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Result: In this research, we reduced the computational complexity of calculating the
landscape of the probability distribution of secondary structures by introducing a
maximum-span constraint. In addition, we resolved numerical computation problems
through two techniques: extended logsumexp and accuracy-guaranteed numerical
computation. We analyzed the stability of the secondary structures of 165 ribosomal
RNAs at various temperatures without overflow. The results obtained are consistent
with previous research on thermophilic bacteria, suggesting that our method is
applicable in thermal stability analysis. Furthermore, we quantitatively assessed
numerical stability using our method..

Conclusion: These results demonstrate that the proposed method is applicable to
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Background

Functional non-coding RNAs (ncRNAs) play essential roles in a wide range of biological
phenomena. Secondary structures are often crucial to the functions of RNAs. A number
of studies and software tools can predict a single secondary structure for a given RNA
sequence [1]. According to detailed analyses of free energy, however, some RNAs do not
always form a single stable structure. Therefore, quantitative evaluations of the fluctua-
tion of RNA secondary structures have recently attracted attention. Recent studies have
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provided methods to analyze the distribution of RNA secondary structures in more detail
using the marginal probability of Hamming Distance, in which each RNA structure is
located in a discrete metric space [2—4].

Structures of long ncRNAs (e.g., > 1000 bases, including ribosomal RNAs) are impor-
tant for understanding their functions, but analyzing the probability landscape of the
structure remains a challenging task. Fourier transform has been utilized to reduce com-
putational complexity [5-7], but the computational costs of previous methods are still
too high to apply to long ncRNAs. Furthermore, the Fourier transform distributes numer-
ical errors uniformly across large and small marginal probabilities, which makes small
marginal probabilities unreliable.

Small marginal probabilities, however, are also of interest occasionally. In kinetic anal-
yses, for example, meta-stable structures may have considerably higher free energy
compared to the minimum free energy structure [8]. In such a case, the Boltzmann prob-
ability of the meta-stable regions can be very small. For reliable evaluation, quantitative
assessment of numerical errors is necessary. Previous studies have described this type of
numerical instability, but they have not shown detailed analyses [9].

To provide quantitative evaluation of numerical instability, we have implemented
accuracy-guaranteed numerical computation based on interval arithmetic and evalu-
ated the numerical errors associated with the Fourier transform. Interval arithmetic is a
method in which arithmetic operations are defined along intervals expressing numerical
values between the upper/lower edges. The approximate calculation of pi by Archimedes
in the 3rd century BC is known as the oldest example of interval arithmetic. Around
the 1950s, interval arithmetic came to be used for estimating the upper bounds on the
numerical error caused by floating-point arithmetic in computers. For example, Sunaga
[10] published one of the first studies in English on comprehensive algorithms for inter-
val arithmetic for computers. Interval arithmetic for accuracy-guaranteed numerical
computation has been established as a research field and detailed in a textbook [11].

To reduce computational costs, we have introduced the maximum-span constraint,
which forbids long-range base-pairs. Such a constraint has been used for the prediction
of secondary structures [12], but it has not been used to estimate marginal probabili-
ties of discrete metrics (e.g., Hamming distances). It may seem inappropriate to ignore
long-range interactions in secondary structures because there are long-range interacting
base-pairs in the 3D structures of long RNAs (e.g., 16S rRNA). The predictions of long-
range interactions, however, are known to be unreliable even if long-range base-pairs are
allowed [13], while the widely used nearest neighbor energy model is not compatible with
long RNAs and its parameters have been determined by experiments using short RNAs
[14]. Accordingly, our method lost little by excluding long-range base-pairs. At the same
time, we show that estimated stability based on our tool with maximum-span constraint
was consistent with the previous research.

Maximum-span constraint has enabled the calculation of marginal probabilities on a
discrete metric for long RNA sequences, but we had to cope with numerical overflow
for calculations with long sequences. In stochastic models such as hidden Markov mod-
els and stochastic context free grammars, which are common for modeling and analyzing
RNA structures, logsumexp (logarithm of the sum of exponentials) is the standard solu-
tion for preventing overflow or underflow in numerical calculation [15, 16]. There is a
limitation, however, in that it cannot handle zero or negative values. This limitation is a



Takizawa et al. BMC Bioinformatics (2020) 21:210 Page 3 of 19

problem when processing complex numbers with rectangular coordinates in the Fourier
transform. One solution is to apply logsumexp only to radii using polar coordinates,
but simple application of polar coordinates causes problems when combined with inter-
val arithmetic for accuracy-guaranteed numerical computation. Complicated conditions
occur when the angular interval crosses zero or the radius interval contains zero. In this
paper, in addition to a radius of polar coordinates, normalized orthogonal coordinates,
rather than angles, are combined for interval arithmetic of logsumexp. Consequently, we
have realized the advantages of logsumexp and interval arithmetic while preserving the
simplicity of implementation.

