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Abstract

Background: Single cell RNA sequencing (scRNAseq) has provided invaluable
insights into cellular heterogeneity and functional states in health and disease.
During the analysis of scRNAseq data, annotating the biological identity of cell
clusters is an important step before downstream analyses and it remains technically
challenging. The current solutions for annotating single cell clusters generally lack a
graphical user interface, can be computationally intensive or have a limited scope.
On the other hand, manually annotating single cell clusters by examining the
expression of marker genes can be subjective and labor-intensive. To improve the
quality and efficiency of annotating cell clusters in scRNAseq data, we present a
web-based R/Shiny app and R package, Cluster Identity PRedictor (CIPR), which
provides a graphical user interface to quickly score gene expression profiles of
unknown cell clusters against mouse or human references, or a custom dataset
provided by the user. CIPR can be easily integrated into the current pipelines to
facilitate scRNAseq data analysis.

Results: CIPR employs multiple approaches for calculating the identity score at the
cluster level and can accept inputs generated by popular scRNAseq analysis software.
CIPR provides 2 mouse and 5 human reference datasets, and its pipeline allows inter-
species comparisons and the ability to upload a custom reference dataset for
specialized studies. The option to filter out lowly variable genes and to exclude
irrelevant reference cell subsets from the analysis can improve the discriminatory
power of CIPR suggesting that it can be tailored to different experimental contexts.
Benchmarking CIPR against existing functionally similar software revealed that our
algorithm is less computationally demanding, it performs significantly faster and
provides accurate predictions for multiple cell clusters in a scRNAseq experiment
involving tumor-infiltrating immune cells.
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(Continued from previous page)

Conclusions: CIPR facilitates scRNAseq data analysis by annotating unknown cell
clusters in an objective and efficient manner. Platform independence owing to Shiny
framework and the requirement for a minimal programming experience allows this
software to be used by researchers from different backgrounds. CIPR can accurately
predict the identity of a variety of cell clusters and can be used in various
experimental contexts across a broad spectrum of research areas.

Keywords: Single cell RNA-sequencing, Cluster analysis, Identity prediction, Similarity,
Gene expression profiling, Immune cells

Background
Single cell RNA sequencing (scRNAseq) has enabled researchers to interrogate cellular

phenotypes at an unprecedented resolution and led to the discovery of several new bio-

logical phenomena [1]. This new tool has gained significant traction in numerous re-

search areas including immunology, developmental and cancer biology, and is being

continually improved in terms of the technology and analytical pipelines. Data from

scRNAseq is typically analyzed via various unsupervised clustering approaches resulting

in distinct groups of cells defined by similar gene expression profiles [2]. During

scRNAseq data analysis, it is advantageous to relate single cell clusters to known cell

types before proceeding to downstream steps such as differential expression analyses

and data visualization. In the past 2 years, an increasing number of software solutions

to automatically classify cell clusters in scRNAseq data have been reported [3–13]. Re-

cent studies provided a rigorous assessment of these methods in terms of performance

and accuracy, and found that no one tool is perfectly suitable for every experimental

context [14–16]. These tools can be computationally intensive, and they generally lack

a graphical user interface limiting their use in iterative analyses. Furthermore, these

tools may not be easily adaptable to different experimental contexts and, in some cases,

the learning curve can be difficult to those with limited coding experience due to spe-

cialized data structures. Thus, many researchers still rely on manually examining

known marker genes to determine the cluster identity in scRNAseq experiments. How-

ever, manual annotation of cell clusters is labor-intensive and requires field-specific ex-

pert biological knowledge. Additionally, this approach can be subjective and difficult to

reproduce. Therefore, there is a need for a fast and accurate classification algorithm

that can be easily integrated into existing analytical pipelines.

