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is available at the end of the prediction. Though some ACP prediction tools have been developed recently, their
article performances are not well enough and most of them do not offer a function to distin-

guish ACPs from antimicrobial peptides (AMPs). Considering the fact that a growing
number of studies have shown that some AMPs exhibit anticancer function, this work
tries to build a model for distinguishing AMPs from ACPs in addition to a model that
predicts ACPs from whole peptides.

Results: This study chooses amino acid composition, N5C5, k-space, position-specific
scoring matrix (PSSM) as features, and analyzes them by machine learning methods,
including support vector machine (SVM) and sequential minimal optimization (SMO) to
build a model (model 2) for distinguishing ACPs from whole peptides. Another model
(model 1) that distinguishes ACPs from AMPs is also developed. Comparing to previous
models, models developed in this research show better performance (accuracy: 85.5%
for model 1 and 95.2% for model 2).

Conclusions: This work utilizes a new feature, PSSM, which contributes to better
performance than other features. In addition to SVM, SMO is used in this research

for optimizing SVM and the SMO-optimized models show better performance than
non-optimized models. Last but not least, this work provides two different functions,
including distinguishing ACPs from AMPs and distinguishing ACPs from all peptides.
The second SMO-optimized model, which utilizes PSSM as a feature, performs better
than all other existing tools.
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Background

Cancer is a leading cause of death and the most important barrier to increasing life
expectancy worldwide in this century [1]. This disease is caused by the growth and
uncontrolled proliferation of abnormal cells. Conventional cancer treatments, includ-
ing radiation therapy and chemotherapy, often have adverse effects on normal cells and
thus not effective enough [2]. Moreover, some mechanisms also lead to drug resistance
from the cancerous cells [3]. Therefore, a novel treatment that lacks adverse effects, tar-
gets specifically to cancer cells, and with a low possibility of drug resistance is in need
urgently.

In recent years, a new group of small peptides, ACPs, has been discovered that can tar-
get and kill cancer cells specifically while not affecting healthy cells [4, 5]. The high selec-
tivity and cancer-selective toxicity [6] of ACPs depend on multiple differences between
cancer cells and normal cells, including membrane net charge and unique molecules on
the membrane [6]. Due to their specificity and low toxicity, ACPs have attracted growing
attention as a novel cancer treatment and have been considered to be promising [7]. For
example, romidepsin (FK228), has been shown to have clinical effectiveness in patients
with refractory cutaneous T-cell lymphoma [8]. To promote its application, it is of great
significance to distinguish ACPs from all peptides. Nevertheless, finding anticancer pep-
tides by experiments could be both time-consuming and labor-intensive [9]. To deal
with this problem, computational identification before wet-lab experiments is necessary.
Machine-learning-based methods could be of great help to classify and predict those
special peptides. Moreover, some characteristics of cancer cells, such as the negative
surface charge of their membrane, also shared by bacterial cells [10]. In fact, a hypoth-
esis is proposed that ACPs share similar features with another group of small molecules
that can specifically target and kill microbes, called AMPs [11]. Indeed, some AMPs are
discovered to exhibit anticancer function according to recent studies [12]. Thus, distin-
guishing ACPs from AMPs may promote the discovery of ACPs more accurate, more
convenient and faster.

To identify and predict ACPs, many computational tools for predicting ACPs have
been designed, including Hajisharifi’s model [13], AntiCP [14], iACP [15], MLACP [16],
mACPpred [17], ACPred [18], ACPred-Fuse [19] and ACPred-FL [20]. Hajisharifi et al.
use physicochemical properties and PseAAC as characteristics of peptide sequences,
and SVM as a machine learning method to identify ACPs. Their method is claimed to
perform with an accuracy of 83.82% [13]. By analyzing the AAC of peptides and using
SVM as a machine learning method, AntiCP offers two models that can distinguish
ACPs from either AMPs or non-ACPs based on different datasets [14]. In MLACP, they
analyze the AAC, dipeptide composition, atomic composition and physicochemical
properties separately and hybridlike. Then they apply two machine learning methods:
SVM and random forest to build models based on peptide characteristics. The perfor-
mance of MLACP is claimed to be better than any other existing methods, with an accu-
racy of 87.5%. The deficiency of the MLACP study is that it does not offer a model that
can distinguish ACPs from AMPs [16]. mACPpred, which achieves an accuracy of 88.5%
in their independent test, uses SVM as the final classifier. ACPred also utilizes SVM and
analyzes several different features, the accuracy of which is 97.56% according to their
paper. ACPred-FL incorporated feature representation learning and feature selection
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with SVM. The prediction accuracy of this tool in their independent test is 85.7%. Simi-
larly, ACPred-Fuse fuses a feature representation learning model that integrates 29 dif-
ferent features with random forest, and performs an 89% accuracy in their independent
test.

