctors. To assist this pro-
cess, deep learning-based computational methods are desired but depend on a large
number of labelled data. Labelling data takes a lot of time and consumes a large amount
of manpower. In reference [4], 904 sets of data containing 14,758 images were classi-
fied into five ICH subtypes from brain CT scans. Five neuroradiology specialists with
9 to 34 years of experience labelled the dataset. Besides the time spent by these doc-
tors, a more important issue is that in practice, a doctor cannot pick a single image from
a full-slice brain CT scan to diagnose diseases. Indeed, a doctor observes all full-slice
scans and observes on changes in brain structure based on the whole sequence of images
to conclude the final diagnosis result. The model we proposed can perform multi-label
classification on the premise of considering full-slice brain images. The model can con-
sider the dependencies between slices and the causal relationships between diseases. Our
model that only requires labels of full-slice brain CT scans, it can also save a lot of time
in diagnosis.

Multi-label image classification

A set of brain CT scans can be used to detect many diseases at the same time, so we treat
this problem as a multi-label classification task. Deep CNNs have shown great success
in the single-label image classification, but in the real world problems, images contain
multiple labels corresponding to different objects in one image. Multi-label classification
is, therefore, a crucial study subject in practice.

Conventional methods learn many binary classifiers for each label category and employ
ranking or thresholds on the final classification results for multi-label classification tasks.
This method works well but does not exploit the relationship between multiple labels.
They cannot handle label co-occurrence dependencies if the multiple labels are depen-
dent. The dependencies between labels are important because of the causal relationships
between brain diseases. For example, brain tumours may oppress the brain structure,
causing a midline shift. Consequently, we need to consider different brain diseases
simultaneously.

In reference [16], RNNs were combined with CNNs to solve this problem. This
method obtained success in single image multi-label classification and achieved bet-
ter performance than the state-of-the-art multi-label classification models. In ref-
erence [17], a new method called hypotheses-CNN-pooling (HCP) was proposed,
where an arbitrary number of object segment hypotheses were taken as the inputs, a
shared CNN connected with each hypothesis. Finally, the CNN results from different
hypotheses were aggregated with maximum pooling to produce the final multi-label
predictions. This method also performed well in single-image multi-label classifica-
tions. These methods have obtained good performance in the multi-label classifica-
tions of single images, but brain CT is a sequence of images. We cannot consider
it as a multi-label classification problem for a single image. In brain CT classifica-
tion, we investigate the full series of brain CT scans for the multi-label classification
problem.
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Methods

We propose a model called the SDLM for full-slice brain CT multi-label classification,
which effectively learns both the image features and slice dependencies in an end-to-end
manner. It is a sequence to sequence (seq2seq) model that can classify brain diseases into
multiple categories at the same time. This model includes two parts: (1) image feature
learning part, and (2) slice dependencies learning part. The first part learns the feature
from a full set brain CT image automatically. The second one is employed to learn the
dependencies among multiple slices, which provides the potential to handle the causal
relationship between brain diseases. For the implementation of the proposed model, CNN
is used for image feature learning, and RNN is used for the slice dependencies learning.
The model for this method is presented in Fig. 3.

Image feature learning and extraction

In the past century, to learn the intrinsic structure of data, many data representation
learning methods have been proposed [18]. Some conventional methods, such as prin-
cipal component analysis (PCA) [19], linear discriminant analysis (LDA) [20] and linear
principal component discriminant analysis [21], have been proposed and widely used.

n images

\ 4

Image Feature

Learning

(n,512) feature vector

Slice Dependencies Learning

\ 4

ICH IVH SAH  Mass Effect

Fig. 3 Architecture to predict multiple-labels from a set of brain CT scan
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In 2006, Hinton proposed the concept of deep learning, and this method successfully
applied deep neural networks to dimensionality reduction. With the development of
graphics processing units (GPU), deep learning has shown enormous advantages and has
been employed in many areas, such as image recognition and speech recognition, etc.
Deep learning uses many layers of linear or nonlinear processing units for feature extrac-
tion and transformation. It can learn multiple levels of features or representations of the
data. Higher-level features are derived from lower level features to form a hierarchical
representation.

CNNs are the neural networks that are mostly applied to vision recognition tasks. A
CNN consists the convolutional layers, the pooling layers, the fully connected layers, and
the normalization layers. The advantage of CNN lies on that it can make the forward
function more efficient to implement and vastly reduce the number of parameters in the
network. Parameter sharing schemes are used in the convolutional layers to reduce the
number of parameters.