To facilitate identifying cell clusters in scRNAseq data, here we present Cluster Iden-

tity PRedictor (CIPR) (pronounced cy-per), a web-based R/Shiny application and R

package which scores complex multi-gene expression signatures of unknown experi-

mental cell clusters against known reference cell populations. After calculating identity

scores between unknown clusters-reference pairs, the pipeline generates informative

graphical outputs allowing the users to easily assess predictions. CIPR pipeline can be

used with one of the 7 preloaded mouse and human reference datasets, or with a user-

provided custom reference dataset for specialized studies. CIPR algorithm performs in-

ternal gene name matching in a species-agnostic manner enabling comparisons across

species. Users can exclude irrelevant reference cell subsets and lowly variable genes

from the analysis and adapt the CIPR pipeline to their experimental needs. Our ana-

lyses using scRNAseq data obtained from mouse melanoma tumor-infiltrating immune
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cells show that CIPR can accurately and efficiently predict the identity of single cell

clusters and can be used to annotate immune cell subsets. Benchmarking CIPR against

2 robust software solutions performing a similar task, SingleR [12] and scmap [13], re-

vealed that CIPR produces comparable results while requiring significantly less com-

pute resources and a shorter runtime. Thus, CIPR can facilitate scRNAseq data analysis

by quickly and accurately annotating unknown cell clusters.

Implementation
Summary of the pipeline

Software is implemented using R programming language and Shiny framework. CIPR is

accessible via online Shinyapps.io server [17], or as a stand-alone R package [18]. The

open source code for the Shiny application and the R package is available on GitHub

[18, 19]. CIPR can work with two types of experimental input data commonly gener-

ated by popular scRNAseq analysis software: i) a data frame containing differentially

expressed genes per cluster and their log fold-change (logFC) values, ii) a summary

data frame that contains average normalized log-counts per gene in each cluster (for all

genes in the dataset). As the reference, CIPR allows users to select one of the 7 pre-

loaded reference datasets (Table 1) or upload a custom reference dataset generated by

Table 1 Summary of the reference datasets included in CIPR

Reference dataset Species Number of
samples/
features

Number of
cell types
(main/fine)

Reference cell types Ref

Immunological Genome
Project (ImmGen)

M.
musculus

296/24197 20/296 B cell, Baso, DC, Eosino, gd-T, Gran,
ILC-1, ILC-2, ILC-3, Mac, Mast, Mono,
NK, NKT, Pre-B, Pre-T, Stem-Prog,
Stromal, T cell, Treg

[20]

Presorted cell RNAseq
(various tissues)

M.
musculus

358/21214 18/28 Adipocyte, Astrocyte, B cell,
Cardiomyocyte, DC, Endothelial,
Epithelial, Erythrocyte, Fibroblast,
Gran, Hepatocyte, Mac, Microglia,
Mono, Neuron, NK, Oligodendrocyte,
T cell

[21]

Blueprint/ENCODE H.
sapiens

259/19859 24/43 Adipocytes, B cell, T cell, Chondrocyte,
DC, Endothelial, Eosino, Epithelial,
Erythrocyte, Fibroblast, HSC, Keratinocyte,
Mac, Melanocyte, Mesangial, Mono,
Myocyte, Neuron, Neutro, NK cells,
Pericyte, Skeletal muscle, Smooth muscle

[22,
23]

Human Primary
Cell Atlas

H.
sapiens

713/19363 37/157 Astrocyte, B cell, BM, Prog, Chondrocyte,
CMP, DC, ESC, Endothelial, Epithelial,
Erythroblast, Fibroblast, Gametocyte,
GMP, Hepatocyte, HSC, iPS, Keratinocyte,
Mac, MEP, Mono, MSC, Myelocyte,
Neuroepithelial, Neuron, Neutro, NK,
Osteoblast, Platelet, Pre/Pro-B, Smooth
muscle, T cell, Tissue SC

[24]

Database of Immune
Cell Expression (DICE)

H.
sapiens

15*/57,773 5/15 CD4+ T cell, CD8+ T cell, NK cell, B cell,
Mono

[25]

Hematopoietic
differentiation

H.
sapiens

211/13276 17/38 B cell, Baso, CD4+ T cell, CD8+ T cell,
CMPs, DC, Eosino, Erythroid, GMP, Gran,
HSC, Megakaryocyte, MEP, Mono, NK, NKT

[26]

Presorted cell RNAseq
(PBMC)

H.
sapiens

114/46077 11/29 B cells, Baso, CD4+ T cell, CD8+ T cell, DC,
Mono, Neutro, NK cells, Prog, T cell

[27]
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various high throughput analysis approaches including microarray and RNAseq. De-

pending on the input type, CIPR can either compare the logFC values of differentially

expressed genes in clusters against reference comparators (where a logFC value at indi-

vidual gene level is calculated for each reference cell subset in comparison to the aver-

age expression across the entire reference dataset), or calculate correlations using the

entire gene set. The algorithm computes a vector of identity scores through pairwise

comparisons of clusters and reference samples, generates visualizations and allows

downloading the results as a csv file. In the CIPR R package implementation, the pipe-

line functions as described above with added functionality to control the graphical and

numerical output.