Results

Computation time

To demonstrate computational efficiency, the computation time of the proposed method
using the S151 Rfam Dataset [15] was measured. In the proposed method, the reference
structures were obtained by CentroidFold [17](y = 1.0). All cores of the Intel Core i7
4770 CPU were used as a computational resource in this measurement.

We measured the computation time in the case where the maximum-span constraint
W = 100 is introduced and in the case where no restriction is applied (equivalent to
RintW [7]) (Fig. 1).

We also examined how the calculation time changes when the value of the maximum-
span constraint W is changed (Fig. 2). In this experiment, 32 Intel Xeon Gold 6130 cores

were used for computation.

Thermal stability of ribosomal RNA
As an application of the proposed method, we analyzed the thermal stability of the sec-
ondary structures of 16S rRNAs derived from E. coli and T. thermophilus using Credibility
Limit [18] as the metric.

The Credibility Limit (0.5) of a given secondary structure was obtained with temper-
atures ranging from 37 to 55 degrees Celsius (Fig. 3). As the origin of the Hamming
distance, three types of reference structure were prepared. (i) The "initial reference” was
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Fig. 1 Calculation time of the proposed method. The red solid line represents y = 0.0010101x%. The purple
dashed line represents y = 3.0163e — 10x°. Both lines were fit to the result using the least squares method
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Fig. 2 Calculation time of the proposed method. Each data point is the calculation time of a single sequence
from the S151Rfam dataset. The y-axis represents the logarithm of calculation time, and the x-axis represents
the length of RNA

obtained using CentroidFold. (ii) The "refined reference" was obtained by the following
steps: RintC was performed with the initial reference; a Hamming distance interval in
which the probability is locally high was chosen; the BPPM of the interval was calcu-
lated; and a "refined reference" was obtained from the BPPM by posterior decoding with
CentroidFold. (iii) The "natural reference” was the reference structure derived from the
three-dimensional structure in NDB.

Numerical error evaluation
For a quantitative evaluation of RintC numerical error, accuracy-guaranteed numerical
computations with interval arithmetic were applied to the calculation process of RintC

S50, Thermal-stability Analysis of 16S rRNAs
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Fig. 3 Thermal-stability analysis for secondary structures of E. coli and T. thermophilus 16S rRNAs. The "initial
reference” is the reference structure obtained using CentroidFold. The "refined reference" is the reference
structure obtained using RintC and the base-pairing probability matrix (BPPM) (see the “Thermal stability of
ribosomal RNA" section for the details). The "natural reference” is the reference structure derived from the
three-dimensional structure. The “Experimental procedure” section provides a detailed description of the
"natural reference”
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with the RFO0008B sequence in the S151 Rfam dataset [15]. The length of the RFO0008B
sequence was short enough for the evaluation of time-consuming calculation without any
type of Fourier transform. The numerical errors of three types of calculation (DFT, FFT,
and non-FFT) are shown in Fig. 4.

Numerical error evaluation was also conducted for all sequences in the S151 Rfam
dataset and E. coli 16S rRNA (Fig. 5). Each data point corresponds to an individual
sequence in the S151 Rfam dataset or E. coli 16S rRNA. In comparisons of the numerical
errors between DFT and FFT versions (Fig. 5a), DFT is always more accurate than FFT.
This result is consistent with that shown in Fig. 4. In addition, a relationship between the
numerical error and sequence length in the DFT results was also investigated (Fig. 5b).

Discussion

Computational efficiency

Figure 1 shows that the computation time when using the constraint W = 100 follows the
theoretical complexities of the square of the length of the sequence, while computational
time scales with the fifth power of the length of the sequence when no constraint is used.
This confirms that computational complexity is drastically reduced by introducing the
maximum-span constraint into the proposed method.

As Fig. 2 shows, when W < N, the calculation time is reduced by the effect of the
maximum-span. When N < W, the same calculation time is required regardless of the
value of W. Since many of the data points were short RNAs, the differences for large
W values were unclear. Nevertheless, the relationship between W and computation time
was consistent with the theory. In the next subsection, we demonstrate that the proposed
method works for long RNAs.