VGG Network is one of the CNN architectures designed in 2014 [5]. There are two
kinds of VGG networks, VGG16 and VGG19, which have 16 and 19 layers, respectively.
It is a famous model that achieves 92.7% top-5 test accuracy in ImageNet.

The residual neural network (ResNet) is an elegant architecture with skip connections
that can be used to build a deeper neural network and to solve the degradation problem
[22]. ResNet was used to train a neural network with 152 layers and still had a lower
complexity than the VGG network.

The densely connected convolutional network (DenseNet) is a convolution neural
network with dense connections [23]. It has a simple connectivity pattern to ensure
maximum information flow between layers in the network. It connects all layers (with
matching feature-map sizes) directly with each other.

The pre-trained VGG, DenseNet, and ResNet models using the ImageNet [6] dataset
are utilized in the comparison study. The VGG (DenseNet and ResNet) is implemented in
2-D. For each image from a set of brain CT, the feature learning model VGG (DenseNet
and ResNet) generates a 512 (1024 and 2048) dimension vector. The schematic diagram
of the learning process of VGG16 is illustrated in Fig. 4. For the »n images in a full set of
slices of brain CT, the VGG (DenseNet and ResNet) model learns and generates a n x 512
(n x 1024 and n x 2048 ) feature matrix .

Slice dependencies learning

Causal relationships exist among the nine categories of brain diseases studied in our work.
Therefore, it is crucial to learn slice dependencies between the different slices. Learn-
ing only on a single slice is not recommended. The recurrent neural network (RNN) is
a connectionist model that captures the dynamics of sequences by cycles in the network
of nodes [24]. It is one of the neural networks that exhibit an outstanding performance
using sequential learning. Consequently, the RNN is suitable for machine translation,
speech recognition, etc. Conventional RNNs can learn complex temporal dynamics by
mapping input sequences to a sequence of hidden states, and hidden states to outputs via
the following recurrence equations (Eq. (1)):

hy = o (Wyaxe + Winhe—1 + by).
¥t = o (Wpyhy + by).

(1)
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Fig. 4 Feature learning model, VGG16, that can automatically learn features of a slice of brain images
through convolution and pooling layers. Finally, through a global average pooling layer, we can obtain a
vector that contains 512 dimensions

In Eq. (1), x; is the input at time step . W}, is the matrix of convolutional weights
between the input and the hidden layer and W}, is the matrix of recurrent weights
between the hidden layer and itself at adjacent time steps. At the time ¢, nodes with recur-
rent edges receive input from the current data point x; and also from the hidden node
h¢—1, which is from the previous states. The output y; at time ¢ is calculated by the hid-
den node /. o is an activation function, such as a sigmoid function, rectified linear unit
(ReLU). The vectors by, and by are the bias parameters. Because of these, the RNN can
learn the weights depending on current and past states.

Gated recurrent units (GRUs) [25] are a standard mechanism in recurrent neural net-
works. The GRU can be considered as a variation on the long short-term memory (LSTM)
[26]. The gating mechanism is efficient, and this method can save many parameters than
LSTM, but its performance was found to be similar to that LSTM in some applications.

zt = 0g(Wexy + Uzl 1 + by).
re = og(Wyxe + Uphy 1 + by).
hy = op(Wixe + Up(re © hy—1) + by).
hh=1—-2z)Oh14+2z 0 h;-

In Eq. (2), z: and r; are the update gate and the reset gate at time step £, respectively.
hy is the output vector. These two vectors z; and r; decide what information should be
passed to the output /. ; is the reset gate, which is used to determine the amount of past
information that needs to be forgotten. z; is the gate that determines whether to update
the information or not. h; is the current memory content that uses the reset gate to store
information from past states. W is the weight and b is the bias of each gate. U is the weight
of the output h. oy is the sigmoid activation function and oy, is the tanh function. © is the
element-wise product.

The GRU has only two gates, i.e., the update gate and reset gate. The GRU will save
lots of parameters compare with LSTM. Many experiments have shown that their perfor-
mance is not considerably different. In this study, we compare the two RNN units and use

the GRU as our sequence learning model.
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Model implementation, training and utilization
We use the mean squared error(MSE) as our loss function. We calculated the MSE using

the following standard equation (Eq. (3)).
MSE = 2 Xn: ;— 50)? 3)
o i=1 or =

In Eq. (3), n is the number of test samples, y; is the true label, and y; is the predicted
label. Because each CT set is different, the number of slices depends on the thickness of
the CT scan; however, no more than 396 images are used per set. So, we reshape the image
sets into 396. If the set is less than 396 images, it will be filled by zeros and padded to 396
images. An example can be seen in Fig. 5.

