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useful alternative and complement to single marker analysis. Results from gene level
association tests can be more readily integrated with downstream functional and
pathogenic investigations. Most existing gene-based methods fall into two categories:
burden tests and quadratic tests. Burden tests are usually powerful when the directions
of effects of causal variants are the same. However, they may suffer loss of statistical
power when different directions of effects exist at the causal variants. The power of
quadratic tests is not affected by the directions of effects but could be less powerful
due toissues such as the large number of degree of freedoms. These drawbacks of
existing gene based methods motivated us to develop a new powerful method to
identify disease associated genes using existing GWAS summary data.

Methods and Results: In this paper, we propose a new truncated statistic method
(TS) by utilizing a truncated method to find the genes that have a true contribution to
the genetic association. Extensive simulation studies demonstrate that our proposed
test outperforms other comparable tests. We applied TS and other comparable
methods to the schizophrenia GWAS data and type 2 diabetes (T2D) GWAS
meta-analysis summary data. TS identified more disease associated genes than
comparable methods. Many of the significant genes identified by TS may have
important mechanisms relevant to the associated traits. TS is implemented in C
program TS, which is freely and publicly available online.

Conclusions: The proposed truncated statistic outperforms existing methods. It can
be employed to detect novel traits associated genes using GWAS summary data.
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Background

Even though genome-wide association studies (GWASs) have been remarkably successful
in identifying a large number of genetic variants associated with complex traits and dis-
eases, these identified variants can only explain a small to modest fraction of heritability
[1]. Larger sample sizes and more powerful statistical tests are needed to boost power to
identify novel genetic variants, especially for weakly associated variants with small effect
sizes or low frequency variants. Due to various reasons, it is often difficult for researchers
to obtain access to individual level data, and thus difficult to obtain a sufficient sample
size to obtain reliable results. The increase in public availability of genome-wide asso-
ciation study (GWAS) summary statistics, e.g. minor allele frequency (MAF), estimated
effect size, odds ratio, or p-values, for individual single nucleotide polymorphisms (SNPs)
motivated us to develop novel powerful methods for analyzing GWAS summary data.
Methods based on summary statistics can also be viewed as a complementary approach
to the traditional single variant single trait association test.

Most popular gene based association tests (grouping SNPs together into a SNP set (e.g. a
gene or surrounding of a gene) to test the joint effects of SNPs in the SNP set [2]) can often
be viewed as a combination of summary statistics (e.g. Z statistics or p-values generated
from GWAS). For example, the weighted sum statistic (WSS) [3] is a type of burden test
statistic, which is used to jointly analyze a group of genetic variants in order to test for
association in a considered region. The WSS can be viewed as a weighted sum of the
summary statistic, where the summary statistic is the Z statistic. The sequence kernel
association test (SKAT) [4] and the sum of squared score test (SSU) [5] are proposed to
test for association between genetic variants and a single trait. Both tests can be viewed
as the weighted sum of summary statistics, where the summary statistic is a score test.
The SKAT-O statistic [6] is a linear combination of SKAT and the burden test. When
a tuning parameter searching in a certain range, the SKAT-O can reach the maximized
value of power . The burden test and SKAT can be considered as special cases of SKAT-
O. The SKAT-O statistic can also be rewritten as a special combination of Z statistics [7].
In addition to the aforementioned gene based association tests, there are several other p-
value based methods which are not based on Z statistics, such as the minimum p-value, a
general gene-based p-value adaptive combination approach (GPA) [8] or the gene-based
association test, which uses extended Simes procedure (GATES) [9].

Most of the existing gene-based methods can be viewed as either burden test methods
or quadratic test methods. Burden test methods are usually powerful when the direc-
tion of effects of genetic variants in the considered region are the same. Quadratic test
methods usually have reasonable power given a wide range of alternative hypotheses.
Specifically, burden tests collapse the variants in a genomic region into a single burden
variable by using weighted combination of variants, and then test the association between
the trait and the single burden variable. Quadratic tests refer to tests with statistics of
quadratic forms of the score vector. However, burden tests can suffer loss of statistical
power when different directions of effects of causal variants exist, while quadratic tests
could be less powerful due to other issues such as the large number of degree of freedoms.
Thus, we aim to develop a new powerful method for further analyzing GWAS summary
data. In the “Method” section of this paper, we propose a truncated statistic method (TS)
to find approximate contributions of trait associated genes. As our method is based on the
quadratic test method and uses a truncated statistic to find the most likely contributions
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of genetic variants, TS can overcome the shortcomings of both quadratic and burden
tests.

