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Abstract

Background: Compared to the many uses of DNA-level testing in clinical oncology,
development of RNA-based diagnostics has been more limited. An exception to this
trend is the growing use of mRNA-based methods in early-stage breast cancer.
Although DNA and mRNA are used together in breast cancer research, the distinct
contribution of mRNA beyond that of DNA in clinical challenges has not yet been
directly assessed. We hypothesize that mRNA harbors prognostically useful
information independently of genomic variation. To validate this, we use both
genomic mutations and gene expression to predict five-year breast cancer
recurrence in an integrated test model. This is accomplished first by comparing the
feature importance of DNA and mRNA features in a model trained on both, and
second, by evaluating the difference in performance of models trained on DNA and
mRNA data separately.

Results: We find that models trained on DNA and mRNA data give more weight to
mRNA features than to DNA features, and models trained only on mRNA outperform
models trained on DNA alone.

Conclusions: The evaluation process presented here may serve as a framework for
the interpretation of the relative contribution of individual molecular markers. It also
suggests that mRNA has a distinct contribution in a diagnostic setting, beyond and
independently of DNA mutation data.

Keywords: Gene expression, Genomics, Breast cancer recurrence, Oncology, Machine
learning, Machine learning explainability, Data science

Background
Molecular testing has become an important tool in the clinical management of cancer

patients and is often used for prediction, prognosis, and selection of therapy. Immuno-

histochemical staining for the HER2 receptor in breast cancer, PD-L1 receptor in lung

cancer, and mismatch repair proteins in colon cancer are examples of protein-level
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molecular testing used to determine therapy [1–3]. DNA-level testing for gene muta-

tions has also been widely adopted, mainly in the metastatic stage of disease, with many

commercial next-generation sequencing gene panels available to individualize therapy

[4]. Among early-stage cancers, DNA-level testing is used for HER2 gene copy evalu-

ation in breast cancer and for evaluating microsatellite instability in colon cancer [2, 3].

Tumor mutation burden, as determined by DNA mutation evaluation, has also been

evolving as a predictor of immunotherapy effectiveness in a range of metastatic malig-

nancies [5]. Compared to the many uses of protein and DNA-level testing in clinical

oncology, development of mRNA-based diagnostics has been more limited. Major rea-

sons for this include the higher cost of mRNA testing and the greater ease of acquiring

adequate DNA samples. Normalization and processing of mRNA, particularly when

gathered from multiple laboratories, are also obstacles to the development and vetting

of mRNA-based diagnostics on a larger scale. The somewhat roundabout method for

testing HER2 overexpression is a good example of the preference for non-mRNA-

expression-based methods: rather than testing HER2 expression directly, oncologists

first examine protein expression and, if expression is equivocal, evaluate copy number

aberrations (CNA), thus reaching an approximation of overexpression [3]. An exception

to this trend is the growing use of mRNA-based methods in early-stage cancer, such as

the 21-gene Recurrence Score Assay (Oncotype-DX™) and other commercially available

platforms in breast cancer and a 12-gene expression test for prognosis in early-stage

colon cancer [6–8]. Although mRNA is evaluated independently in these clinical appli-

cations, and DNA and mRNA are used together in breast cancer research [9] the dis-

tinct contribution of mRNA beyond that of DNA in clinical medicine has not yet been

directly assessed. We hypothesize that mRNA harbors prognostically useful information

independently of genomic variation. Here we describe a direct comparison of the relative

prognostic utility of genomic mutations to that of gene expression, using both to predict

five-year breast cancer recurrence in an integrated test model. We show that such a model

gives more weight to mRNA features than to DNA features. The evaluation process pre-

sented here may serve as a framework for the interpretation of the relative contribution of

individual molecular markers. It also suggests that mRNA has a distinct contribution in a

diagnostic setting, beyond and independently of DNA mutation data.