Table 1 Multiple reference datasets are available within the CIPR pipeline. These in-

clude 2 reference datasets from mouse and 5 reference datasets from human, which

contain data from both immune and non-immune cells. ImmGen reference was pre-

pared from raw microarray data (both v1 and v2 ImmGen releases). DICE reference

log-transformed transcript-per-million data was downloaded from DICE database dir-

ectly. Log-normalized counts for other references were obtained from SingleR package.

Reference data frames were organized for CIPR pipeline using the code accessible at

GitHub repository [19]. Abbreviations: Baso, basophil; Eosino, eosinophil; gd-T,

gamma-delta T; Gran, granulocyte; ILC, innate lymphoid cells; Mac, macrophages;

Mono, monocytes; NK, natural killer; Treg, regulatory T cells; Prog, progenitor; DC,

dendritic cells; Neutro, neutrophil; H/M/E/SC, hematopoietic/mesenchymal/embryonic

stem cells; MEP, megakaryocyte erythrocyte progenitor; CMP, common myeloid pro-

genitor; GMP, granulocyte-macrophage progenitor; iPS, induced pluripotent stem cell.

*Although the DICE reference data is originally composed of 1561 samples, to reduce

compute time and generate readable outputs, we utilized mean transcript-per-million

data per cell type resulting in 15 averaged samples).

Use case scenario: melanoma tumor infiltrating lymphocyte scRNAseq data

We have recently described immune cell dynamics during murine melanoma tumor

growth in vivo [28]. In this study, CD45+ flow cytometry-sorted immune cells were se-

quenced via the 10X Genomics platform followed by computational analysis using Seurat

R package [29]. Our analysis revealed 15 distinct single cell clusters within the tumor

microenvironment (Fig. 1a). To demonstrate the capabilities of CIPR, here we focus on

clusters 05 and 15 which distinctly expressed the marker genes defining natural killer

(NK) cell and plasmacytoid dendritic cell (pDC) lineages, respectively (Fig. 1b, c) [30, 31].

Using Seurat, we performed differential expression analyses at the cluster level and used

this as the input for CIPR’s recommended logFC dot product method (see below for com-

parisons of different CIPR methods). In this analysis, we used Immunological Genome

Project (ImmGen) reference which contains microarray data from sorted mouse immune

cells (296 samples from 20 main cell types) [20]. CIPR calculates a distinct identity score

for each unknown cluster-reference pair resulting in 296 calculations per cluster. The re-

sults for individual clusters are shown in scatter plots where data points correspond to the

identity score calculated for a specific reference cell subset (plotted in the x-axis) (Fig. 1d,

e). The color-coded data points help users distinguish the enrichment of identity scores in

particular reference cell types at a glance. To help assessing the quality of CIPR
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predictions, the algorithm outputs shaded regions in the scatter plots that mark the

boundaries of 1 and 2 standard deviations of the identity score across the reference data

frame. Furthermore, we implemented a z-score approach where the distance of the iden-

tity score for a particular reference cell type is calculated in standard deviation units from

the average identity score across the whole reference dataset. As the identity- and z-score

calculations are impacted by the composition of the input/reference data and the analysis

parameters, it is difficult to define a widely applicable significance threshold for the pre-

dictions. In our hands, predictions with z-scores higher than 1 were consistent with expert

knowledge-based manual annotations. In CIPR, we chose not to leave the low/intermedi-

ate-scoring clusters unlabeled since, even though the cluster in analysis may not have a

perfect match in the reference subset, knowing which reference cell subset it resembles