Thermal stability of ribosomal RNA

The credibility limits of natural references are much higher than those of others, because
natural references include long-range base-pairs. Maximum-span constraint W = 100
was introduced because most of the actual spans of base-pairs are less than or equal
to 100 bases (Supplementary Table S1), but long-range interactions may play an impor-
tant role in structures. Thermophilic bacteria have reduced dynamics of intracellular
macromolecules (mainly proteins) compared with mesophilic bacteria [19]. Several ther-
mophilic RNAs exhibit higher thermal stability than the mesophilic homologous [20,
21]. In addition, thermal adaptation of the thermophilic ribosomal subunit including 16S
rRNA has been suggested by structural and evolutionary analysis [22]. Our result using
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Fig. 4 The result of the numerical error experiment with RFO0008B (54 nucleotides). The leftmost plot explains
the convex hulls for the result values and their errors under each experimental condition. The three plots to
the right are scatter plots of the raw data for the result values and errors under one experimental condition

and the convex hulls for each. In this evaluation, the reference structure was obtained by CentroidFold
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Fig. 5 The results of the numerical error experiment. a Numerical error comparison. b Relationship between
sequence length and numerical error. The x- and y-axes have minima of (logio(median) 4 logo(width))
under the DFT and FFT methods. The reference structure was obtained using CentroidFold [17]. (y = 1.0)

maximum-span constraint W = 100 shows that the 16S rRNA of T. thermophilus had a
lower Credibility Limit than that of E. coli, which also implies not only the protein compo-
nents but also the rRNA playing a role in the thermal stability of thermophilic ribosomes
(Fig. 3).

The use of the natural secondary structure as a representative structure exhibited a
relatively higher Credibility Limit, compared with the "initial" and "refined" references.
This implies the DP calculation with the Turner model is compatible for the representative
structure derived from the Turner model, such as the "initial" and "refined" references.
Note that this result would not indicate the advantage of "initial" and "refined" structures
over the "natural” structures.

Numerical error evaluation

As Fig. 4 shows, for the DFT and FFT methods, the numerical error (i.e., interval width)
is almost equal to 1, when the calculated existence probability is quite small. Interval
width = 1 indicates that the probability is within [0, 1], thus providing no meaningful
information owing to the numerical error. In contrast, the numerical error remains low
when the existence probability is moderate or high. DFT-based results are slightly more
accurate than FFT-based results. In further numerical error comparisons between non-
Fourier transform results and DFT or FFT results, the numerical error of the non-Fourier
result is smaller than those of the DFT or FFT results. This implies that the problematic
numerical error is indeed caused by Fourier transform.

Figure 5b demonstrates that the numerical error in the marginal probability of the struc-
tures for long RNA sequences (> 1000 nt) is sufficiently small (about 10~7 for 16S rRNA)
for the structures with a moderate or high probability of existence. This accuracy is suffi-
cient for thermal stability analysis because an accurate evaluation of large clusters is only
required for their analysis.
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Conclusions

Since RNA secondary structures have large thermal fluctuations, prediction of the most
stable secondary structure is insufficient for representing native structural behavior of an
RNA molecule. Marginal probabilities on Hamming distances from reference structures,
which represent the landscape of all the possible RNA secondary structures, can be effi-
ciently computed by combining Fourier transform with dynamic programming, but the
computational costs are still too high for long RNAs.

In this research, we have implemented a maximum-span constraint of base-pairs to
reduce computational complexity. For long RNAs, however, there remains another prob-
lem: numerical overflow. As the standard method for avoiding overflow in stochastic
models, logsumexp (logarithm of the sum of exponentials) is not directly applicable to
Fourier transforms, we have developed an extended logsumexp method for whole com-
plex numbers. We have shown that reduced computational time enables us to analyze
the thermal stability of long RNAs, such as 16S ribosomal RNAs, while the predicted
structures using the same maximum-span constraint tend to be inaccurate.

We have also adopted accuracy-guaranteed numerical computation with interval arith-
metic to evaluate numerical errors. We have shown that numerical errors for small
probabilities are substantial when FFT or DFT is used. Quantitative assessment of the
observed numerical instabilities, however, revealed that our method achieves sufficient
numerical accuracy for thermodynamic stability analysis of RNA secondary structures.
These results demonstrate that our method is a powerful tool for understanding long
RNAs.

Methods

RintW + maximum-span

Initially, we introduced a maximum-span constraint in base-pairs to the baseline algo-
rithm of RintW [7]. Detailed descriptions of RintW and the proposed method are
described below. The inputs of the algorithm are an RNA sequence and a reference
secondary structure, and the outputs are the existence probability and the base-pairing
probability matrix (BPPM) for each Hamming distance from the reference secondary

structure.

RNA secondary structure representation

As a computationally efficient expression, the RNA secondary structure was represented
by a binary upper triangular matrix o where each element is {0, 1}. Each element of o is
decided as follows.

)1 G <jand (i,)) forms a base pair)
%4 = 0 (otherwise)

The distance between two RNA secondary structures o1,0y are determined by the
number of elements with different values, namely, Hamming distance values.

