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manually, so that equal or similar colors are assigned to amino acids that share similar
properties. However, this assessment is subjective and may not represent the similarity
of symbols very well.

Results: In this article we propose a different approach for color scheme creation: We
leverage the similarity information of a substitution matrix to derive an appropriate
color scheme. Similar colors are assigned to high scoring pairs of symbols, distant
colors are assigned to low scoring pairs. In order to find these optimal points in color
space a simulated annealing algorithm is employed.

Conclusions: Using the substitution matrix as basis for a color scheme is consistent
with the alignment, which itself is based on the very substitution matrix. This approach
allows fully automatic generation of new color schemes, even for special purposes
which have not been covered, yet, including schemes for structural alphabets or
schemes that are adapted for people with color vision deficiency.
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Background
Typically, visualization of multiple protein sequence alignments colors the amino acid
symbols according to some kind of (chemical) property. Examples for software using this
visualization technique are MSAViewer [1], JalView [2] or ClustalX [3]. Figure 1 shows an
alignment using the default ClustalX color scheme depicting the chemical characteristics
of the amino acids. Typically, such a color scheme is created manually by a professional
using their intuition and knowledge about any characteristics to be emphasized.
However, the intuition might not reflect the biological similarity of two amino acids in
terms of evolutionary distance, as defined by amino acid substitution scores (and thus
probabilities).
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Fig. 1 Visualization of a multiple sequence alignment. The alignment uses the default ClustalX color scheme
[3]. The alignment is an excerpt of a multiple protein sequence alignment of bacterial luciferases (luxA gene
product). The figure was created with Biotite [13]

If the color in an alignment visualization is used to depict general physical amino acid
characteristics, in contrast to a specific measurable or computable quantity, e.g. hydropa-
thy or secondary structure propensity, we reckon substitution matrices would be a more
meaningful and reproducible basis for color scheme creation.

In this article we describe a method and corresponding software that is able to directly
generate color schemes from a substitution matrix in an automatic manner: The aim is
to find those colors for each symbol, for which the pairwise perceptual color differences
correspond to pairwise symbol distances. The more similar two symbols are, the more
similar the assigned colors should be. We formulated this criterion as score function and
used a simulated annealing [4] optimizer, that searches for the optimal colors for which
the score function is minimal.

Color space

In order to find the optimal colors that minimize the score function, a color space to
search in is required. A color space is a 3-dimensional vector space where a point rep-
resents a corresponding color. The arguably most common color space is RGB or, more
exactly, standard RGB (sRGB) [5]. It defines a color as an addition of red, green and blue
light. Although this color space is very useful in the context of display devices, it lacks
perceptual uniformity [6]: changes of an RGB color value do not result in a proportional
perceptual change.

In contrast, the CIE L*a*b* color space [7] shows perceptually approximately uniform
characteristics, i.e. the perceptual difference of two colors is approximately proportional
to the Euclidean distance of the color components. The L*a*b* color space consists of
these three components:

e L*- The lightness of the color. 0 is completely black and 100 is completely white.

e a*- The green-red component. Green is in the negative direction, red is in the
positive direction.

e b* - The blue-yellow component. Blue is in the negative direction, yellow is in the
positive direction.
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Fig. 2 RGB subspace of the L*a*b* color space. The plot shows a L*a*b* space cross section at a fixed L*
value. The color depicts the RGB value at the respective position. The gray area cannot be converted into RGB

While a* and b* values are theoretically unlimited in either direction, only a limited
L*a*b* subspace is displayable by devices and thus can be converted into sRGB (Fig. 2).

Implementation
Score function
Our method should find similar colors for similar symbols and distant colors for dis-
similar symbols. In order to quantify this objective, differences are computed via a score
function. The score function takes a combination of CIE L*a*b* colors (color conforma-
tion), represented as a (N x 3)-matrix, and returns a scalar score value. N is the number
of symbols in the alphabet (20 for amino acids).

In the following (X) denotes the arithmetic mean of all elements of a matrix: (X) :=
% 2_;; Xij. For a triangular matrix only the non-zero diagonals are taken into account; 7 is
the number of respective matrix elements.