Results
Overview

The goal of this work was to directly test the hypothesis that mRNA expression data

contains prognostically-relevant information independently of mutation profile. Two

predictions are tested in this work: (1) models developed on mutation profiles alone

will be less successful than models developed on mRNA levels and (2) methods that

calculate relative multivariate feature importance will attribute higher predictive value

to mRNA features than to DNA features in models in which both are used. To test

these predictions, we used the METABRIC dataset, the only dataset of its size that con-

tains both mutation and mRNA profiles [9–11]. The input matrix we used included

mutations data for all the 173 genes analyzed in METABRIC as well as 17,299 mRNA

microarray-based measurements which were retained after pre-processing and selected

clinical features (e.g. ER Status). Predictive models of 5-year recurrence were trained
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using XGBoost (eXtreme Gradient Boosting, Version 0.80), a powerful decision tree-

based ensemble machine learning algorithm [12]. Feature importance was scored using

the SHAP (SHapley Additive exPlanations) package (Version 0.25.1), the most robust

approach currently available for explaining machine learning outputs [13]. For general

pipeline development and validation, scikit-learn (Version 0.20.0) was used [14].

Model evaluation

To avoid issues of normalization between mRNA data collected from the different la-

boratories in METABRIC, the largest cohort was chosen as the training-testing set,

while the 4 remaining cohorts were kept for hold-out validation. Ten-fold cross-

validation was used on the training-testing set and performance of the model from each

of the folds was also evaluated on the hold-out data. All results presented here reflect

the average performance of the cross-validation models when predicting on the hold-

out data. The resulting XGBoost models performed better than random when predict-

ing five-year breast cancer recurrence in the validation data (see Fig. 1). The model

trained only on mutation data was the least successful and it too had an AUC greater

than 0.5 when predicting on the validation data. Besides establishing the ability of

Fig. 1 ROC Plot showing the performance of the different models, each trained on different subsets of the
full data
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XGBoost to train transferrable predictive models with the data used here, preliminary

comparison of the different models’ AUC alone supports our hypothesis: models based

on mutations alone do not perform as well as models based on mRNA alone (AUC =

0.74 compared to 0.62). Moreover, the Matthew’s Correlation Coefficient (MCC) for

each fold was significantly higher in models trained on mRNA features only compared

to models trained only on DNA (p= 4.5 × 10� 10, paired t-test; t-statistic = � 28.1). The

same trend of mRNA surpassing mutations in predicting recurrence was observed

when using logistic regression (data not shown).

Direct comparison of mRNA and mutation features

Multivariate feature importance (SHAP value) was calculated for each feature and the

SHAP value of each feature was averaged across all folds to generate one value per fea-

ture. The 10 features with the highest SHAP score when trained on the mRNA and

mutation data together are presented in Fig. 2. The features with the highest SHAP

values were relatively consistent across all folds and mRNA features ranked in the top

hundred in every fold in which they were included. Although some mutation data was

retained in some of the folds when the model was trained on the mutation and mRNA

data together, mutation data was never stable across the 10 folds and the mean SHAP

value of every mutation feature was zero. The uniformly colored streaks on either side

of the y-axis are common throughout the highest performing features. These streaks,

given the mixed-color swarms on the other side of the y-axis, suggest interaction with

other features (e.g. FBXW4_mRNA). Progressive change in color for a feature suggests

a linear relationship of feature value with impact on model output (e.g. TTLL3 mRNA).

Fig. 2 SHAP plot of the 10 most prognostic features. This graph shows SHAP values averaged across all the
folds when the model was trained on mRNA and mutation data together. Each point on the graph
represents a sample from the validation data. The color of each point represents the actual value of that
feature. Greater absolute value on the x-axis indicates higher impact on prediction
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A gene analysis was performed to seek commonality within the top features and known

cancer pathways. The analysis failed to identify significant enrichment using hypergeo-

metric tests in known gene sets (data not shown).

Discussion
Results of this work support the hypothesis that mRNA levels carry clinically important

information which cannot be learned directly from mutation data. The relative power

of mRNA and DNA features in predicting 5-year breast cancer recurrence was directly

compared. SHAP values were used to quantify the relative importance of DNA and

mRNA features in our model, and indicated that only mRNA features were consistently

predictive of recurrence (Fig. 2). As expected, models that are built on mRNA alone are

very similar in AUC to models built using mRNA and DNA, but are much more accur-

ate than models based on DNA alone. Moreover, models that include mRNA outper-

form models based only on clinical information (including information about clinical

subtyping). We speculate that the lack of significant commonality within top-scoring

features and known cancer pathways in gene analysis may stem from differences be-

tween the biological processes involved in cancer development and recurrence. Because

cancer development is better understood, known gene sets may possibly be biased

against recurrence-associated pathways.