Fig. 1 CIPR provides a R/Shiny-powered graphical user interface to facilitate cluster annotation in scRNAseq
experiments. a T-distributed stochastic neighbor embedding (t-SNE) plot for the example scRNAseq data
derived from murine melanoma tumor infiltrating lymphocytes shows 15 distinct immune cell clusters
within the tumor microenvironment (the dataset contains 13,985 features and 11,054 cells) [28]. To
demonstrate the capabilities of CIPR we focus on clusters 05 and 15 which distinctly expressed (b) natural
killer cell (NK) and (c) plasmacytoid dendritic cell (pDC) markers respectively. d We used the CIPR pipeline
to score the gene expression profiles of cluster 15 (pDC) against 296 mouse immune cells found in the
ImmGen reference. CIPR algorithm calculates a distinct identity score for each reference cell type and
generates a graphical summary of the results. In these plots, 4 highest data points (red rectangle)
correspond to pDC samples within the ImmGen reference. The shaded regions in the graphs delineate 1
and 2 standard deviations around the mean identity score calculated from the entire reference data frame.
Data points are color-coded based on the reference cell type allowing an easy assessment of the results. e
The CIPR results for cluster 05 (NK cells) is shown. Marked data points depict the NK cells in the ImmGen
dataset that had the highest identity scores. Users can visualize graphs for each cluster separately and have
the option of further manipulating the plots if the R package implementation of CIPR is used. f CIPR can
also generate graphical outputs to summarize the 5 top-scoring reference samples for each experimental
cluster. The scatter plot shows the pDC and NK cell subsets that had the highest scores for clusters 05 and
15. In Shiny implementation of CIPR, users can draw rectangles around these points to prompt a table
output which provides further information about the reference cell types on the graph
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the most is informative, especially when performing iterative analyses. Indeed, recent

studies show that analytical pipelines which implement an “unassigned” classification do

not have an overall improvement in prediction accuracy [14, 16]. Thus, we anticipate that

the graphical outputs of CIPR will provide a convenient and visual means to assess the

strength of predictions in individual studies. In our experimental data, as expected, cluster

15 was strongly predicted to be a pDC subset as evidenced by the 4 blue-colored data

points which were well above the rest of the reference subsets (Fig. 1d). Cluster 05 scored

the highest with the NK cell subsets which are depicted by pink-colored data points (Fig.

1e). Although these scatter plots are informative, the user may only want to see the top

scoring reference datasets for each cluster. CIPR pipeline also generates a summary out-

put in which only the 5 highest-scoring reference cell types are plotted per cluster (Fig.

1f). In the Shiny implementation of CIPR, users can draw a rectangle around these points

which will prompt a table output below the figure providing further details about the ref-

erence cell types. The summary and per-cluster graphical outputs are created under dis-

tinct tabs in the CIPR-Shiny to speed up the user interaction and to create a minimalist

interface. Users can choose to suppress one or both of these plots in the CIPR R package

to tailor pipeline for programmatical use.

Results and discussion
Different computational approaches in CIPR

Selecting the genes or features that have higher discriminatory potential is a critical

step in automated cluster classification algorithms. Some computational pipelines per-

form feature selection automatically, while others allow custom feature selection or

proceed to analysis with no pre-filtering. Machine-learning based feature selection can

improve algorithmic predictions, but it can also increase the demand for computing re-

sources depending on the number of cells in the analysis, as reported by Zhao et al.

[16] and Huang et al. [15]. In CIPR, we implemented two main computational ap-

proaches to calculate identity scores: i) analysis using data only from the differentially

expressed genes in clusters, ii) analysis using the entire gene set (no feature selection).

Our experience suggests that the genes with the least discriminatory power will be nat-

urally filtered out in the first case, leaving the most informative genes that can better

distinguish the cell clusters from one another in the analysis. The CIPR algorithm can

compare the logFC values of differentially expressed genes in experimental clusters

with the logFC values of the matching genes in the reference dataset (calculated by tak-

ing the ratio of gene expression in the reference subset to the average expression value

across the entire reference data frame) by using one of three methods: i) dot product,

ii) Spearman’s correlation, iii) Pearson’s correlation. We recommend using the logFC

dot product method as it factors in both the direction and the amount of differential

expression for a given gene. For instance, if a gene is highly upregulated or downregu-

lated in the unknown cluster and in the specific reference sample, the multiplication of

such logFC values will contribute to the overall identity score, while the genes showing

a strong anti-correlation will proportionately reduce the identity score. CIPR can also

test the linear and nonlinear relationships between the logFC values from the unknown

cluster and the reference dataset using Spearman’s or Pearson’s respectively. Alterna-

tively, CIPR pipeline can also assess the nonlinear and linear correlations between the
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input and reference datasets by considering all genes regardless of differential expres-

sion status.