To evaluate the performance of the proposed method, we conducted extensive sim-
ulation studies and real data analysis. We compared our method TS with five existing
gene-based methods: a gene-based association test that uses an extended Simes proce-
dure (GATES) [9], an adaptive sum of powered score tests (aSPU) [10], and three methods
proposed by [11]: sum test (ST), squared sum test (S2T), and the adaptive test (AT). All
methods are designed for single trait association studies. GATES adopts an extended
Simes procedure to correct multiple testing issues while calculating the p-value quickly
based on SNP summary statistics. The aSPU method estimates and selects the most pow-
erful test among a class of so-called, sum of powered score (SPU) tests. ST is a type
of burden test statistic [3], S2T is a type of SKAT statistic [4], and AT is equivalent to
the SKAT-O statistic [6]. Simulation results demonstrate that our proposed method TS
outperforms the five comparable methods. Results of our application to the schizophre-
nia GWAS summary data obtained from the Psychiatric Genomics Consortium (PGC),
and fasting glucose GWAS meta-analysis summary data obtained from the UK Biobank
component of the European DIAMANTE study, also indicate that our method performs

better than existing methods.

Results

Simulations

We conducted extensive simulation studies to evaluate the performance of TS. We com-
pared the type I error rates and power of TS with the five existing methods by following
the simulation setting in [12]. Kwak et al. [10] have shown that the performance using
any reference data from the same ancestry in estimating linkage disequilibrium (LD)
among SNPs is mostly satisfactory with an estimated inflation factor close to 1. There-
fore, the LD between SNPs in the simulation studies is estimated using the 1000 Genomes

project [13].

Type l error

To evaluate the type I error rates of the proposed method, we simulate the test statistic
Z from a multivariate normal distribution N (0, R), where R denotes the corresponding
LD matrix of the gene EPB41 (erythrocyte membrane protein band 4.1), which is used in
our simulation studies. Authors in [14] reported that gene EPB41 colocalizes with AMPA
receptors at excitatory synapses and mediates the interaction of the AMPA receptors with
the cytoskeleton. Existing study [15] has demonstrated brain region- and subunit-specific
abnormalities in the expression of subunits of the AMPA subtype of glutamate receptors
in schizophrenia. We consider four different significance levels: « = 1073,107%,107°,
and 2.80x 107°. In the simulation studies, p-values of our method and aSPU are estimated
by performing 10° times permutations and type I error rates are calculated based on 10°
replicates. Table 1 shows the estimated type I error rates. From this table, we can see that
the type I error rates of all of the methods are controlled well, which indicate that all the

tests are valid.

Power comparison
Using the same gene EPB41, we conducted extensive simulation studies to assess the
power of the proposed method. We simulate 10* summary statistics from N(A x A, R)
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Table 1 Estimated type | error rates for different test methods

a-level ST S2T AT GATES aSPU TS

1x1073 1.02x 1073 097 x 1073 104 x 1073 1.05 x 1073 1.00 x 1073 1.00 x 1073
Tx 1074 109 % 107 091 x107%  106x 107  099x107%  102x10™*  100x 107*
1x107° 110 x 107 095 x 1072 100x 107 090x 107>  1.10x 107 1.00 x 107
28x 107 400x 1070  300x 107  250x107®  200x107®  300x107®  3.00x 107