We used Hamming distance as the discrete metric of our implementation, as was used
in previous studies [2, 5, 7]. The Hamming distance corresponds to the number of unit
changes of the secondary structure over time, that is, the forming or breaking a base-pair.
Natural distance satisfying axioms can be used to track the trajectory of the structural
changes of RNAs. Hamming distance is compatible with efficient dynamic programming
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algorithms that can be constructed. We know that there are more important base-pairs
and less important base-pairs for the function of RNAs, but Hamming distance is at
least a convenient metric to observe the landscape of the probability distribution of the
secondary structures.

Only secondary structures that satisfy the following constraints were considered (N =
sequence length).

Only Watson—Crick base-pairs (A-T, C-G) or wobble base-pairs(G-U) exist.

2 Prohibition of pseudo-knots: Forall1 <i <j <k < <N, (i,k) and (j, /) do not
form base-pairs at the same time.

3 Max loop constraint: Forall1 <i <j < k <[ < N, if (i,]) and (j, k) form
base-pairs and no paired base exists between i + 1 and j — 1 nor between k + 1 and
[—1,thenj—i+[—k < C+ 2. Cisamax-loop parameter, and we used C = 30
following many previous studies.

4 Max span constraint: Forall 1 < i < j < N, if (i, /) forms a base-pair, thenj—i < W.

Constraints 1 and 2 are the standard constraints used in the previous methods
[2, 5, 7]. Constraint 3 is called the max loop constraint. This constraint was adopted by
many RNA secondary structure analysis methods using the energy model [14] described
in the next section. This constraint reduces time complexity. It is empirically known that
this constraint has little effect on the calculation result. Constraint 4 is a constraint stud-
ied in previous work [12, 13, 23-25], but it was not used in RintW[7] until we introduced

it. This constraint is considered to be suitable for examining local structural motifs [13].

Energy model

The nearest neighbor energy model [14], which can be analyzed by dynamic program-
ming, was adopted. The energy of the secondary structure was expressed as the sum of
the following five functions in this model.

fu(i,)) = the energy of base-pair (i, j) forming a hairpin loop.
2 fi(i,j, k, 1) = the energy of base-pairs, (i,/) and (j, k), making a 2-Loop when
i<j<k<l
3 fmc = the energy of having one multi-loop.
fmi = the energy of having one internal multi-loop branch.
5 f4(i,j) = the energy of a base-pair (i,) forming a multi-loop or being an outermost
base-pair.
Polynomial approach
In previous research [5-7], the polynomial approach was used as a method to reduce
the time complexity of dynamic programming. A naive dynamic programming method
requires a convolution operation. This operation is regarded as computation in the spatial
domain and is expressed by calculation in the frequency domain. A convolution oper-
ation can be converted to an inner product, thus reducing computational complexity.
After completing the dynamic programming computation, a shift to the spatial domain is
achieved by performing the Fourier transform. The same method was used in this study.

Preprocessing
As in the RintW algorithm, we calculate the following gg (i,j) functions in O(N'?) time as
preprocessing, to obtain the gains of the Hamming distances gZ to gsz and g" to gSW :
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for(1<i<N)

for(1<i<j<N)

j-1
GaN=Y D op
p=i q=p+1

=0+ G+ 1) +ghG,j—1) — g+ 1,j—1).

Here, o is a binary matrix representation of the reference secondary structure. The
maximum Hamming distance of the secondary structure from the representative sec-
ondary structure (Hy,4y) is also computed at this time [6].

Definitions of function gs

Prior to the description of the main algorithm, auxiliary functions for calculating the dis-
tance between substructures are defined as follows. These functions are the same as those
used in previous studies [6, 7].

b(i,j) =1 — 20y
&G ) = g5 i)
&5 (i,j k) = gb (i) — g5 (i, k) — g5 (k + 1))
GEi,j, k) = g& (i) — g& (i, k)
g4 j) = g& (i,)) + bli,))
gE Gk, 1) = gb (i,j) — g& (k1) + b(i, j)
GG k) = g8 i) — g i+ 1,j— 1) — g§ (k,j — 1) + b(i,))
&G jik) = g5 )) — & (k)
&G jik) = g5 i) — g5 (i k — 1) — g5 (k. )
& )i k) = g5 (0., k)
g ) =gf(LN) — gl (i) — g5 (L,i—1) —gf G+ L,N)
@ G b D) = g (1) — g& (i, j) + b(h, 1)
o G jihl) =g G hl) —gé(h+1,i—1)
g G =g Gjhb—gG+1,1-1)
&G =g Gjhl) —ggth+1,i—1) —gf(i+1,1—1).