It is well established that breast cancer recurrence rates differ between the main clin-

ical subtypes. Research literature further stratifies those subtypes into even more dis-

tinct subtypes based on integrative clusters of molecular markers which are associated

with even more specific recurrence profiles [9–11]. The behavior of the model can be

understood as associating samples with distinct subtypes, and thus predicting recur-

rence based on recurrence rates for that subtype. This could also explain why models

trained on clinical variables alone perform relatively well: both models trained on mo-

lecular data and those trained on clinical data may be predicting largely based on be-

longing to a particular subtype. The improved performance of models trained on

mRNA data may thus reflect greater success of mRNA, compared to DNA, in associat-

ing samples with the correct subtype. Alternatively, mRNA levels may themselves be

directly indicative of recurrence likelihood. The ability of the 21-gene assay (used in

ER+ breast cancer only) to predict recurrence within the ER+ subtype more accurately

than any DNA-based assay supports this explanation. It suggests that the assay can

identify pathway alterations on a more detailed level than would be possible by simply

associating with subtype. There are many genomic alterations which can lead to the ac-

tivation of a single downstream pathway and thus cause a characteristic expression pat-

tern. Such a pattern is more easily identified by directly examining gene expression,

further explaining why models trained on mRNA may be better able to indicate that a

tumor has recurrence-driving mechanisms in place.

In either case, the likely reason why mRNA levels are more informative than gen-

omic variation in predicting recurrence is due to their larger dynamic range and

higher-level indication of phenotype. Poorer performance by models trained on gen-

omic variation alone likewise reinforces one of the central issues in machine learning

with genomic data: there are too many intermediate steps between driver mutations

and disease phenotype to feasibly incorporate most genomic changes directly into a

predictive model [15]. Understanding the connection between specific genomic
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changes and disease phenotype is essential to better understanding the progression of

breast cancer. However, to usefully incorporate genomic data into predictive models

trained on datasets of comparable size to those used here, a greater level of abstrac-

tion is needed. Future directions for research may include attaining such abstraction

by examining genomic variants as members in molecular pathways, rather than as

lone markers.

Besides increasing abstraction, feature selection based on prior knowledge can also

reduce the amount of data needed to train machine learning models. The comparison

of 17,299 mRNA features with only 173 genes may be seen as a potential area for con-

cern in the planning of this project. Rather than being a setback, however, we see this

as a good example of incorporating prior knowledge into a machine learning pipeline.

The selection of these genes for inclusion in METABRIC was based on their frequency

of harboring mutations and being targeted for homozygous deletions [10]. It is likely

that irrelevant genes would not have been retained after feature selection in any case.

The inclusion of the logistic regression addressed another potential concern: because

we utilized a tree-based model, one-hot encoding of mutations may have caused them

a performance disadvantage relative to numerically encoded mRNA (see Methods for a

brief explanation of one-hot encoding). The results of the logistic regression, a non-

tree-based method, alleviate this concern.

The ability of the model to predict accurately on unseen data despite being trained

on and predicting across various cancer subtypes supports the feasibility of using ma-

chine learning to build comprehensive models to predict breast cancer recurrence

across all subtypes. The success of examining multivariate feature importance in our

model suggests that as more genomic and transcriptomic data becomes available, these

same analyses could be used with more comprehensive models to uncover specific can-

cer mechanisms. For instance, examining which expression markers interact more sig-

nificantly with ER+/� breast cancer could help elucidate the different pathophysiology

of the respective subtypes. Taken together, increasing abstraction and examining the

multivariate relative contribution of various prognostic factors are key to interpreting

more complex models.