Construction of distance matrices
First, the input substitution matrix M is converted into a distance matrix D'. D’ is
triangular to remove redundant entries, since the distance is commutative.

((Mii — Mi,') + (Ml'l' — Mﬂ)) /2, fOI‘j <i

D.. =
Y 0, forj > i

For any substitution matrix M, M;; should be the maximum value in the row/column i,
otherwise a symbol would be more similar to another symbol than to itself. Consequently,
the main diagonal of D’ contains only zeros.
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To be agnostic about the magnitude of substitution scores in M, D) is scaled, so that the
average distance is 1.
D/
(D)

Calculation of the perceptual difference matrix

On the other hand, the triangular matrix C denotes the pairwise perceptual differences
of the L*a*b* colors for each pair of symbols. Our implementation uses the CIEDE2000
formula [8], which is omitted for brevity. However, the formula can be approximated as
the Euclidean distance [7]:

Cy~ \JLF =L + (@} — @) + (b} — by)?

Note, while D is constant, C is dependent on the (current) color conformation.

In order to relate the L*a*b* color differences in C to the distances in D, a scale factor f;
is introduced. f; is the proportion of the average distance in D to the average difference in
C:

(D) 1 n
F=g T Iy,cT 5,6
( > ; Zl] C le Ul

As C is variable, f; also dynamically changes during our optimization runs.

Score function
The score function St is a sum of two terms: a sum of harmonic potentials between each
pair of symbols Sy and a linear contrast score Sc:

St =8u+Sc

The harmonic potentials are used to adjust the relative color differences in accordance
with the substitution matrix. The equilibrium distance of each potential corresponds to

the distance in the distance matrix D:

St =y (£Cy— Dy)”
i

However, this term is not sufficient to create an appealing color scheme: due to the scale
factor f;, a scheme with a small average color difference would get the same score as a
scheme with a high average color difference. In consequence low contrast color schemes
could arise. In order to favor high contrast color schemes the contrast score Sc is intro-
duced. A reciprocal function based on the average color difference is used here. The
contrast factor f is a user-supplied parameter for weighting this term:

_ S

Se=1g

Optimization

The question, which color conformation minimizes the score function, is a (N x 3)-
dimensional, continuous optimization problem. As the optimization landscape can be
restricted via user input, we face the problem of a non trivially bounded and, depend-
ing on the constraint, possibly non-convex optimization problem. In general, obtaining
an exact solution in a non-convex, continuous problem setting is computationally hard,
as shown for the example of pair potentials in atomic clusters [9]. Therefore, we
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resort to heuristic optimization, namely simulated annealing (SA) [4], as described in
Algorithm 1.

The SA algorithm samples the search space, which is a vector space consisting of color
space vectors X = (L’{, ay, by, ... Ly, ay, b}"\,)

Sampling is realized based on a neighborhood definition in color space. For the space
of color space vectors this neighborhood is defined by all valid colors reachable by adding

Algorithm 1: Simulated annealing with annealing in energy and step size. BSF: best-
so-far.

Data:

Inverse temperature at start 8, annealing rate 7,

start step size Axyp, end step size Axy,
number of iterations T

Result:

Optimal solution ¥ and score Sz (%)

We define
a <« log(Ax1/Axp) /T
Ax(t) < Axg-exp(o - t)
B(t) < fo - exp(t - 1)

Initialization

X < draw random solution from search space
S <« St(%)

Spsr < S

XBSp < X

fortin (0, ... ,T) do

Znew < drawFromNeighborhood (¥, Ax(t))
Snew < ST(Xnew)

if Shew < S then

X < Xnew

S < Shew

else

p < draw random number from interval [ 0, 1]
Paccept <= €Xp (—B() + (Spew — S))

ifp ; Paccept then

X < Xnew

S < Shew
end

end

if S < Sgsr then
Spse < S
XBSF < X
end

end
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perturbations of the color values drawn from a uniform distribution U (—AXx(¢), AX(t)),
excluding the user specified region.