These functions calculate the Hamming distance of a substructure from the reference
substructure. More specifically, in the binary matrix representation of the structure, each
gF accumulates differences in rectangular regions of the matrix. According to Mori et
al. [6], by changing this function, one can decompose the structures by another distance
metric (i.e., other than the Hamming distance), which indicates further potential of this
concept, but this was outside of the scope of the study.
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Dynamic programming of the partition function
In the following equations, x is the (H,zx + 1)-th root of unity. If Cooley—Tukey fast
Fourier transform (FFT) is used instead of discrete Fourier transform (DFT) in post-
processing, x is the smallest power of 2 that is equal to or greater than (Hy,,x + 1). There
are (Hyax + 1) kinds of (Hy4x + 1)-th roots of unity calculated independently. Therefore,
parallel computation is possible.

In order to avoid overflow, the proposed extended logsumexp computation is used.
In the following equations, g} and — T are real exact numbers (i.e., logsumexp was not

applied), but 4% and e ~fr are converted into a complex logsumexp type (i.e., only expo-
nents were recorded). Consequently, All DP-variable Z7 ,, W}, and Q} , values are also
of complex logsumexp type.

Initialization:

for (1 <i<N)
Zii=Zii-1=1
1 b 1
Zii=Zp;= ZL"Z = ZZ{—I = ZZ'} =0

» )1 ((1,N) forms a base pair)
LN =

0 (otherwise)
Recursion:
for(l<i<j<N)st.(j—i<W)

j—1
A . A .
= 58 L) 4 Zzl,h—lzil,,jxgz 1)
h=1
Z i Ni+1
Zin = Zipa o G 4
min(N,i+W)
Satih)
Z fohe KT Zpy 1 NX2 7 (NS
h=i+1
min(j,i+W)
fd(l )
h=i+1
S ) .
le?] — e hkT x84 (l:/)

min(i+C+1,j—2) j—1

f(lhlﬁ
-y > gt

h=i+1 I=max(h+1,j+h—i—C-2)

Ja G tfme ..
ml (ij,h)
+§:Zz+1h1h116 T A%
h=i+2

j—1
il Z(ijh 1
Zp = ) SO gz WSz
h=i
j b fd(lh)+fmz (l h)
Z Ze” x83 ()
h=i+1

zm

faG)  w
b
W) = ZyiaZjne ® a8 ¢

/)
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min(N,h+W j+h—i+C+2)

i—1
_ i)
> Y e o

h=max(1,i—C—1,i—W) I=j+1
i—1 min(N,h+W)

D Y Wie i (

h=max(1,i—W) I=j+1

(h ij,l)
h+1 i—1 xgs

+1 xg4 W (h,ijl)
1

+ Zhpric1 Zi1,1-12% B0
b b yyrb
Qij = ZijWij

The Z, . functions are the inside partition functions, which represent the sums of all
Z,, and Z;”j are
the specified partition functions defined in the McCaskill algorithm [1]. Wﬁ is the out-

the Boltzmann factors in the corresponding sub-sequences. Zi,*, Zf: .

side partition function, which represents the outside of the base-pair (i, ). The Qb is the
conditional partition function, the sum of all the Boltzmann factors when (i, ) forms a
base-pair.

The intuitive meanings of Z , and W/h are as follows. Zb (Wb ) is the inside (outside)
partition function of partial structure between the i-th base and j-th base when the i-th
base and the j-th base form a base-pair. ZZ]. is the inside partition function for different
conditions. For example, Zil,j accumulates the cases in which only one outmost base-pair
exists, whose 5" base is the i-th base, while Z; and ZZ’;I are considered only for multi-
loops.

The values gZ to gg and g" to g;)(/ , which are computed using the pre-computed func-
tion gg (i,)), are the gains of the Hamming distance for the transitions represented by
the recursions of partition functions The significant difference from RintW is that the
recursions of Z1 ,, Z; 7 and W/ 1nclude the maximum-span constraint W of base-pairs in
their range of the sum. A small improvement in this approach is that only the required
edges, namely, Z; ; and Z; v, are calculated instead of calculating all Z, , values. Regarding
the maximum-span constraint of base-pairs, the algorithmic concept is equivalent to the
calculation of dynamic programming (DP) variables aoyzer and Bouser in Rfold [12] and
ParasoR [13], but the notation of RintW is followed in the above recursions.

Fourier transform and post-processing
The conditional partition function on each Hamming distance, Qb [
by Fourier transformation. For all (, ), such that (1 <i <j < N)and (j—i < W), a com-

plex number sequence of (H,,,x + 1) elements are calculated. Let Z(d); 5 and Q(d)b be

is efficiently obtained

the conditional partition functions for a Hamming distance d of Z; ;, and Qi i respectlvely.
Then, the existence probability of Hamming distance d is written as

Z(d)1N
Zd e Z(d)1,n

and the BPPM for Hamming distance d is written as

Q)Y
AN
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The obtained partition functions and probabilities mutually differ by several tens of
digits. However, since all variables are convoluted during post-processing, all numeri-
cal errors propagate to all variables. This makes marginal probabilities of small values
unreliable.