This research offers more functions and better performance. First of all, sequences
of examined ACPs, non-ACPs, and AMPs without anti-cancer functions are collected.
With these data, two different groups of datasets are constructed: (1) inspected ACPs
as positive data and AMPs without anti-cancer function as negative data; (2) exam-
ined ACPs as positive data, simple non-ACPs as negative data. Then characteristics of
those peptide sequences are analyzed, considering four features, amino acids composi-
tion (AAC), N5C5, k-space and PSSM, separately and also hybridized. It is the first time
that PSSM is considered as a feature in ACP prediction studies. Based on the analysis of
those features, several models are built based on two machine learning methods: SVM
[21] and SMO [22]. Comparing the performance of those models, two best ones are
chosen: SMO-1, which utilizes SMO to analyze AAC and k-space feature of a dataset
(1), and SMO-2, which uses SMO as well and is based on analysis of AAC, N5C5 and
k-space of the dataset (2). At last, the same testing dataset is applied to test the perfor-
mance of SMO-1, SMO-2, AntiCP-1, AntiCP-2, mACPpred, ACPred, ACPred-Fuse and
ACPred-FL. As for results, comparing to AntiCP-1, which is also designed to distinguish
ACPs from AMPs, SMO-1 shows higher accuracy, specificity and Matthews Correlation
Coefficient (MCC). Also, the performance of SMO-1 is of better balance. As for SMO-2,
identifying ACPs from all kinds of peptides, performs better with consideration of accu-
racy, sensitivity, specificity and MCC, and shows relatively more balanced performance
than AntiCP-2, mACPpred, ACPred, ACPred-Fuse and ACPred-FL do. In general, this
research built two models with different functions: one is for predicting ACPs from
AMPs, which share some similarities to ACPs, and another one is used to distinguish
ACPs from all peptides. The second SMO-optimized model shows better performance
than the unoptimized model and other existing tools.

Results

Characterization of the sequence-based features of ACPs

Comparing to AMPs but non-ACPs (peptides in negative dataset 1), K, L, A are much
more frequent in ACPs, whereas N, Y, Q are dominant in negative dataset 1(with the
lowest p-values). Similarly, comparing to non-ACPs in negative dataset 2, L, W, A are
dominant in ACPs, whereas M, R, Q are dominant in non-ACPs (with the lowest p-val-
ues) (Fig. 1). Those significant differences in the frequency of each amino acid in differ-
ent datasets contribute greatly to later classification.

Also, some of these results agree with the physicochemical properties of amino acids.
For example, K is the most predominant amino acid in the positive dataset while hydro-
phobic positively charged lysine-rich peptides which act as cationic peptides that can
indeed interact with anionic membranes on cancer cells, disrupt the cell membrane
integrity, penetrate into the membrane and thus serve as ACPs [23].

According to the result of the positive dataset, K, L are the two most dominant amino
acids in N5C5 of ACPs. Taking position under consideration, K is dominant in the third
position of C-terminal end, L is dominant in the first position of C-terminal end, and
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Fig. 1 AAC analysis of positive, negative 1, negative 2. The frequency percentage of each amino acid in
positive, negativel and negative 2 data groups is shown in blue, orange and gray respectively

G is dominant in the first position of N-terminal end. G is also dominant in the first
position of N-terminal end of the negative 1 group (AMPs but non-ACPs). Contrarily,
M is the most frequent one in the first position of N-terminal end of non-ACPs in the
negative dataset 2. Comparing positive dataset to negative 1 dataset, significant differ-
ences can be found: A, L, F, K are more dominant in the positive dataset while C is more
dominant in the negative 1 dataset. On the contrary, comparing positive dataset to the
negative 2 dataset, distributions of each amino acid in each position are more divergent,
and less contrasts could be extracted (Fig. 2).