We sought to determine how these different analytical approaches compare to the

recommended logFC dot product method. As expected, all three logFC comparison

methods showed a high degree of concordance for both clusters 05 (NK cells) and 15

(pDCs) (Fig. 2a, b). When we examined the z-score distribution for these methods, we

observed a similar trend with slightly higher z-scores for top hits when the logFC dot

Fig. 2 Different analytical methods implemented in CIPR performs comparably to annotate single cell
clusters. Three of the analytical methods in CIPR (logFC dot product, logFC Spearman’s or Pearson’s
correlation) utilizes only differentially expressed genes in clusters. The recommended approach in CIPR is
logFC dot product method since it takes both the direction and the amount of differential expression into
account when calculating identity scores per cluster. The other approaches in CIPR are designed to analyze
the expression profiles of all the genes in the experimental data regardless of their differential expression
status. This figure compares the predictions of the logFC dot product method to other analytical
approaches in CIPR. Data points in the scatter plots indicate the identity score of individual ImmGen
reference cell subsets calculated for clusters 05 and 15 by different methods. As expected, there is a strong
correlation between the results of logFC dot product method and (a) logFC Spearman’s and (b) logFC
Pearson’s correlation methods for both clusters. c, d The same strong correlation was observed when the z-
scores were compared for these methods, although logFC dot product differentiated the highest scoring
reference subsets slightly better as evidenced by a higher z-score. The results of (e) all-genes Spearman’s
and (f) all-genes Pearson’s methods show an overall positive correlation with those from logFC dot product
method, although logFC dot product approach was able to better differentiate the top-scoring reference
subsets as evidenced by higher z-scores shown in panels g and h. Similar observations were made for
other clusters in the experimental dataset but are not shown due to space constraints
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product method is used (Fig. 2c, d). We then compared the logFC dot product method

with the correlation methods that utilize the entire gene set (all-genes Spearman/Pear-

son methods). Although the CIPR identity scores between these approaches showed an

overall positive correlation, this relationship was weaker at the low/intermediate-scor-

ing reference subsets suggesting that logFC dot product method may have a higher dis-

criminatory power compared to the all-genes correlation-based methods (Fig. 2e, f). As

expected, since the reference data set and the experimental data originated from differ-

ent experimental approaches, Pearson’s correlation performed poorer compared to

Spearman’s method (Fig. 2g, h). Nevertheless, we anticipate that the all-genes Pearson’s

method can be useful in some experimental contexts with custom-provided reference

datasets. Similar trends were observed when other clusters in the scRNAseq dataset

were examined (data not shown). These findings suggest that different computational

approaches implemented in CIPR generates converging results and can be adapted to

various experimental contexts.

CIPR performs faster than other robust cluster annotation methods and produces

comparable results

As reported by recent studies, automated cluster annotation algorithms SingleR [12]

and scmap [13] perform robustly in various experimental contexts and simulations

[14–16]. Scmap was initially developed for mapping different scRNAseq runs to one

another, while SingleR allows using both bulk RNAseq and scRNAseq data as reference.

SingleR calculates a Spearman’s correlation coefficient between single cell clusters and

the reference samples after selecting variable features within the data frame [12]. Scmap

method also performs unsupervised feature selection and scores the similarity of single

cells to reference clusters by comparing its gene expression to the median expression

within the reference dataset (13). As these solutions are conceptually similar to our ap-

proach and were shown to be accurate in their predictions, we next sought to deter-

mine how CIPR compares to these pipelines in terms of its predictions and

performance. To be able to perform a fair comparison with CIPR, we adapted scmap

pipeline to use ImmGen bulk microarray data as reference. The latest versions of CIPR

(v0.1.0), SingleR (v.1.0.5) and scmap (v1.8.0) that were available for the most current

stable release of R (v3.6.2) were used in benchmarking at the time of this writing. As

the CIPR calculations are performed at the cluster level, we employed the same strategy

for SingleR and scmap analyses. As expected, CIPR’s all-genes correlation method

showed a strong concordance with SingleR method which also employs a correlation-

based metric to calculate identity scores (Fig. 3a). LogFC methods showed a significant

overall positive correlation between CIPR and SingleR. The highest scoring reference

samples were similar between all three methods in general. This was especially clear

when analyzing the highly differentiated cell types such as NK cells (cluster 05), pDCs