Computational complexity

In the following description, N is the length of the sequence, Hy,x is the maximum
Hamming distance from the reference structure, and U is the degree of parallelism.
Here U < Hypux + 1 is assumed. In the original RintW algorithm, the computational
complexity of pre-processing is O(N?) in both time and space. In the partition func-
tion calculation, the time complexity is O(N*H,u./U) and the space complexity is
O(N?H,q5U). The original RintW uses DFT for post-processing; the time complexity
of the post-processing part is O(NzH,zmx/ U), and its space complexity is O(Hyyq,U).
Since Hyuzx < N holds, the computational complexity of the post-processing can be
ignored in total complexity in both time and space. Finally, the time and space com-
plexity of the original RintW algorithm as a whole are O(N*H,0/U) and O(N 2HpaslD),
respectively.

When the maximum-span constraint is introduced, the computational complexity
of pre-processing remains O(N?) in both time and space. In the distribution func-
tion calculation, the time complexity is O(NW?>H,,./U), and the space complexity
is O(NWH,,,,,U) for the maximum-span of base-pair W. When DFT is used for
post-processing, the complexity of the post-processing is ONWH?2,,,./U) in time and
O(HuaxU) in space. Because the Hy,,, may be close to N, the computational complexity
of the post-processing cannot be ignored. By using FFT instead of DFT, we can reduce the
time complexity of the post-processing component to O(NWH,,5xl0g(Hypa:)/U). Then,
the total computational complexity is O(N(N 4+ WH,yq(W? + log(Hynax))/U)) in time
and ON(N + WH,,,,U)) in space.

The summary of computational complexities is shown, with the notation simplified by
using Hyqx < N, in Table 1.

Table 1 Computational complexity of the existing and proposed methods are summarized

RintW, time RintC (proposed), time
preprocessing O(N?) O(N?)
main calculation O(N>/U) ON*W3/U)
postprocessing (DFT) O(N*/U) ON*W/U)
postprocessing (FFT) O(N3logN/U) O(N*WiogN/U)
total (DFT) O(N>/U) ON>W(W? + N)/U)
total (FFT) ON® V) ON*W(W? + logN)/U)
RintW, space RintC (proposed), space
preprocessing O(N?) O(N?)
main calculation O(N3U) O(N?WU)
postprocessing (DFT) O(NU) O(NU)
postprocessing (FFT) O(NU) O(NU)
total (DFT) O(N?U) O(N*WU)
total (FFT) O(N3U) ON>WU)

N = sequence length. W = maximum-span. Note that Hyay < Nand W < N always holds. U = degree of parallelism
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Interval arithmetic and accuracy assurance

In this subsection, we briefly explain the rounding mode control function of IEEE 754 and
the accuracy assurance arithmetic. Representing real numbers by floating-point numbers
can cause deviations from actual values. Therefore, numerical values can conceivably be
held as an interval including the actual value. We define arithmetic operations between
intervals to obtain an interval necessarily containing the results of arithmetic operations
on actual values. Then, the upper bound of the numerical error is obtained as the width of
the interval of the calculation result. Most modern computers use the IEEE 754 method
for floating-point arithmetic. This method has a rounding mode control function, and we
can specify truncation and rounding-up. By using this function, the accuracy assurance
calculation described above can be executed efficiently. Our accuracy assurance calcula-
tion used the kv library [26]) implemented in C++. The kv library is open source software
and requires only C++ Boost for its backend.

Logsumexp on complex numbers with interval arithmetic

A method to perform logsumexp computation on whole complex numbers has been
developed. Details of the calculation algorithm are provided in the following subsections.
There are different parts of algorithms for scalar and interval types, but those for scalar
types are described in the supplementary file. In this subsection, only methods for inter-
val types are described. If only the scalar type is considered, the complex number defined
in polar coordinates and logsumexp defined only in terms of a radius are sufficient.
Extensions to interval arithmetic, however, are complicated.

The Vienna RNA Package [27] prevents overflow by scaling. Their scaling factor con-
struction is sophisticated, and under some assumptions, the scaling is equivalent to a kind
of logsumexp. The original RintW [7] also utilized the same scaling technique as Vienna.
However, with Vienna’s method, the deviation between the scaling factor and the value
of the actual distribution function can increase exponentially, so overflowing cannot be
completely avoided. Unlike them, logsumexp does not need scaling factors, and overflows

are completely avoided.