Finally, with X representing spacings between amino acids, the ten most diverse
k-space pairs comparing the positive data to the negative 1 data are KXXXK, KXL,
KXXK, LXK, LXXXXK, AK, KK, LXXXXXK, AXXXXK, KXXXXL. The ten most dif-
ferent k-space pairs comparing the positive data to the negative dataset 2 are KXXXK,
LXK, KXL, LXXXXK, KXXK, LXXXXXK, LXXXL, KXA, AK, KXXXXA (Fig. 3). It
should be noted that these results are roughly correspondent to the previous AAC and
N5C5 results.

Model performance
Characteristics of the peptide data are then utilized to build the models, using machine
learning methods such as SVM and SMO. In general, AAC, N5C5, k-space range from
0 to 2 and PSSM are used to build the model separately. Then, AAC, N5C5, k-space=0
are hybridized in pairs and all together to build some other models. It should be noted
that in SVM models (Tables 1, 2), the weight of each training model is tried to be
adjusted from 0.1 to 10 and the one which could obtain the best accuracy is chosen as
the final weight. First, SVM is utilized to analyze both the positive dataset and the nega-
tive dataset 1. As mentioned above, to improve the performance of those models, the
weight of each model is adjusted. Among all those models, the one hybridized AAC and
k-space =0 as the feature with a weight of 0.9 performs the best, whose testing accuracy
is 79.5% (Table 1).

Similarly, SVM is used to analyze both positive dataset and negative dataset 2.
After adjusting the weight of each model, the one with the highest testing accuracy
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Fig. 2 N5C5 analysis results. The three heatmaps on the left show frequency of each amino acid at each
position in three different data groups, including positive, negative 1 and negative 2 data. The two heatmaps
on the right show different values of each amino acid at each position comparing positive to negative 1 and

which hybridizes AAC and N5C5 for analysis is chosen. With a weight of 0.4, the
accuracy of that model reaches 95% (Table 2). Then SMO algorithm is used to com-
pare positive dataset to negative dataset 1. Using AAC and k-space as the represent-
ative characteristics of peptides, the accuracy of that model ranks the top one among
all the models in this group at 85.5% (Table 3). Finally, models are constructed using
SMO as a machine learning method and negative dataset 2 as negative data. After
the evaluation of performance, the model which hybridizes AAC, N5C5 and k-space

shows the highest accuracy of 95.2% (Table 4).

Among all models, two models with the best performance are chosen as the final
models of this research: using SMO method to analyze AAC and k-space =0 feature
of the positive dataset against the negative 1 dataset (named as SMO-1) and using
SMO method to analyze AAC, N5C5 and k-space =0 feature of the positive dataset

against the negative dataset 2 (named as SMO-2).

Page 5 of 16
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Fig. 3 10 most different k-space pairs comparing positive to negative 1, positive to negative 2. Blue bars on
the left represent the percentage of the top 10 different k-space pairs comparing positive data to negative
1 data: KXXXK, KXL, KXXK, LXK, LXXXXK, AK, KK, LXXXXXK, AXXXXK, KXXXXL. Orange bars on the right show
percentage of the ten most different k-space pairs in comparison with the positive data and negative 2 data:
KXXXK, LXK, KXL, LXXXXK, KXXK, LXXXXXK, LXXXL, KXA, AK, KXXXXA

Table 1 The performance of models based on both positive dataset and negative 1 dataset using

SVM as classifier
Features Training Testing
Weight Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

AAC 0.7 0.626 0.890 0.758 0.670 0.860 0.765
N5C5 0.7 0.665 0.866 0.766 0.640 0.850 0.745
k-space=0 1.0 0.644 0.726 0.685 0.640 0910 0.775
k-space=1 1.0 0.639 0.704 0.672 0.610 0.930 0.770
k-space =2 1.0 0.641 0.737 0.689 0.600 0910 0.755
AAC+k-space=0 09 0.693 0.907 0.800 0.690 0.900 0.795
AAC+N5C5 0.5 0.645 0.950 0.798 0.640 0.890 0.765
N5C5 + k-space =0 09 0.678 0.907 0.792 0.630 0.860 0.745
AAC+N5C5+k-space 0 0.5 0.641 0.978 0.810 0610 0910 0.760
PSSM 0.6 0.737 0.896 0.816 0.69 0.86 0.775