(cluster 15), and activated CD8+ T cells (cluster 02). Scmap did not find a significant

association between naïve CD8+ T cell subset (cluster 03) and the reference

dataset although naïve T cell subsets are present in the ImmGen reference data. How-

ever, the lack of a cell type assignment in this cluster and overall low scores observed

using the scmap method, could be due to suboptimal feature selection when scmap is

run with a bulk reference data (personal communication, Dr. Martin Hemberg, the
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Fig. 3 CIPR performs faster than other cluster analysis approaches and produces comparable results. a
SingleR and scmap are recently described R packages for automated cluster analysis which can perform
analyses at the cluster level similarly to the CIPR approach. These algorithms were shown to perform well in
various experimental contexts and can serve as a high benchmark for automated cluster analysis solutions.
By performing all the analyses at the cluster level, here we report a comparison of CIPR R package (v.0.1.0),
SingleR (v1.0.5) and scmap (v1.8.0) in terms of predictions and performance. For these comparisons, a
Surface Pro4 computer equipped with 64-bit Win7, 16 GB memory, 2.2GHz i7-6650U CPU, R (v.3.6.2), and
RStudio (v.1.2.5033) was used with no other background processes. a Five analytical methods implemented
in CIPR were compared to SingleR and scmap across 5 individual clusters. Data points indicate the identity
scores calculated for each ImmGen reference cell subset by different methods. Color gradient specifies the
identity score calculated by scmap method (gray indicates no significant mappings were found). As
expected, CIPR’s all-gene Spearman’s/Pearson’s methods are highly concordant with SingleR pipeline. The
results from CIPR logFC methods show an overall positive correlation with SingleR, where the highest
scoring reference cell types in CIPR were similar to those calculated by SingleR and scmap. In some cases,
scmap failed to find a significant association which may be due to its suboptimal power when a bulk
reference data is used as input. b CIPR performs significantly faster than SingleR, and comparably to scmap
in 5 separate tests. We benchmarked the runtime of SingleR function both with and without fine tuning
feature. Scmap (short) measures the runtime of scmapcluster computational engine, whereas scmap (long)
measures the runtime starting with the initial object creation. c CIPR utilizes less computer memory over
time compared to (d) SingleR (no fine tuning) and (e) scmap
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author of scmap package). The high concordance between CIPR and other established

methods suggest that the CIPR algorithm provides accurate classifications across a var-

iety of cell types.

When we compared the runtimes of these methods, we observed that CIPR was sig-

nificantly faster compared to SingleR with or without SingleR’s “fine tuning” parameter

(Fig. 3b). Scmap had a similar speed with CIPR when only the identity prediction func-

tion is measured (labeled “scmap-short”) and had a slightly longer runtime when the

time it takes to set up the analysis object is considered (labeled “scmap-long”, which

would be a comparable use scenario to CIPR). However, we anticipate longer comput-

ing times from scmap pipeline when high dimensional scRNAseq data is used instead

of the bulk reference data in current analyses (as per scmap design). We next assessed

the memory utilization by these methods. All CIPR methods utilized less than 1000

megabytes (Mb) of memory (Fig. 3c), whereas SingleR required ~ 1500Mb without fine

tuning and over 6000Mb with fine tuning (Fig. 3d). Scmap used comparable amounts

of memory for computations but required 5000–6000Mb of memory to set up the ana-

lysis object (Fig. 3e). These observations suggest that the CIPR algorithm can perform

cluster-level identity predictions in an accurate and efficient manner to facilitate

scRNAseq data analysis. As the CIPR pipeline works with a simple R data frame struc-

ture, we anticipate that it will provide a quick and user-friendly solution for annotating

cell clusters during iterative analyses.

Filtering out genes with low variance can increase the discriminatory power of CIPR

In addition to limiting the CIPR pipeline to differentially expressed genes in the experi-

mental data via logFC methods, users can choose to apply gene filtering based on the

expression variance across the reference dataset. By eliminating the lowly variable genes

in the reference, hence the noise, we hypothesize that all-genes correlation methods

could perform better. We designed a numeric slider input in the Shiny applet (and a

numeric input argument in CIPR R package) to allow the user to define a variance cut-

off to keep top nth percent of highly variable genes in the analysis. To test the effects of

reference gene filtering on the CIPR results, we compared CIPR identity scores and z-

scores calculated by the all-genes Spearman’s correlation method without variance fil-

tering and with variance cutoff set to top 10% or 1% (leaving 2420 and 242 genes of the

ImmGen reference in analysis respectively), and re-analyzed the clusters 05 (NK cells)

and 15 (pDCs) introduced in Fig. 1. With the increasing stringency of variance filtering,

the identity scores of the highest-scoring reference cell subsets remained unchanged

whereas the identity scores of the intermediate-scoring reference cell subsets were re-

duced (Fig. 4a, b). The z-scores of the highest scoring reference cell types were also

found to generally increase with variance filtering as observed in both clusters 05 and

15 (Fig. 4c, d). These findings suggest that reference feature subsetting based on expres-

sion variance can improve the discrimination of some cell clusters in scRNAseq data.