Notation and representation

In this subsection, a bracketing character like [x] indicates an interval type variable. A
pair of values in a bracket (e.g., [ 0, 1]) indicates a closed interval. When two variables are
enclosed (e.g., [ %, y]), each variable x and y is a scalar type (or floating-point type), not an
interval type. It is possible to convert one scalar x into an interval type while guaranteeing
accuracy. Such an interval variable is expressed as [x,x] (i.e., [x,«] is an interval that
includes the real value x). Finally, a function f,pe-([ %] ) = u for obtaining the maximum
value of the interval type variable [x] =[/, u], a function f,,e([ %] ) = [ for obtaining the
minimum value, and a function f;,,;;([x] ) = HT” for obtaining the median value are used.
However, it is assumed that they are not necessarily accuracy-guaranteed functions.

To represent the complex number [a] +[b] i, ([7],[c],[d]) is held for

[a] +[b]i € eV ([ ] +[d] i)

However, as a normalization condition,

0 ([a]=[0,0] and [b]=[0,0])

2 2y _
Jupper (Le)” +[d]) = 1 (otherwise)
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must be satisfied. It is assumed that 1 is numerically almost 1. The difference from 1
accumulates by multiplication, but it is reset by addition. For convenience, [7] =[0, 0]
must be satisfied when ([a] =[0,0] and [b]=[0,0]).

The conversion protocol between this and the usual representation is described in the
supplementary file. Normalization, multiplication, and addition protocols are described
below.

Normalization

When a number ([7'],[c],[d’]) that is not normalized is given, a method of obtaining
the normalized number with accuracy assurance ([r], [c],[d]) 2 ([7],[],[d]) is as
follows.

Algorithm 1 Normalize

Input: ([7],[c],[d']):(Interval,Interval,Interval)
Output: ([r],[c],[d]):(Interval,Interval,Interval) where
el([c]+[d]i) 2 e[ ] +[d] i) and
IsNormalized([ r],[c],[d]) = True
S ¢fupper([ C/]Z +[ d/]z)
if s = 0 then

return ([0,0],[0,0],[0,0])
end if
te 1o

sqrt(s)
returfn ([r']—log([t,t]), [, 2] [ ], [t ¢]1[d'])

=

Description:
First, compute
N :fupper([ C/]Z +[d/]2 )
1
=
sqrt(s)

)

where ¢ is the reciprocal of the maximum value of the absolute value of the input. At
this time

([0r0]7[0’0]7[010]) (S:O)

WL ED =\ () —tog(t ), L1161, (68141 (otherwise

is a normalized solution.

Multiplication
The multiplication of the two values ([r1],[c1],[d1]) and ([72],[c2],[d2]) can be
described as

([r], [eil, [di) U], [eal, [ da])

= el ([ 1] +[di] el ([ co] +[da] i)

= et (o] +[d1] i) ([ ea] +[da) i)

= et (1] [ea] =[di] [da]) + ([c1] [da] +[di] [e2])i),
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and ([r1]+[7r],[c1]llc2] —[dil[d2],[c1][da] +[di][c2]) is obtained as a solution.
In normalization post-processing, if [c1][c2] —[d1] [d2] =[c1] [da] +[d1] [ c2] =[0,0],
[7] =[0, 0] is substituted. Otherwise, because the product of the complex numbers with
absolute value 1 is absolute value 1, it is naturally normalized.

Algorithm 2 Multiplication
Input: (([r1],[c1],[d1]), ([r2],[cal, [d2]))x:
((Interval,Interval,Interval),(Interval,Interval,Interval)) where
IsNormalized([ 1], [c1],[d1]) = True and
IsNormalized([ 2], [c2],[d2]) = True
Output: ([r],[c],[d]):(Interval,Interval,Interval) where
(el +[dli) 2 e ([ e1] +di] el ([ ca] +1da] i) and
IsNormalized([ 7], [c],[d]) = True
1 [r] <[] +[r]
[c]<[eallea] —[di][da]
[dl =[allda] +[di][cal
if ([c],[d]) = ([0,0],[0,0]) then
[r]<[0,0]
6: end if
7: return ([r],[c],[d])

o

Addition

Consider the sum of the two values ([ 1], [c1],[d1]) and ([r2],[¢2], [d2]). As addition
is commutative, assuming f,;7([71]) > fiia([r2]) does not decrease generality. Then, it
can be formulated as

p zfupper([rl]) — fia([r1])
+fupper([r2]) _fmid([’"Z]) =0
and

([r1],[c1l, [d1]) + ([r2), [ 2], [da])
= el([er] +[d1] D) + e ([ 2] +[ ] i)
=] +[di] i) + M eI [ ey] 42 [y ) )
= (el +e ) + (] +e ] i)
— e[rl]+[PvP]((e—[P»P] [c1] +elr2=nl=lprl o 1)
+ (e PPy ] el ) i,