We use the VGG16 model with weights pre-trained on the ImageNet classification chal-
lenge dataset to extract features of full-slice brain CT images. These weights are imported
from the ones released by the VGG at Oxford. After learning through the 2-D convo-
lutional neural network, the vector size of a CT image is 512. If the sequence CT scan
has # images, the full-slice of the brain CT will be a matrix of (n x512) dimensions. We
use batch normalization [27] as our normalization function. The embedding of the GRU
layers is 512, and dropout [28] is used to avoid over-fitting. We set the dropout rate to 0.2.

We add two fully connected layers after the GRU layer and use the ReLU as an acti-
vation function. We add dropout between each layer, the first and the second dropout
rates are both 0.5. The batch size is set as 128, and 23 epochs are trained. The optimizer
used is Adam [29]. Adam is an effective variant of an optimization algorithm called the
stochastic gradient descent, which iteratively applies updates to parameters in order to
minimize the loss during training and to avoid the gradient vanishing/exploding prob-
lems. The last layer contains # neurons to decode the probability of # diseases, and the

activation function is a sigmoid function.
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Fig.5 A set of data contain 396 images, for training reason we put the feature matrix into (396, 512) shape.
We add (396-n) zero vectors to generate a (396, 512) matrix. Because of the masking layer, the zero vector will
be filtered, and it will not affect training
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Experimental evaluations

Brain CT image data in evaluation

In this study, experimental data are obtained from an open-source brain CT scan dataset
called the CQ500 dataset [30]. This dataset contains 491 brain CT scans of patients and
their reports labelled by three doctors. The datasets contain nine categories: intracranial
haemorrhage (ICH), intraparenchymal (IPH), intraventricular haemorrhage (IVH), sub-
dural haemorrhage (SDH), extradural haemorrhage (EDH), subarachnoid haemorrhage
(SAH), calvarial fracture, mass effect, and midline shift. Negative samples are brain CT
sequences that do not contain the above nine diseases. Example brain CT images can be
seen in Fig. 6.

Causal relationships exist among the nine categories of brain diseases, e.g., ICH con-
tains SDH, EDH, and SAH. In medicine, the mass effect is defined as the effect of a
growing mass that causes secondary pathological effects when the mass pushes on or
displaces the surrounding tissue. A possible cause of the mass effect is the haemorrhage
blood or tumour. Furthermore, tumour or blood clot may constrict the brain and cause a
midline shift. Therefore, the conventional multi-class or multi-label classification method
may fail to explicitly exploit the label dependencies in a set of brain CT scans.

ICH IPH IVH SAH Mass Effect ICH SDH Mass Effect Midline Shift

Midline Shift

ICH Calvarial Fracture ICH SDH Calvarial Fracture
Mass Effect Midline Shift

Fig. 6 Example CT images from the dataset. We can see that a full-slice brain CT scan can reflect multiple
diseases, and for an accurate diagnosis of the disease, multiple images are required. Therefore, we cannot
only treat a single slice image. Learning the dependencies of the full-slice is very important. (ICH: Intracranial
haemorrhage, IPH: Intraparenchymal, IVH: Intraventricular, SAH: Subarachnoid, SDH: Subdural)
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The original clinical radiology reports and consensus of three independent radiologists
were considered as an evaluation metric for the CQ500 datasets. Because different radiol-
ogists have different judgments, we use evaluation metrics that most experts can satisfy.
The three radiologists had corresponding experiences of 8, 12, and 20 years in cranial
CT interpretation; however, they also had different judgments for the same scan. It is not
difficult to observe that accurately diagnosing diseases through medical imaging is a diffi-
cult task for inexperienced doctors. Therefore, it is necessary to develop a system to assist
diagnosis and treatment. The data statistics can be seen in Table 1.

We obtain 1194 complete sets of CT scans. Each patient has 1 to 8 scans. Because of
the limited data, we use all types of brain CT scans together and only remove data that
are not the brain CT scans. We divide the dataset into a train set containing 835 CT
scan images, a validation set containing 180 CT scan images, and a test set containing
179 CT scan images. The objective of our classification is to cover all kinds of diseases

comprehensively.