Excluding irrelevant reference cell subsets may improve the CIPR predictions

One of the challenges in scRNAseq data analysis is finding a suitable reference data

frame for experimental data at hand. Having irrelevant cell types in the reference data-

set can unnecessarily increase the time and the computational resources necessary for
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the analysis, and can impact the classification quality [15, 16]. Therefore, focusing the

analysis on a smaller subset of the reference dataset can be desirable in certain con-

texts. We implemented a user-friendly approach to limit the CIPR pipeline to the refer-

ence samples of interest via a drop-down menu in the Shiny implementation, and via a

dedicated function argument that accepts human-readable strings in the R package im-

plementation. Since the pairwise cluster-vs-reference correlations will be the same re-

gardless of the composition of the reference dataset, CIPR’s all-genes based correlation

methods are not expected to change upon reference subsetting. However, when using

the logFC comparison methods, CIPR calculates differential gene expression per refer-

ence sample by comparing the gene expression values to the average gene expression

across the reference dataset in analysis. Therefore, changing the composition of the ref-

erence dataset will impact the calculations of the logFC-based methods. We

hypothesize that such reference subsetting can better discriminate closely related cell

types, especially when analyzing datasets with low heterogeneity.

To test the performance of CIPR with a limited set of reference samples, we subsetted

all T cells from the tumor-infiltrating immune cell scRNAseq data described in Fig. 1

[28], as identified by the concomitant expression of Cd3e and Cd4 or Cd8a marker

genes (Fig. 5a). We performed new dimensionality reduction and clustering analyses

Fig. 4 CIPR allows users to limit the analysis to highly variable reference genes to improve cluster
annotations. As genes with variable expression profiles contain more information to discriminate cell types,
we implemented a variance filtering parameter in CIPR. The user-defined variance threshold parameter
instructs the algorithm to utilize the genes with variances above a certain quantile across the reference
dataset, thus limiting the analysis to highly variable genes. Plots compare the CIPR results with or without
variance thresholding when the all-genes Spearman’s method is used. Identity- and z-scores were
calculated for clusters 05 (NK cells) and 15 (pDCs) using ImmGen reference and results for individual
reference samples types are plotted as color-coded data points. Applying variance thresholding and
increasing its stringency from top 10% to top 1% reduced the identity scores of low/intermediate-scoring
reference cell subsets while the highest scoring reference cell subsets remained unaffected as evidenced by
data points overlapping with y = x line for (a) cluster 05, and (b) cluster 15. Similar trends were observed for
other clusters in analysis (not shown). The differential impact on identity scores of high- and low-scoring
reference cell subsets lead to an increased z-score for the highest-scoring reference subsets for both (c)
cluster 05 and (d) cluster 15. These findings suggest that variance thresholding can improve the
discrimination of some reference cell subsets. Although the best thresholding value remains to be
determined in individual studies, CIPR pipeline allows a level of flexibility to be adapted to different
experimental contexts
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and examined known marker gene expression which revealed that the dataset contains

various Cd4 and Cd8a-expressing T cell subsets including L-selectin-high (Sell, Cd62l)

naïve T cells (clusters 01 and 03), interferon gamma (Ifng)-high activated T cells, and

Foxp3-high regulatory T cells (clusters 05 and 06) (Fig. 5b). When we performed CIPR

analysis using 70 T cell reference samples found in ImmGen reference, we observed

that regulatory T cells (Tregs) scored the highest in cluster 06 as expected (Fig. 5c).