Comparison with existing ACPs prediction tools in terms of performance

To show the significance and success of those two models, the testing dataset is also
applied to test the existing models, including the two AntiCP models, mACPpred,
ACPred, ACPred-Fuse and ACPred-FL. Testing data from positive and negative 1
dataset are applied on SMO-1, AntiCP-1, mACPpred, ACPred, ACPred-Fuse and
ACPred-FL. The model constructed in this work, SMO-1, shows the highest accu-
racy and MCC (Table 5). Although AntiCP-1 performs with the highest sensitivity
and ACPred-Fuse performs with the highest specificity in all models, SMO-1 per-
forms a more balanced result. Similarly, testing data from the positive and negative
2 datasets are applied on SMO-2, AntiCP-2, mACPpred, ACPred, ACPred-Fuse and
ACPred-FL, which are all models utilized to distinguish ACPs from all kinds of pep-
tides. Considering accuracy, sensitivity, specificity and MCC, SMO-2 shows the best
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Table 2 Performance of models based on both positive dataset and negative 2 dataset using SVM

as classifier
Features Training Testing
Weight Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

AAC 06 0.873 0.952 0913 0.860 0.942 0.928
N5C5 19 0.942 0.909 0.925 0.960 0.878 0.891
k-space=0 04 0.799 0.957 0.878 0.750 0.952 0918
k-space=1 0.4 0.810 0.948 0.879 0.700 0.934 0.895
k-space=2 0.5 0.840 0.957 0.898 0.720 0.958 0918
AAC +k-space=0 09 0.868 0.920 0.894 0.860 0914 0.905
AAC+N5C5 0.4 0.892 0.972 0.932 0.940 0.952 0.950
N5C5 +k-space=0 0.5 0.857 0.957 0.907 0.890 0.930 0.923
AAC+N5C5+k-space 0 1.0 0.909 0.909 0.909 0.930 0.900 0.905
PSSM 0.7 0.909 0911 0913 0910 0.838 0.850

Table 3 Performance of models based on both positive dataset and negative 1 dataset using SMO

as classifier
Features Training Testing

Sensitivity  Specificity = Accuracy MCC  Sensitivity  Specificity =~ Accuracy MCC
AAC 0.756 0.888 0.822 0.587  0.760 0.840 0.800 0.556
N5C5 0.700 0.808 0.754 0511 0660 0.820 0.740 0486
k-space=0 0.790 0.838 0.814 0.629 0.830 0.860 0.845 0.690
k-space=1 0.834 0.868 0.851 0702 0.830 0.860 0.845 0.690
k-space=2 0.812 0.877 0.844 0690 0.770 0.800 0.785 0.570
AAC + k-space=0 0.840 0.793 0.816 0.634  0.850 0.860 0.855 0.710
AAC+N5C5 0.728 0.873 0.800 0.607 0.720 0.860 0.790 0.586
N5C5 4+ k-space=0 0.784 0.834 0.809 0618 0.820 0.840 0.830 0.660
AAC+N5C5+k-space  0.793 0.849 0.821 0.642  0.830 0.860 0.845 0.690

0

PSSM 0.844 0.862 0.853 0.706  0.850 0.800 0.825 0.651

Table 4 Performance of models based on both positive dataset and negative 2 dataset using SMO

as classifier
Features Training Testing

Sensitivity ~ Specificity = Accuracy MCC  Sensitivity  Specificity =~ Accuracy MCC
AAC 0.896 0.931 0914 0.828 0930 0.932 0.932 0.786
N5C5 0.905 0.931 0918 0.836  0.960 0914 0.922 0.772
k-space =0 0.890 0.929 0.909 0819 0940 0.944 0.943 0.819
k-space=1 0.933 0.950 0.942 0884 0910 0.944 0.940 0.803
k-space=2 0.924 0.942 0.933 0866 0910 0.956 0.948 0.825
AAC +k-space=0 0.892 0.942 0917 0.835 0.960 0.942 0.945 0.828
AACHN5C5 0918 0.920 0919 0.838  0.960 0.946 0.948 0.836
N5C5 +k-space=0 0.922 0.948 0.935 0871 0970 0.948 0.950 0.843
AAC+N5C5+k-space 0 0.927 0.950 0.938 0.877 0970 0.948 0.952 0.847
PSSM 0.950 0.948 0.949 0.898  0.940 0.930 0.932 0.789

Page 7 of 16
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Table 5 Comparison of my models and some existing tools