where A denotes the signs of associations which are determined by the risk or protective
effects of causal variants. A denotes different settings and determines the effect sizes of
causal variants. R is the corresponding LD matrix of the gene EPB41. We simulated three
causal SNPs. The effects of the three causal SNPs are deternmined by randomly selecting
three numbers either 1 or -1 for A. Then we set the effects of the rest of SNPs in the gene as
0. Table 2 shows the estimated power at 2.80 x 10° significance level under three combi-
nations of A for three settings of A: a set of fixed values of A and two randomly simulated
A, one from uniform distribution, and the other from normal distribution. The proposed
TS performs robustly across all scenarios and has the overall best performance compared
to the other five test methods. As our proposed method TS belongs to quadratic tests and
uses a truncated method to find the true contribution of genetic variants to the associ-
ation, our method is robust to the direction of effects and weak effect sizes. Among the
five comparable tests, even though S2T and GATES methods are unaffected by the direc-
tions of causal SNPs, these two methods will suffer a loss of power when the effect sizes
are weak, which is indicated by the results of the first three settings (three different fixed
values of A). Comparing the results of the last three settings from the same normal dis-
tribution of A, the burden test ST has the worst performance when there are differing
directions of effects. Because the two adaptive methods, AT and aSPU, are considered to
be a combination of the burden test and the quadratic test, these two methods will still
be more or less affected by directions and other noises, despite their adaptive nature. The
results of the first three settings from fixed effect size of A, and middle three settings from
uniform distribution of A, verify this conclusion. TS maintains its power in all of the sce-
narios, indicating that our proposed test TS is robust to different directions of effects and
weak effect sizes.

Table 2 Estimated power (%) under 2.8 x 107° significance level for different tests. Data are
simulated from N(A x A, R). A has 3 nonzero elements with different signs

nonzero A nonzero A AT S2T ST GATES aSPU TS

(4,2,1) (1,10 68.0 8.5 68.5 16.5 83.5 955
(44,2) (1,1,-1) 69.0 450 450 285 65.6 938
(2,54) (1-1,-1) 925 74.5 76.0 65.5 62.0 98.2
u(,5) (1,1, 86.0 370 87.0 24.0 86.0 97.8
u(2,6) (1,1,-1) 715 715 19.0 58.0 68.0 920
u,6) (1-1,-1) 70.0 70.5 19.5 65.5 64.5 92.5
N(3,4) (1,11 83.0 60.0 83.5 74.5 88.5 95.5
N(3,4) (1,1,-1) 68.0 70.0 330 725 69.5 85.7
N(3,4) (1-1,-1) 66.0 61.5 330 78.0 735 87.1
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Application to schizophrenia gWAS summary data set

We applied our method to a schizophrenia (SCZ) GWAS summary data, which was down-
loaded from the PGC website (see URL https://www.med.unc.edu/pgc/). The GWAS
summary data was generated from a meta analysis with 36,989 cases and 113,075 con-
trols, denoted as SCZ [16]. The GWAS summary data consists of the MAF, effect size
estimate, odds ratio, and p-value for each SNP contained in a gene. We treat all SNPs that
are located in or near a gene as a set to be analyzed for joint association and group all
SNPs from 20 kb upstream of a gene to 20 kb downstream of a gene following [2].

In order to better illustrate our TS method and make fair comparisons, we first per-
formed LD pruning for each SNP set by removing those SNPs that have pairwise LD
r?> > 0.5 with other SNPs. We then removed genome-wide significant SNPs with p-values
less than 5 x 1078 and filtered out those SNPs with MAF < 0.05. We set our genome-wide
SNP set significance level as 2.8 x 107, which is the Bonferroni corrected significance
level for the total number of tested SNP sets (17,415 genes). P-values of our method TS
and aSPU are estimated by performing 107 permutations, respectively.

We applied our method and the other comparable methods to the SCZ data of 150,064
individuals to identify SCZ-associated genes, then used genome-wide significant SNPs
around these genes in the SCZ dataset as partial validation. Figure 1 shows the Venn
diagram comparing the number of significant genes identified by our proposed method
with the other comparable methods, aSPU, GATES, and Guo and Wu’s method-GW,
which represents a super method where we aggregate the identified genes by S2T, ST,
and AT. Specifically, TS identified 215 significant genes, aSPU identified 76 signifi-
cant genes, GATES identified 73 genes, and GW identified 93 significant genes in total
(Table 3). Among these 215 significant genes identified by TS, 43 genes (in total 50 unique
genes containing significant SNPs in GWAS) contain the genome-wide significant SNPs
(p-value< 5 x 10~8) within 20 kb in the SCZ data, offering a significant validation of the