Thus, fuppe,(e_[p'p]) < 1 follows from the assumption of p > 0. Additionally,
fupper(e[”]_[’l]_[p'l’]) < 1 follows from the assumption that f,,,;;([71]) > fiuia([r2]) (the
proof is provided in the supplementary file). Therefore, e ?#] and el"2l=In1-[P#] can be
directly calculated without overflow occurring. Therefore,

=[rl+[p,p]
[] = (e PP[ ¢1] el nl=lpPl[ cy])
[(d] = (e PP dy] +elr2)-Inl=lerl g7y
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can be calculated, and ([#'],[ (], [d']) satisfies

(Inl, [al, [di]) + (2], (el [da]) = ([7], [, [d])

as the summation. Finally, since this is not normalized, normalization processing is
required.

Algorithm 3 Addition
Input: (([r1],[c1],[d1]), ([72], [c2],[d2]))x:
((Interval,Interval,Interval),(Interval,Interval,Interval)) where

IsNormalized([ r1],[c1],[d1]) = True and
IsNormalized([ 2], [ ¢2], [d2] ) = True

Output: ([r],[c],[d]):(Interval,Interval,Interval) where

el ([l +di) 2 eV ([ er] +[d1] i) + el ([ca] +[da] i) and

IsNormalized([ 7], [c],[d]) = True

if finia([71]) < fimia([r2]) then

—

22 return Addition(([r2],[c2],[d2]), ([n1],[e1], [d1]))
3: end if

4 p < fupper([11]) — finia ([11]) + fupper ([12]) — frnia([72])
5: [ k] < e PP

6 [ko] < elr2)=Inl=lpp]

7. [rl<=[nl+[p p]

8 [cl<=[k]la]l+k][e]

9: [d] <[ki][d1] +[ ko] [da]

10: return Normalize([7],[c],[d])

In the classic logsumexp, numerical errors of summation are reduced by using a
summation-specific technique rather than recursively using the two-operand addition
function. For the summation-specific technique, in three or more operands, one can use
the maximum number as the scaling factor and scale the others. On the other hand,
we developed only the normal two-operand addition function. The following experi-
ment shows that our method brings sufficient numerical accuracy. Nevertheless, further
improvement may still be possible.

Requirements for an accuracy assurance calculation library
The functions that the accuracy assurance calculation library must perform in this
method are as follows:

The conversion from scalar to interval type guarantees accuracy.
2 Four arithmetic operations, log, and exp, with accuracy assurance for the interval

type.
3 The previously described f;pper ([ %] ) and fria ([ %] )

Credibility limit

In order to evaluate the magnitude of thermal fluctuation, we used Credibility Limit [18]
as the metric. Credibility Limit is the minimum distance in which a certain percentage
of structures is distributed. More specifically, given a representative structure o and a
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distance d, consider p, the sum of Boltzmann probabilities of structures whose distances
from o are less than or equal to d. Then, given a probability value p, CL(p) is the smallest
d such that p; > p. The larger the Credibility Limit value, the more intense the thermal
fluctuation of the molecule.

Experimental procedure
The S151 Rfam Dataset ‘with all pseudoknots removed’ [15] was used for evaluation of
time complexity and numerical accuracy in interval operation.

For the application of our proposed method to RNA molecules longer than those in the
S151 Rfam dataset [15], the primary sequences and the corresponding native secondary
structures of 16S rRNAs were obtained from three-dimensional structures of E. coli and T.
thermophilus, while those of 70S ribosomes were from the Nucleic Acid Database (NDB)
[28, 29]. The NDB IDs of the E. coli and T. thermophilus ribosome structures were 4V9D
(chainID: AA) [30] and 4V51 (chainID: AA) [31], respectively. As the secondary struc-
tures of these 16S rRNAs, base-pairs were selected according to the "base-pair hydrogen
bonding classification" provided by NDB. Specifically, base-pairs were classified as 1 in
the Leontis—Westhof classification [32] and either 19, 20, or 28 in the Saenger classifica-
tion [33]. Base-to-base correspondence between the primary sequence and its secondary
structure (derived from the three-dimensional structure in which several residues are
missing) was estimated using Needleman—Wunsch alignment [34].

The energy parameter rna_turner2004.par included in the Vienna RNA package [27]
version 2.4.9 was used. However, the source code itself of Vienna was not used. The algo-
rithms were implemented by the authors, except for parameter file reading, which is based

on ParasoR’s implementation [13].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/512859-020-3535-5.

[ Additional file 1: Supplementary PDF file.
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