Datasets Tool Sensitivity Specificity Accuracy MCC
Positive 4+ negative 1 SMO-1 0.850 0.860 0.855 0.710
AntiCP-1 1 0 0.500 -
mACPpred 095 042 0.685 0436
ACPred 0.930 0330 0.630 0325
ACPred-Fuse 0.820 0.870 0.845 0.691
ACPred-FL 0.88 0.39 0.635 0310
Positive + negative 2 SMO-2 0.970 0.948 0.952 0.847
AntiCP-2 091 0.88 0.895 0.790
mACPpred 0.949 0.790 0.815 0.583
ACPred 0.930 0.724 0.758 0.501
ACPred-Fuse 0.820 0.836 0.833 0.549
ACPred-FL 0.880 0.024 0.167 —0.183
Accuracy
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Fig. 4 Accuracy comparison of SMO-1 (highlighted in orange), SMO-2 (highlighted in orange) and
mACPpred, ACPred, ACPred-Fuse and ACPred-FL

performance among all models (Table 5). In general, SMO-2 performs with the high-
est accuracy comparing to existing models (Fig. 4).

Discussion

Some problems of conventional anticancer treatments, such as drug resistance and tox-
icity to other normal cells, make it necessary and urgent to discover other novel anti-
cancer treatments [2, 3]. Among those promising treatments, anticancer peptides have
attracted broad attention and interest. Due to the special structure of ACPs and its spe-
cific interaction with cancer cells, this special group of molecules can target and kill
cancer cells without destroying other normal cells [4]. Before the wet-lab experiment,
a computational predictive tool will definitely be helpful for the identification of ACPs.
Moreover, in consideration of the similarity between ACPs and AMPs [8], it is regarded
as a more efficient way of ACPs identification by searching from AMPs, because there
are more examined sequence data of AMPs which could be obtained.
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Nevertheless, most of the existing tools only provide a function that identifies ACPs
from all kinds of peptides [13—16]. Therefore, this work creates a tool with more func-
tions and better performance of prediction. To achieve this goal, several innovative
efforts or improvements have been made. In this study, we create tools with ACPs com-
paring to previous studies. In total, 1492 positive and 7068 negative (4433 for negative 1
and 2635 for negative 2) data are gathered from seven different sources. Then, balanced
datasets with 463 sequences in each training dataset and 100 sequences, which are inde-
pendent of training data, in each testing dataset are constructed. Another improvement
in this research is that new features are chosen for characterization, including N5C5,
k-space and PSSM. The hybridization of some of those features greatly enhances the
performance.

In the model construction step, a better machine-learning algorithm, SMO [22], is
chosen and applied for classification, and increases the accuracy by 7.55% and 0.2% com-
paring to the SVM models. This performance suggests that SMO is a better choice than
SVM in this case, and shows the success of SMO in text classification, proteomics pro-
jects, and analysis of high-dimensional data. Models built in this research is further com-
pared with previous ACP prediction tools using an independent testing dataset. SMO-1
performs better than other tools considering accuracy and MCC value, and shows more
balanced results. As for SMO-2, it performs better than all other tools in general.

Even though most of the accessible data of examined ACPs are collected in this study,
the amount is still not adequate. As a result, this research may have some limitation, and
could be improved in the future with more sequence data.

Conclusions

This research presents a new scheme for the identification of ACPs, including utilizing a
new important feature, PSSM, and a new helpful algorithm, SMO, for optimizing SVM
for classification. Also, this work offers two functions: (1) distinguishing ACPs from
AMPs and (2) distinguishing ACPs from all kinds of peptides. With the help of SMO,
optimized models perform better than ordinary models and other existing tools.

Methods
The process of this research is extracted and shown as a flowchart in Fig. 5. Details of the
process will be explained in the following sections.

Dataset preparation

In this research, three datasets are constructed: the positive dataset, negative dataset 1
and negative dataset 2. A positive dataset refers to anticancer peptides that are exam-
ined by experiments. They are collected from LEE dataset (total: 422) [16], Tyagi dataset
(total: 450) [14], APD (total: 225) [24] and CancerPPD (total: 422) [25]. Negative data-
set 1 is a collection of anti-microbial peptides without anti-cancer function. They are
adapted from dbAMP dataset (total: 4057) [26] and Tyagi dataset (total: 1372). Peptides
in negative dataset 2 are peptides without anti-microbial nor anti-cancer functions,
which are collected from UniProt (total:281,665). Since anticancer peptides have been
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proved to be effective small molecules (<50 amino acids) [27], peptides longer than 50
amino acids are removed out of datasets. Also, peptide contains artificial amino acids
are removed. After this filtration step, 1492 peptide sequences in the positive dataset,
4433 peptide sequences in negative dataset 1 and 2635 peptide sequences in negative
dataset 2 are obtained. To reduce identical or similar peptides sequence, CD-HIT pro-
gram [28] is utilized in this research.