_GATES

0

Fig. 1 Venn diagram of the number of significant genes identified by TS, aSPU, GATES, and GW for SCZ
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Table 3 Comparison of the four methods using the PGC SCZ and UKB T2D GWAS summary data

Methods asPU GATES GW TS
PGC SCZ
Total significant genes (m,%) 76 (31,40.8%) 73(23,31.5%) 93 (32, 34.4%) 215 (43, 20%)
Unique significant genes (u,%) 4(1,25%) 14 (0, 0%) 15(1,6.7%) 155 (13, 8.4%)
UKBT2D
Total significant genes (m,%) 54 (25, 46.3%) 40 (12, 30%) 57 (27,47 4%) 217 (47, 21.7%)
Unique significant genes (u,%) 0 (0, 0%) 7(1,14.3%) 1(0, 0%) 155(17,11%)

Note: m denotes the number of significant SNPs in GWAS and u denotes the number of significant SNPs in GWAS. GW denotes a
combination of ST, S2T, and AT.

identified gene. Clearly, our method identified more associated genes than the other three
comparison methods.

Our method performs better than other methods in terms of the number of significant
genes identified. However, each test identified some unique genes missed by the other
methods, highlighting that different tests may perform better in different scenarios. Over-
all, a total of 278 significant and unique genes were identified in the SCZ data across all
tests. Supplementary Table S1 shows the significant genes, with associated p-value and
minimum p-value, identified by TS, aSPU, GATES, or GW in SCZ, respectively.

Many of these significantly identified genes may have important mechanisms rele-
vant to schizophrenia. Their biological implications in the etiology of schizophrenia are
discussed as follows.

miRNA plays a role in gene expression regulation, thus the effect on miRNA expres-
sion naturally affects the expression of its target gene(s). Particularly, the presence of
altered miRNA expression in brain and peripheral tissues has been implicated in the
development of schizophrenia and other psychiatric disorders such as bipolar disorder
(BD) and major depression (MD) [17-19]. Several miRNA encoding genes were identi-
fied as significant by all four methods (TS, aSPU, GATES, and GW), such as MIR4677,
MIR6511A4, MIR4267, MIR4436B1, and MIR137HG. MIR137HG is of particular interest
as it is instrumental in neurodevelopment and neuroplasticity [20]. Modulated expression
of MIRI37HG and MIR137 has been specifically shown to reduce grey matter content
in key areas in the brain, which is characteristic of schizophrenia [21, 22]. However,
TS identified several miRNA encoding genes that were missed by the other methods,
such as MIR4256, MIR6756, MIR3652, MIR4700, and MIR624. Due to the growing evi-
dence regarding miRNA involvement in psychiatric disorders, some of these genes may
be relevant to schizophrenia etiology, and thus may warrant further research.

Voltage-dependent calcium ion channel dysfunction has a long history of being a plau-
sible mechanism for schizophrenic pathology [23]. CACNAIC codes for a calcium ion
channel subunit, and has been reported to be a target of miR-137 [19]. Interestingly, TS
uniquely identified another calcium ion channel subunit encoding gene, CACNA2D3.
Due to its similarity to CACNAIC and its high expression in the brain [24] , CACNA2D3
may also prove to be a potent factor in schizophrenic development, despite not containing
any genome-wide significant SNPs (most significant SNP p = 0.000586), which highlights
our method’s robustness to weak effects.

Finally, TS uniquely identified GRM?7 as significant. Glutamate receptor dysfunction
has been long studied for its role in schizophrenia development [25, 26], and GRM?7
in particular was recently investigated for its potential as a biomarker for risperidone
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response [27]. GRM?7 was also previously identified by another proposed method, OWC
[7], indicating TS is equivalently adapted for identifying weakly associated signals.