Initially the search space is sampled with a high temperature, so the algorithm has the
ability to escape local minima or even jump over large sections of the search space. By
gradually limiting this behavior, which is specified by the annealing schedule 8(¢) (quan-
tified by 7), the algorithm converges to a suitable optimal solution — guarantees about
the found optima’s quality, however, cannot be given due to the heuristic approach of SA.
Yet, the convergence towards the global optimum in infinite time is a proven quality of
this algorithm [10, 11]. Therefore, after a sufficiently long run time a non-optimal, but
nonetheless good solution is found.

Typically SA is used for combinatorial optimization problems, i.e. problems defined on
a discrete search space, e.g., the traveling salesman problem [4]. Since its inception SA has
also been adapted to various continuous optimization problems.

As it turns out a robust adaption of SA for the continuous problem discussed here, is
realized by simply doing an annealing in both the temperature and step size.

We run an ensemble of SA instances, meaning multiple independent instances with
different random number generator seeds. The best found solution and score seen during
a single SA run are captured in the variables xgsr and Szsr.

These quantities are referred to as the best-so-far solution and score. After the last iter-
ation the optimal solution is given as the minimum of the best-so-far solutions within
the ensemble of optimizers. In our implementation we also store the ensemble maximum
which is given by the maximum of the worst seen solutions over the algorithm run, which
we neglected to include in Algorithm 1 in favor of simplicity, as in principle a broad variety
of run features could be stored in the same way as the best-so-far solution. Furthermore
an ensemble average and standard deviation are stored. These two properties are used for
further quality analysis of the SA run.

Software

We have implemented the method for color scheme generation in the Python package
Gecos. In addition to the more flexible Python API, the package offers a command line
interface (CLI) for simple color scheme generation. Either way, the alphabet, substitution
matrix and color subspace can be customized for the purpose of the user. By default the
software creates a color scheme for the BLOSUM®62 matrix [12]. The CLI saves the gener-
ated color scheme in JSON format, containing the RGB color code for each symbol. The
JSON format can be directly used for alignment visualization in Biot ite [13]. For usage
in other visualization software the color codes must be inserted into the input format of
the respective program.

Results and discussion

Optimization

Figure 3 shows the improvement of the score during the optimization process and the
resulting color conformation. Generally, the evaluation whether the score of the final
color conformation is near the global optimum is not directly possible, since the cal-
culation of the score at the global optimum requires knowledge of the optimal color

conformation.
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Fig. 3 Color scheme optimization. For the sake of clearness the color space was constrained to a single
lightness value of L* = 60. Otherwise the shown results use the default parameters of the CLI invocation. a
The score trajectory is plotted against the number of optimization steps. For clarity only every 100th step is
displayed. b The plot shows the final color conformation after optimization. The white area displays the
allowed color space. The position of a symbol depicts its a* and b* value

In our approach we compared the outcome of a reference optimization run with
random sampling in the color conformation space. To show the robustness of the imple-
mented optimization technique with regards to user input we benchmarked on a selection
of substitution matrices. This is visualized in Fig. 4, where a Z-score-like empirical
measure
(S1)sa(®) — u(t)

o(t)

of the optimizer quality relative to the random sampling is plotted over increasing

Z(t) = —

iterations. At a given iteration the difference between the reached average scores of the
optimizer and random sampling is normalized to the standard deviation o (¢) seen by ran-
dom sampling so far. The negative sign of Z(¢) is explained by the fact that our score St
gets smaller for a better solution, so the scores reached by the optimizer should be smaller

then the ones reached by sampling, in which case Z(¢) is positive.
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Fig. 4 Z-scores Z for different substitution matrices and rising iterations. To analyze the quality of the
implemented SA algorithm, the optimization has been applied to a selection of substitution matrices. A
Z-score like metric is used here to visualize the reached score relative to randomized sampling of the search
space. The iterations are specified on the x-axis on a logarithmic scale, whereas the matrices are given on the
y-axis

While for the optimizer the averaging is done over the ensemble of optimizers, the
mean p(¢) and standard deviation o (¢) for the random sampling is calculated using the
so far sampled data. Here the rationale is that a randomized sampling in color space
should eventually stabilize, by thus producing a distribution of solutions that can be used
as ground truth to separate from steered processes. The SA algorithm is exactly such a
steered process, as it essentially does random sampling, yet from a local neighborhood
instead of the whole search space, and is biased towards lower scores.