Using T cell-specific scRNAseq data, we then compared the performance of CIPR, Sin-

gleR, and scmap with unfiltered ImmGen reference (296 samples). Although the

Fig. 5 Irrelevant reference subsets can be excluded to tailor CIPR pipeline to different user needs. CIPR
pipeline allows users to easily exclude the reference subsets that are of no interest for the study at hand.
Limiting the analysis only to the relevant reference subsets can increase the readability of the graphical
outputs and may better differentiate closely related single cell clusters. To demonstrate this capability, we
subsetted the scRNAseq dataset described in Fig. 1 to contain only T cells (as defined by the simultaneous
expression of Cd3e and Cd4 or Cd8a marker genes). We then performed CIPR analyses with or without
limiting the pipeline to T cell references within the ImmGen dataset. a Uniform manifold approximation
and projection (UMAP) plot with 6 distinct single-cell clusters shows the heterogeneity within the T cell
subsets in the tumor microenvironment. b Representative feature plots indicate that the clusters are
composed of Cd4+ helper and Cd8a+ cytotoxic T cells some of which exhibited an activated phenotype
(Ifng+ cells) while others appeared to have naïve-memory phenotype (Sell+ cells). Of note, cluster 06 is
composed of Foxp3+ regulatory T cells (Tregs). c CIPR analysis using logFC dot product method shows that
highest scoring reference subsets for cluster 06 are regulatory T cell subsets within the ImmGen reference
data. d Graphs show that identity scores calculated by CIPR, SingleR and scmap are positively correlated for
both cluster 01 (activated Cd8a+ cells) and cluster 06 (Tregs). For these analyses, the entire ImmGen
reference data (296 samples spanning 20 different cell types) were used, and the calculations were
performed at the cluster level as described above. e The positive correlation between different analytical
approaches were stronger when the reference dataset was limited to T cell subsets (70 samples in ImmGen
data). In general, the highest scoring reference cell subsets in CIPR also scored the highest in scmap and
SingleR methods
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highest scoring reference cell types were similar among the different methods, the posi-

tive correlation between CIPR logFC dot product method and SingleR were weaker

compared to the parental experimental dataset with high heterogeneity (Fig. 5d). When

we performed the analyses after limiting the reference dataset to T cells for all the

methods in comparison, the concordance between CIPR and SingleR increased for both

activated T cells (cluster 01) and Tregs (cluster 06) (Fig. 5e). For these analysis we ex-

cluded T cell-like subsets that exhibit a transitionary phenotype (such as gamma delta

T cells and natural killer T cells), as these cells do not typically express the T cell co-

receptor genes (Cd4 and Cd8a) used for subsetting the T cells in our experimental

data. Although further characterization is needed to elucidate how well the reference

filtering approach can discriminate highly similar cell subsets, these findings suggest

that CIPR can be adapted to various experimental contexts by the end user.

Conclusions
CIPR is a web-based Shiny applet/R package that can be used to quickly and accurately

annotate unknown single cell clusters in scRNAseq experiments without prior know-

ledge of biological markers for the investigated cell types. CIPR provides a user-friendly

graphical interface to score cluster-specific gene expression patterns against known ref-

erence cell subsets and generate informative outputs. Quality control metrics and

graphical outputs implemented in CIPR help assess the confidence of the predictions in

individual studies. User-defined gene/reference subsetting functionality allows adapting

the CIPR pipeline to various experimental contexts. Benchmarking CIPR against other

robust software solutions that perform a similar task suggests that our pipeline gener-

ates comparable results in a significantly shorter timeframe and requires considerably

less computational resources. Thus, CIPR is ideal for iterative analyses where the user

wants to test different clustering parameters and quickly assess the identity of calcu-

lated cell clusters. We provide detailed vignettes to prepare CIPR-ready simple data

frames on the Shiny web platform and within the CIPR package which do not require

any more programming skills than what is needed to run other tools. Furthermore, the

R package implementation of CIPR enables users to easily integrate our algorithm into

existing analytical pipelines without leaving the R environment and allows flexible

graphing options. In summary, CIPR can facilitate scRNAseq data analysis by quickly

and objectively annotating single cell clusters.

Availability and requirements
Project Name: Cluster Identity Predictor (CIPR).

Project Home Page: https://aekiz.shinyapps.io/CIPR/

Project Repository (Shiny app): https://github.com/atakanekiz/CIPR-Shiny

Project Repository (R package): https://github.com/atakanekiz/CIPR-Package

Operating Systems: Platform independent (web-based).

Programming Language: R.

Other requirements: Browser, internet access. If running the R code locally though

CIPR R package, package dependencies such as dplyr, tibble, ggpubr, and gtools.

License: GNU GPL.

Restrictions for non-academics: None.
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