Proposed model training
DenseNet, VGG, and ResNet are popular feature learning models. LSTM and GRU are
two popular RNN networks whose performance are excellent when considering long-
term dependencies. In the implementation of the experiments, three (two) dominant
variants of CNN (RNN), i.e.,, VGG, DenseNet, ResNet (GRU and LSTM) are used for
the comparison study. For each image from a set of brain CT, the feature learning model
VGG (DenseNet and ResNet) generates a 512 (1024 and 2048) dimension vector. The total
parameters of our model depend on the last layers of the output of the CNN and the RNN.
The image extracted by VGG16 and VGG19 has the same output, i.e., 512 parameters.
This is the reason that the 16-layer and 19-layer VGG networks have the same number
of parameters if the RNN part is the same. The results (as shown in Table 2) demonstrate
that the combination VGG16+GRU has the best performance and save many parameters.
We trained this model for 23 epochs. After 23 epochs, the performance of the model
will not be better due to over-fitting, and the loss in the validation set will increase. The
AUC will continue to decrease while training. The results of the training process are illus-
trated in Fig. 7. We use it to show the variation tendency of the performances (Precision,
Recall, F1, AUC, Loss) with the increase of the epochs while the model training. Conse-
quently, we terminate training after 23 epochs to avoid the over-fitting and obtain a better

performance.

Table 1 Data statistics

Disease Number of patients
Intracranial haemorrhage 289
Intraparenchymal 145

Intraventricular haemorrhage 31

Subdural haemorrhage 49

Extradural haemorrhage 8

Subarachnoid haemorrhage 53

Calvarial fracture 71

Mass effect 102

Midline shift 74

Negative samples 187
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Table 2 Comparison of different CNN and RNN pair

Model Parameters Precision Recall F1
ResNet50-GRU 10,106,889 63.56% 47.11% 0.5411
ResNet50-LSTM 13,253,641 57.35% 49.16% 0.5259
VGG16-GRU 5,382,153 67.57% 61.04% 0.6412
VGG16-LSTM 6,956,041 58.13% 57.87% 0.5794
VGG19-GRU 5,382,153 5861% 57.49% 0.5802
VGG19-LSTM 6,956,041 46.89% 65.45% 0.5462
DenseNet121-GRU 6,957,065 60.93% 4524% 0.5168
DenseNet121-LSTM 9,055,241 48.59% 47.62% 0.4883

Comparative experiment with 3-D models

The 3-dimensional convolutional networks (3-D ConvNets) can effectively learn spa-
tiotemporal feature. Some studies, e.g., in references [12—15], attempt to utilize 3-D
network in the field of brain CT classification. However, no research has shown that using
3-D models for multi-label brain image classification. We modified the VGG model to
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make it a 3-D model. We use the 3D-VGG and the classic C3D model [31] to do a multi-
label classification comparison experiment. We modified two model’s last layer to output
nine probabilities. We use the sigmoid function as the last layer’s activation function. It
is the same as the model we proposed, we use MSE as our loss function to measures the
average of the squares of the errors between the true labels and the predictions of the nine
disease’s probabilities.

Since the 3-D model is too computationally intensive, it is impossible to consider hun-
dreds of images at the same time as our model. We selected 32 slices from a set of # brain
CT images (a full-slice) in steps of #/32. For training reason, we reshape the image into
(112,112) pixels. Each set of data is a (32,112,112,3) tensor. We cannot remove too much
data, because it will lose too much information. The batch size we set is 8. The result is
shown in Table 3. These performances are worse than our model, and even if we greatly
reduce the amount of data, the calculation of 3-D models is still much larger than our
model. So our model is more suitable for this task.

Model application for binary classification problem

Our approach using a full set of slices directly for the multi-label predictive model build-
ing is different from the work reported in reference [30] focusing on single image-based
binary classification. It needs the manual labelling of the haemorrhages in each selected
image and cannot handle the dependency relationships among multiple slices. To make
the experimental results comparable, we implemented a binary classifier version of our
proposed model by mapping a multi-hot vector to the number 0 or 1 to indicate whether
the image with the disease or not. The experimental results on the CQ500 dataset are
illustrated in Fig. 8. The average AUC of our binary classifier version of our proposed
model is 0.855. Note that, the experiments reported in this paper is conducted on the
CQ500 dataset (i.e., the used training, validation, and test sets are all part of it), which
contains 491 patients’ scans and is the released dataset in [30] for its performance testing.
As reported in reference [30], its model is built from the training dataset with 313,318
patients’ scans. Consequently, the train and test datasets we used in this paper are dif-
ferent from [30]. From this viewpoint, it is not reasonable to compare the performance
figures directly. If we have to give a reason for that the AUC of our proposed model is
lower than the reported performance in [30], it might lie in the fact that the training
dataset in this paper is much smaller than the one used in reference [30]. The results in
Fig. 8 demonstrated that we use a very tiny dataset to obtain a great performance.