If the optimizer was an unsteered process one would expect low values for Z as this
would coincide with the optimizer not finding better values then a randomized sampling.
This behavior is seen in Fig. 4 for the early iterations.

However, with increasing iterations Z is getting successively higher until finally reaching
aregion of Z ~ 6 meaning that on average SA reaches a score that is six standard devia-
tions better then purely randomized sampling. While it seems that for some of the PAM
substitution matrices the algorithm performs better then for the others, the fact stands
that overall a superior solution is reached, independently of the user selected input. The
only matrix for which we see significantly different behavior in Fig. 4 is the IDENTITY
matrix. This is expected, since the optimal distance between symbols is equidistant for
all pairs of symbols here. Therefore, finding an optimal solution should be more difficult,
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which accounts for the overall lower Z-score. Yet, even here the SA optimizer outperforms
the random sampling and eventually reaches a region with Z ~ 4.

Color schemes

Figure 5a shows a color scheme that was created via the Gecos CLI for the BLOSUMG62
substitution matrix. The lightness range was constrained to 60 < L* < 75, but otherwise
the default CLI parameters were used. The constraint is necessary as the scheme would
not look appealing if the whole lightness range - from black to white - would have been
included. On the other hand we found that fixing the lightness to a single value results in
schemes that have a low contrast. Thus, we recommend using a lightness interval between
15 and 30.

Dependence on substitution matrix

The generated color scheme is strongly dependent on the used substitution matrix. This
becomes more clear when comparing the BLOSUMG62 based color scheme (Fig. 5a) with
a PAM250 [14] based scheme (Fig. 5b). Compared to BLOSUMG62, PAM250 assigns
an extraordinarily low score for substitution of tryptophane and cysteine with any
other amino acid. Consequently, the PAM250 based color scheme especially highlights
tryptophane and cysteine, while the contrast between the other symbols is relatively low.

Constraints in a*b* dimensions
In addition to constraining the lightness L* it can also be reasonable to limit the color
space in the a* and b* dimensions. The use cases include

e limiting the saturation of the colors,

e creating a scheme with a specified hue,

e taking color vision deficiency into account.
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Fig. 5 Alignments with generated color schemes. Gaps have no color assigned, since a gap means the
absence of a symbol. a The alignment from Fig. 1 is visualized with a color scheme generated with Gecos.
The L* value was constrained between 60 and 75. Otherwise the shown results use the default parameters of
the CLIinvocation. b Generated color scheme for PAM250 instead of BLOSUM62. € Red-green color vision
deficiency adapted color scheme by removing the green part of the color space. The range for the L* value
was broadened from 50 to 80. d Color scheme for the protein blocks (PB) structural alphabet. The PB
sequences were calculated from structures of lysozyme variants. The substitution matrix and references
angles were taken from Barnoud et al. [19]
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The most common color vision deficiency is the red-green color blindness, that affects
approximately 8 % of the male and approximately 0.5 % of the female population [15-17].
In order to create a color scheme, that is more friendly to red-green color vision deficient
people, we ran an optimization on a color subspace where the green part is omitted, i.e.
a* > 0 (Fig. 5¢). As the reduced size of the color space would inherently cause a loss of
contrast, the available lightness interval is increased to 50 < L* < 80.

Color schemes for exotic alphabets

Since the described method does not require professional knowledge about the properties
of each symbol, but merely needs a substitution matrix, it can be easily transferred to
alphabets other than amino acids.