Application to t2D gWAS summary data sets

We also conducted a comprehensive analysis of fasting glucose GWAS summary data for
type 2 diabetes (T2D) from the UK Biobank component of the European DIAMANTE
study (denoted as UKB), which included over 440,000 individuals of European ancestry
with 19,119 cases and 423,698 controls. The analysis for the dataset was restricted to HRC
variants and was conducted using the UK Biobank Resource under Application Num-
ber 9161 (McCarthy). The GWAS summary data can be downloaded from http://www.
type2diabetesgenetics.org/informational/data. Similar to the SCZ dataset, the UKB sum-
mary data also consists of MAF, effect size estimate, odds ratio, and p-value for each SNP
in genes. We applied the same procedure used to filter and analyze the SCZ data on the
UKB data. We used 0.05/17,495 ~ 2.8 x 107 as the significance level and performed 107
permutations for our proposed method TS and aSPU, respectively.

Figure 2 shows the Venn diagram comparing the number of significant genes identi-
fied by our proposed method compared with aSPU, GATES and GW. TS identified 217
significant genes, whereas aSPU, GATES, and GW identified 54, 40, and 57 significant
genes, respectively (Table 3). Among these 217 significant genes identified by TS, 47
genes contain the genome-wide significant SNPs (p-value < 5 x 10~8) within 20 kb in
the UKB data. In total 78 genes in the T2D GWAS contain significant SNPs. That is,
our TS method verified 60.26% of the entire genes containing significant SNPs. Based on
the UKB analysis, we can further conclude that our TS method performed the best com-
pared to the other methods in terms of the number of significant genes identified. The
233 significant and unique genes identified by all of the four methods are provided in

Supplementary Table S2.

Fig. 2 Venn diagram of the number of significant genes identified by TS, aSPU, GATES, and GW for UKB
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In the UKB dataset, ADIPOR2 was identified as significant by all methods except GW,
which was just below significance (p = 2.6E—5). Adiponectin is an adipokine involved
in metabolic control, and has insulin sensitizing effects. Expression of adiponectin is
found to be down-regulated as insulin resistance is developing, and is also associated with
anti-inflammatory and other protective effects [28]. ADIPOR?2 codes for an adiponectin
receptor, dysfunction of which affects adiponectin’s ability to exert its regulatory effects.
Deletion of the gene entirely in mice models demonstrates ineffective ADIPOR2 func-
tion in development of type 2 diabetes [29], and recovery of receptor function has been
considered for a potential target in preventing diabetic nephropathy in mice [30]. Also,
variations in ADIPOR?2 have previously been demonstrated to be associated with type 2
diabetes [31, 32]. Bountiful evidence of the effects of adiponectin and ADIPOR2 expres-
sion on T2D pathology serves to further highlight the validity of the truncated statistic
method. T2D pathogenesis has an inflammatory component, which connects the inability
of pancreatic beta cells to maintain sufficient insulin levels in the presence of develop-
ing resistance with various cellular stresses that either induces or is associated with an
inflammatory respons [33]. In particular, activation of the JNK pathway is associated
with a reduction in insulin gene expression and subsequent development of T2D [34].
Our method identified MAP4KS5 as significant (most significant SNP p = 1.7E-8), which
was missed by the other three methods. MAP4KS5 encodes for a component in mitogen-
activated protein kinase (MAPK) cascade, a signaling pathway which mediates activation
of the JNK pathway via tumour necrosis factor o (TNF-«) [35, 36]. Additionally, a par-
ticular study identified key protective polymorphisms in MAP4KS which may affect JNK
activation and thus T2D development [37].

We further performed a verfication study for T2D using an independent T2D GWAS
summary data obtained from the DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) Consortium (http://diagram-consortium.org/downloads.html). The stage 1
analyses of DIAGRAM comprised a total of 26,676 T2D cases and 132,532 control par-
ticipants from 18 GWAS. In stage 1, in each study, logistic regression association analysis
of T2D was performed with genotype dosage using an additive genetic model including
covariates age, sex and principal components derived from the genetic data to account
for population stratification. In fifteen of the repeated studies, researchers also adjusted
for body mass index (BMI) [38]. The GWAS summary data consists of the MAF, effect
size estimate, odds ratio, and p-value for each SNP contained in a gene. We applied the
proposed TS method and five other methods to the DIAGRAM stage 1 GWAS summary
data in order to verify T2D associated genes, which were identified using the GWAS sum-
mary data from the European DIAMANTE study (UKB). Table 4 shows that among 217
genes identified in UKB with the TS method, 32 genes were verified in the DIAGRAM

Table 4 Verification study for UKB T2D using GWAS summary data obtained from DIAGRAM

Methods Number of significant genes from UKB Verified genes from Diagram Verfied percentage
GW 57 5 8.7%

aSPU 54 5 9.2%

GATES 40 8 20.0%

TS 217 32 14.7%

Note: GW denotes a combination of ST, S2T, and AT.