The results presented here can also be used for other purposes. Our successful use of

SHAP to examine the relative importance of features reinforces the use of this relatively

new technology in other clinical areas [16] and suggests its potential for use with other

feature types (e.g. pathological images, protein levels) in the medical field. While be-

yond the scope of this work, it would be interesting to test SHAP in comparing other

diagnostic feature types in biomedical research, as well as in characterizing the exact

impact of each features on model outcomes.

The potential use of mRNA profiling in other precision oncology challenges has re-

cently been further validated in a clinical trial, although other uses in clinical care have

not yet been established [17]. The growing use of mRNA in diagnostics requires

expanding the characterization of how mRNA diagnostics function differently from

other molecular diagnostic platforms, both for gaining deeper insight into breast cancer

transcriptomics and for development of further mRNA diagnostics and greater under-

standing of the type of clinical questions which they can answer. Despite the commer-

cial availability of mRNA-based diagnostics for other cancers [18, 19], more advanced

understanding of mRNA diagnostics is likely to stem from further research into their
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leaving only mutations likely to affect mRNA levels and/or protein function. Dimen-

sions of the mutation data were reduced by categorizing the remaining mutation vari-

ants described in the original data into three levels, according to mutation severity:

Level 1: Intron (n = 49), translation start site (n = 5), nonstop (n = 5), 3’UTR (n = 4),

5’flank (n = 3), 3’flank (n = 3)

Level 2: Missense (n = 10,165), in-frame deletions (n = 250), in-frame insertions (n = 61)

Level 3: Nonsense (n = 836), frame-shift deletions (n = 825), frame-shift insertions (n = 477),

splice site (n = 402), splice region (n = 124)

One-hot encoding was subsequently applied to each level where applicable. In pa-

tients with more than one mutation in the same gene, only the most severe mutation

was retained. The resultant matrix contained 344 columns describing the applicable

mutation levels of the 173 genes analyzed in the study.

Pre-processing of combined data

Finally, recurrence was used as the target variable, defined as distant recurrence in the

span of 5 years. Patients with less than 5 years of follow-up, either because they

dropped out of the study or because of disease-unrelated death, were removed from

the analysis. The largest available cohort (n = 516) was chosen for training-testing with

10-fold cross validation, while the remaining four cohorts were used as a hold-out val-

idation dataset. Class imbalance in the training-testing cohort was reduced to a 2:1 ra-

tio by subsampling instances of the majority class (there were significantly more

patients who survived for more than 5 years). Data was stratified to contain equal in-

stances of each target variable class across 10 folds.

Model development pipeline

The XGBoost algorithm (Version 0.80) was used with the scikit-learn API (Version

0.20.0) for generating the predictive model [12, 14]. Feature selection for the main

XGBoost models was performed with scikit-learn’s SelectFromModel meta-

transformer, which itself was set to use the XGBoost algorithm for ranking the highest-

performing features. Six hundred features were retained after the selection (this num-

ber was arbitrarily chosen to allow subsequent analysis of relative importance). Feature

selection was performed for each fold individually to prevent test leakage. XGBoost was

run with default parameters with the following changes: max_depth = 7, learning_rate =

0.05, colsample_bytree = 0.3, n_jobs = � 1. Additionally, a logistic regression analysis

was performed (using scikit-learn’s LogisticRegression function) in each fold. The fea-

tures entered into the regression underwent their own feature selection (also set to re-

tain the 600 best performing features) using scikit-learn’s SelectKBest function. The

model was run in a loop and trained on one of the following seven variations of the

data in each round: ER/HER2/PR status only, Nottingham Prognostic Index (NPI) only,

all of the included clinical variables, mRNA expression only, mutation data only,

mRNA and mutation data together, and all of the data (molecular data and clinical

data). All the results shown reflect the average performance of the cross-validation

models when predicting on the validation hold-out set.
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Evaluation of feature contribution

Contribution of each feature to the model was evaluated with the SHAP package (Ver-

sion 0.25.1) [13], chosen for its robust estimation of multivariate feature importance.

Assessment of relative importance of the various features was based on the average

SHAP values of each feature across the validation folds.

Availability: The code, input matrixes, and configuration file are provided as supple-

mentary material.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3512-z.

Additional file 1.
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