Structural alphabets are such a use case. Structural alphabets encode local protein
structure properties, e.g. backbone dihedral angles or pseudo bond angles, into symbols
that represent the local conformation. In this way a 3D structure can be converted into
a symbol sequence. Creating a color scheme for a structural alphabet can be difficult,
because the symbols do not exhibit such tangible properties like charge or hydrophobic-
ity. However, if a substitution matrix is available for the structural alphabet, our approach
is able to automatically compile a color scheme.

The protein block (PB) alphabet is such a structural alphabet [18]. It contains 16 symbols
from a to p, each representing a different local peptide backbone conformation. Figure 5d
shows a scheme based on the PB substitution matrix [19], generated with Gecos.

Comparison with existing amino acid color schemes

Our method aims to generate color schemes that depict evolutionary similarity of amino
acids better than the existing, manually created ones. Based on chosen amino acid pairs,
we compared a color scheme generated by Gecos, namely flower implemented in Biotite
[13], with two traditional color schemes: the default one from ClustalX [3] (denoted as
clustalx) and the Taylor [20] color scheme (denoted as taylor) (Fig. 6).

Both clustalx and taylor use identical or similar colors, respectively, for alanine (3)
valine (V) and isoleucine (I). However, valine is much more (evolutionary) similar to
isoleucine than to alanine, according to the BLOSUMS62 [12] matrix. In fact, alanine is
slightly more similar to serine (S) than to valine. Still, clustalx and taylor assign very

flower T\I/W Vv E E Q
clustalx I I I I I I I
tayor v v w s N 8 8§

BLOSUM62 3 o 3 1 2 1 A

Fig. 6 Color scheme comparison. For chosen amino acid pairs, the plot shows their colors in different
schemes and the BLOSUM®62 score [12] of the respective pair
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dissimilar colors to alanine and serine, as alanine is classified as hydrophobic in contrast
to the more polar serine. clustalx also uses the same color for alanine and tryptophan (W),
because both amino acids are hydrophobic. However, the similarity score between both
residues is exceptionally low.

A similar result can be seen for the positively charged and polar residues: although all
three color schemes are able to depict the high similarity between lysine (K) and argi-
nine (R), as both are usually positively charged, clustalx and taylor use highly different
colors for the arginine-glutamine (Q) pair, as glutamine is neutral. Instead, they use iden-
tical or similar colors, respectively, for the glutamine-threonine (T) pair. Although both
are uncharged polar residues, glutamine is closer to arginine than to threonine from an
evolutionary point of view.

In contrast, flower does not categorize amino acids into groups based on e.g. hydropho-
bicity or residue size, but only uses colors based on pairwise amino acid similarities.
Consequently, falsely suggested similarities, e.g. the alanine-tryptophan pair in clustalx,
and falsely suggested dissimilarities, e.g. the alanine-serine pair in clustalx and taylor, are
less likely to occur. Hence, flower is more reliable for visual analysis of multiple sequence
alignments, when it comes to identification of evolutionary distant or close regions.

Conclusion

Our method enables the user to create a new color scheme for sequence alignments in a
fast and easy way - may it be for special purposes like exotic alphabets, where no color
scheme does exist yet, or simply because a new scheme appeals more than the existing
ones.

Traditional color schemes depict specific characteristics of amino acids, for example
hydrophobicity, charge, secondary structure propensities or a combination of these. Tak-
ing a substitution matrix as basis for the color scheme incorporates more evolutionary
meaning. Although a specific property cannot directly be read from the color, this novel
approach depicts the similarity of amino acids better in terms of substitution proba-
bility. Therefore, this method is consistent with the alignment, which itself is based on
substitution probabilities and thus on molecular evolution.

Availability and requirements

Project name: Gecos

Project home page: https://gecos.biotite-python.org/

Operating system(s): Windows, OS X, Linux

Programming language: Python

Other requirements: At least Python 3.6, the packages biotite, numpy and scikit-image
must be installed

License: BSD 3-Clause

Any restrictions to use by non-academics: None

Abbreviations
API: Application programming interface; CIE: International commission on illumination; CLI: Command line interface; SA:
Simulated annealing; sRGB: Standard RGB
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