Page 8 of 15
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data. The verification rate is 14.7%, which is greater than 8.7% of the GW method (S2T,
ST, and AT combined) and 9.2% of the aSPU method.

We analyzed genes uniquely identified by a method and showed how many of them
included the significant SNPs in GWAS in Table 3. In the PGC SCZ data, the proposed
TS method (8.4%) performs better than the GW (6.7%) and GATES (0%). Although the
ratio 25% of sSPU is greater then 8.4% of TS, aSPU uniquely identified 4 genes and only 1
of them included the significate SNPs in GWAS. In the UKB T2D data, the proposed TS
method (11%) performs better than the GW (0%) and aSPU (0%). The GATES uniquely
identified 7 T2D associated genes, and only 1 of them included the significant SNPs in
GWAS.

In summary, in both the SCZ and UKB summary data-sets, several genes which contain
genome-wide significant SNPs were identified by all of the methods considered, including
TS, further highlighting the validity of our proposed method. Additionally, TS identified
genes in both datasets that were missed by the other methods, which demonstrates its
ability to maintain power across a range of scenarios as well as overcome the limitations

discussed previously.

Discussion

In this paper, we propose a novel gene-based genetic association test, the truncated statis-
tic method (TS), where we use a truncated test to find the estimated contribution of
genetic variants based on a quadratic statistic. The TS method can overcome the short-
comings of both burden tests and quadratic tests: different directions of effects for burden
tests and the large number of other noises for quadratic tests. When our data satisfies
some special conditions (see Appendix A), our method can reduce to the score test. If we
focus on the summary data obtained from rare variants analysis, we can set the weight
on each Z statistic of each SNP that has the beta distribution density function with pre-
specified shape parameters 1 and 25 being in row evaluated at the corresponding sample
MATF in the data, similar to the method of SKAT. Through simulation studies and real
data analyses, we demonstrate that the proposed test TS, often outperforms other com-
parison methods such as ST, S2T, AT, aSPU, and GATES, which are some of the most
popular methods based on summary data.

When we perform association tests based on a large number of genes in whole-genome
sequencing studies, different disease models may exist: some of the models are likely to
include many causal variants whose effects are in the same directions while other models
may include few causal variants or causal variants whose effects are in different directions;
or some of the models are likely to include many weakly associated variants while other
models may include a few strongly associated variants. Because the true disease model is
usually unknown, there is no uniformly most powerful test to detect single trait associ-
ated genes; an association test may perform well for one dataset, but not necessarily for
another. For example, both schizophrenia and type 2 diabetes are representative of com-
plex diseases with common but often weakly associated variants, in which many of these
variants may be working in tandem to produce the disease. A robust, flexible method such
as TS is needed to better elucidate these weakly associated variants so that their role in
disease etiology can be understood further. Thus, the proposed TS can be an attractive
tool for many situations, because it adapts to the underlying biological disease model by
selecting the true contribution of genetic variants.
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Our proposed method provides an alternative approach with extreme scalability and
robust performance. This method only needs the publicly available GWAS summary
statistics as input, without the need to access raw genotype and phenotype data. TS incor-
porates the inverse of the LD matrix. Thus, it can account for the LD information among
SNPs. In order to guarantee that the LD matrix is invertible in real data analysis, we
suggest to perform SNP pruning first [39] before applying TS in the GWAS summary
data. We expect that researchers will be able to identify novel disease associated genes
by employing the proposed method to analyze publicly available GWAS summary data
and shed more light onto the underlying mechanisms of diseases. In our paper, our pro-
posed method mainly focused on single trait GWAS summary data. However, it can be
easily extended to multiple traits GWAS summary data. We have implemented the pro-
posed method in an C code, which is publicly available online at github https://github.
com/Jianjun-CN/c-code-for-TS.