Results

The precision, recall, and F1 score of the generated labels are employed as evaluation
metrics. Precision is the number of correctly annotated labels divided by the number of
generated labels, and recall is the number of correctly annotated labels divided by the
number of ground-truth labels. The precision of our multi-label classification model is
67.57%, its recall score is 61.04%, and its F1 score is 0.6412. For binary classifiers version

Table 3 Comparison of different 3-D model and our model

Model Parameters Precision Recall F1
3D-VGG 94,512,329 49.37% 38.72% 04340
ab 22,220,681 49.58% 44.89% 04712
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The per-class AUC of our model on CQ-500 datasets

= the AUC of our model
e _the reported AUC performance in reference(25]
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Fig. 8 AUCs of the binary classifiers of our model and the original dataset model. There are only eight
patients who have extradural haemorrhage; therefore, this binary classifier was not built

of our proposed model, the AUCs are 0.83, 0.69, 0.91, 0.92, 0.76, 0.86, 0.89, and 0.98 for
ICH, IPH, IVH, SDH, SAH, calvarial fracture, mass effect, midline shift, respectively. Only
eight patients have EDH; therefore, we did not construct a binary classifier for this disease.

Discussions

In this study, we developed and investigated a new model that can automatically classify
brain CT images into multiple categories at the same time. We adopted the multi-class
classification into a multi-label classification problem. Our model does not require all
slices in a set of brain CT scans to be labelled. This is one of the advantages of this work.
However, its precision and recall are lower than models proposed in other research. The
reason is that our model only contains the labels that full-slice brain CT images can
reflect whereas other studies label every image in a set of scans. Consequently, they have
more image information. Similar to how doctors diagnose brain diseases with a set of CT
images, computer algorithms should also identify diseases with a set of CT images. We
trained two 3-D models(3D-VGG, C3D) in the same data distribution. We modified two
models and data for training. The result shows that the 3-D model is not suitable for this
multi-label classification task because of the huge amount of calculation. We also trained
our model using a binary classification problem and compared its results with those given
in reference [30]. The experimental results prove that our performance is not consider-
ably worse than other methods. However, we have only considered a small dataset, if more
datasets are used, the algorithm will exhibit better performance. Besides, this method also
saves the time spent on the label image.

We performed several experiments for different models. Table 2 presents that VGG
performs better than other methods when the RNN parts are consistent, and VGG16 per-
forms better than VGG19. The reason, that VGG is more suitable for this task than other
models, is perhaps because VGG has a shallower convolutional layer. VGG16 has only 16
layers, however, other networks have a greater number of layers, such as DenseNet121



Li et al. BMC Bioinformatics 2020, 21(Suppl 6):200 Page 16 of 18

has 121 layers and ResNet50 has 50 layers. Even VGG16 and VGG19, which have nearly
the same network architecture, exhibit different performance. In the same epoch, the F1
score of VGG16 is higher than that of VGGI19. In the medical imaging domain, medical
images only exhibit a subtle change when people are suffering certain kinds of diseases,
unlike complex transformations that occur in natural images. Consequently, this could be
areason for the degradation in performance with an increase in the number of layers. The
usage of Al techniques to recognize medical images and assistance in the diagnosis of the
disease shows promising potential. In the future, we will attempt image augmentation on
sequential images and increase their interpretability to better assist doctors in diagnosis.

Conclusions

Brain CT scans are a common and useful tool and are used to provides accurate infor-
mation on brain injuries, such scans can rapidly reveal internal injuries and help save
lives. However, it is difficult to accurately identify diseases through brain CT scans, and
even highly experienced doctors are prone to misdiagnosis. Acute brain diseases are life-
threatening conditions that require rapid detection and treatment. Consequently, it is
necessary to use deep learning methods to assist in the diagnosis. One set of brain CT
scans can reflect multiple diseases. It is unreliable to use a single image in a brain CT scan
for diagnosis, which is well investigated in conventional methods. Conventional methods
ignore the causal relationship between brain diseases and the dependence between slices.
Moreover, labelling a set of brain CT images one by one takes a considerable amount of
time.

In this study, we proposed a model that learns the features of sequence images and
their slice dependencies for multi-label classification in a full-slice brain CT scan. We
classified brain CT scans into nine categories, and the F1 score of the model is 0.6412.
The results presented in this work demonstrate that deep learning algorithms can be used
to automatically detect the type of brain disease. This technology may have a potential
application for clinical use and can improve healthcare delivery through the detection of
a variety of acute diseases.
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