Conclusions

We proposed a powerful gene based test TS. Simulation studies and real data analyses
demontrated that TS outperformed existing methods. It can be employed to detect novel
associated genes using GWAS summary data.

Method

Suppose we have GWAS summary data including MAF, estimated effect size, standard
deviation, p-value, test statistic, for each SNP from a GWAS study. We aim to propose
a novel gene based association test using the GWAS summary data. Assume M genetic
variants in a considered region (a gene or a pathway) are associated with a phenotypic trait
with effect sizes § = (B1,...,Bum). Denote Z = (Z1,...,Zy) as a vector of test statistics
used to test the genetic associations for the M genetic variants. The null hypothesis is
Hp : B = 0 and the alternative hypothesis is H; : B # 0, which means that at least one
of the elements of § does not equal to zero. For each pair of Z statistics, under the null
hypothesis, we have:

Cov(Zi, Zy) = 1y (1)

where ry; denotes the LD between the k SNP and the / SNP [8]. We can assume that
the p-values are calculated based on the Z-statistic, even though the p-values may be
computed based on non-Z statistics. This assumption will not affect our conclusion about
the proposed test. For p-values obtained from non-Z statistics (such as chi-square test,
or t-test), we can transform the corresponding p-values into Z statistics by using Z,, =
sign(ﬁm)\ll_l(l — pm/2) for the m™ SNP when we know the p-value, where W(-) is the
cumulative distribution function (CDF) of a standard normal distribution and $,, denotes
the corresponding estimated effect size contained in the GWAS summary results.

It is reasonable to assume that Z follows a multivariate normal distribution with mean
0 and correlation matrix R under the null hypothesis, where R denotes the estimated
null correlation matrix computed based on the variant linkage disequilibrium (LD). We
propose a test statistic that includes only Z statistics with a true contribution to the asso-
ciation of a genetic variant under the alternative hypothesis. Here, we adopt the truncated
statistic method for combining statistical evidence, which has been suggested for such an
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analysis in literature [40, 41]. For a given T > 0, we let Z(7) be the sub-vector of Z satis-
fying |Z;»| > 7. That is, only the statistics in the vector Z with an absolute value greater
than or equal to 7 will be kept. Similarly, we let R(7) be a sub-matrix of R representing
the correlation matrix corresponding to Z(t). Define the test statistic based on Z(7) and
R(7) as:

T, = Z(t)'R(x) "' Z(7) ()

When 7 is large, T; can be undefined if |Z,,| < t for all m. In this case, we define T; = 0.
Then, our test statistic is:

ST = max T, (3)
>0

Usually, we select the value t from the second minimum value of Z to the maximum value
of Z, because we have proven that the statistic 7; containing more than one Z-statistic is
greater than the statistic T, that contains only one Z-statistic (see Appendix A). That is,
we only need to compute T; at most M — 1 times to get the maximum value of S7. The
asymptotic distribution of S7 does not follow a standard distribution but can be evaluated
by permutation methods.

We use the following steps to evaluate the distribution of S7 under the null hypothesis:

1)  Suppose we permute B times. For the b permutation, we obtain the Z statistics, Z,
generated from the multivariate normal distribution N (0, R) where b = 0 represents
the original Z statistics.

2)  Scanall possible t values, correspondingly we search from the second minimum value
of Z” to the maximum value of Z, then, we get the test statistic § (1?) for the b™ step.

3)  Repeat B times permutations and then the p-value of St is given by:

#b:SP >80, b=1,...,B)
- B

T

Comparison of methods
We evaluate the performance of the proposed method (TS) by comparing it with the five
aforementioned methods: 1) adaptive sum of powered score tests (aSPU) [10]; 2) gene-
based association test that uses extended Simes procedure (GATES) [9]; 3) three methods
proposed by [11]: sum test (ST), squared sum test (S2T), and adaptive test (AT).

Please find the brief introduction about these methods and their notations as follows:

1) Sumtest (ST), B = Zi\n/lzl Z, a type of burden test statistic [3].

2)  Squared sum test (S2T), Q = Z%:l Z,Z,,, a type of SKAT statistic [4] and equivalent
to the weighted sum of squared score (SSU) test [42].

3)  Adaptive test (AT), T = min,¢[o,1] P(Qp), where Q, = (1 — p)Q + pB?% and P(Qy)
denotes the corresponding p-value.

1. Adaptive sum of powered score tests (aSPU), aSPUs=min, cr Pspus(,) where
SPUs(y) =M 7).

4)  Gene-based association test that uses extended Simes procedure (GATES),
PGATES = min (%i(:)) where m1, is the effective number of independent p-values
among the M SNPs, p;) is the j?" smallest p-value and mMe(j) is the effective number of
independent p-values among the top j SNPs.
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Because Z ~ MVN(O, R), B:l;VIZ ~ N(O, I;MRIM), where 1;; denotes a column vec-

2
tor of length M where every element is equal to one. Therefore, % follows the x
MM

distribution. Under the null hypothesis, the statistic of the squared sum test Q=Zz
has an asymptotic distribution as the weighted sum of independent x; with weights
being the eigenvalues of R. We compute the p-value of the T statistic of the adap-
tive test using an one-dimensional numerical integration, where we will search over
p € (0,0.01,0.04,0.09,0.16,0.25,0.5, 1) following [43]. We can estimate the p-values of
the three statistics proposed by [11] using the “sats” function in the “mkatr" package in
R. We estimate the p-values of the adaptive sum of powered score tests (aSPU) using the
Monte Carlo simulations, which can be obtained using the “aSPUs” function in the “aSPU”
package in R. We use the “gates” function in the “COMBAT" package in R to calculate the
p-value of the gene-based association test that uses extended Simes procedure (GATES).

Appendix

Assume that Z = (Zy,--- ,Zy) represents a vector of Z statistics following a multivari-
ate normal distribution with mean 0 and covariance matrix R, where R is the LD matrix
between SNPs. When we try to adapt the truncated statistic method for combining sta-
tistical evidence, we want to know whether the test statistic in equation (2) will increase
or not when we add a new Z statistic.

If t changes from a large value to a small value, the number of Z statistics added in
the test statistic will increase as 7 changes. Suppose we have selected n Z statistics, Z; =
(Z1,-++,Z,)T and have a corresponding covariance matrix X; for n < M. We can then
write the test statistic as ZlTEl_ 1Z1. Suppose we add one Z statistic, Z,41, to the test
statistic, when 7 gets smaller. The corresponding test Z statistic can be written as:

-1
aa(32) (%)

where B represents the correlation between the Z,.; statistic with the first n Z statistics.
From the theory of block matrix inversion, we have:

-1
1B st EBBTE M- BT BT —27'Ba - BT B!
BT1 B -1 -BTs'B)y BTyt 1-B"y'p7!

®)

Because (1 — BTEle)_1 is a constant (not a matrix), we define C = (1 — BTEle)_1

and rewrite the Eq. 5 as:

-1
B\ (M4 3BBTE A« C — B C
BT1) —\-cx«BTx;! C
_c iyt +3'BB Ty —30'B
-BTyt 1
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Then, the truncated statistic (4) is equivalent to:

-1
¥1 B V4

Z{,Zps1)
A BT Zni1

r Iy '+ 2'BBTE 2B (2,
=C(Z1 ’ZVI-‘rl) Tw—1
—B El 1 Zn+1

=zTs7'Z, + C[(Z{):;lB)2 — 22,1 ZT 5B + Zﬁﬂ]
2
=zTx717) + C(ZITZfIB - Z,,H)

If we want to know whether the test statistic will increase or not when we add a new Z
statistic, we only need to check whether the condition C = (1 — BTEI_ 1B)~1 is greater
than zero or not. It means that when BT &1 1B < 1, the truncated statistics will increase,
and will not increase otherwise. For the special case, n = 1, we always have BTZf 1B < 1.
It means the Z statistics contained in the truncated statistic will always be greater than 1.
This is also in line with our thought, as we view our proposed method as a complementary
approach to single trait single variant association tests. When these n 4 1 Z statistics are
all independent, it means B = 0. Thus, the truncated statistic degenerates to a summation
of the square of these n 4 1 Z statistics, and our method becomes equivalent to the score
test.
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