100% sequence-identity cut-off is applied on positive and negative 1 datasets using a
Python program. Then the processed positive dataset is compared with processed nega-
tive dataset 1 using CD-HIT-2D [28]. It identifies and removes sequences in negative
datasets that are similar to ones in positive dataset above a threshold of 40% (Table 6).
To balance datasets, some of the peptide sequences in negative 1 dataset are removed
randomly. Ultimately, both positive and negative 1 datasets have 563 peptide sequences.
Each dataset is then divided randomly into two subsets, the one that contained 463 pep-
tides is utilized as a training dataset and the other one which contained 100 peptides
is used as a testing dataset. Considering the fact that normal peptides are much more
abundant than ACPs in nature, the negative dataset 2 is constructed with 963 peptides
collected randomly from the original 2635 peptides, and then be randomly divided into
positive and negative dataset 2, with 463 and 500 in each (Table 7).

i )
S{ CD-HIT | e -M

Data Training
Preparation Positive: ACP QTR IN - -

(Randomly separated)
k. ( ) y sep
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Fig. 5 Flowchart of this work. Four major steps are involved: data preparation, feature investigation, model
construction and evaluation, and comparison with existing tools. In the first step, data preparation, two
datasets are constructed, which are then separated into training and testing data after CD-HIT. Then four
features are investigated: amino acid composition, N5C5, k-space and position-specific scoring matrix. The
third step involves model learning, cross-validation, parameter optimization and evaluation. Finally, two

models proposed are compared with other existing tools
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Table 6 CD-HIT results of datasets

Positive Negative 1 N1-P Negative 2
Original 1492 4433 - 2635
1.0 565 2753 2697 1585
0.9 398 2055 2559 1178
0.8 306 1664 2426 892
0.7 249 1358 2290 724
0.6 201 1097 2091 624
0.5 159 765 1667 531
04 107 439 1101 399

Table 7 Number of peptides in each dataset

Positive Negative 1 Negative 2
Training set 463 463 463
Testing set 100 100 500

Features investigation

To utilize machine learning methods analyzing peptide sequences, features of sequences
have to be extracted. In this research, 4 features are considered: amino acids composi-
tion (AAC), N5C5, k-space and PSSM.

AAC

The AAC is the proportion of each amino acid in a given peptide sequence. It summa-
rizes the peptide information in a vector of 20 dimensions. The AAC method has been
successfully and widely applied in sequence-based classifications [29-32].

N5C5

Five amino acids from both the N-terminal and C-terminal end of a given peptide are
cut off and then connected as a novel sequence. Then the proportion of each amino
acid in those new N5C5 sequences is calculated. Furthermore, to better analyze N5C5
sequences and visualize analysis results, heatmaps that show frequencies of each amino
acid in each position are generated.

K-space

The K-space method extracts pairs of amino acids that have k (k=0, 1, ...) spacing from
a given peptide sequence. In total, (N-k-1) pairs are selected from a peptide sequence
which consists of N amino acids. After gathering all amino-acid-pairs, the frequency of
each kind of pair is counted. To explore k-space diversity between the positive dataset
and those two negative datasets, the difference value of k-space frequency in the posi-
tive dataset and that in the negative datasets is then calculated. At last, those difference
values of amino-acid-pairs are sorted, and ten pairs with the highest difference values
are listed.
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PSSM

PSSM is generated from a group of sequences previously aligned according to struc-
tural or sequence similarity. A PSSM for a given protein is an N 20 matrix P = {Pij:
i=1...Nandj=1 ... 20}, where N is the length of the protein sequence. It assigns a
score Pij for the j-th amino acid in the i-th position of the query sequence. A large
value indicates a highly conserved position while a small value indicates a weakly con-
served position [33].

Model construction by machine learning techniques

In this study, a supervised learning technique should be applied on text data for classi-
fication. Therefore, SVM [21] is utilized in cooperation with SMO [22]. For model con-
struction, WEKA software (version 3.8.4) [22], and packages including LIBSVM (version
3.24) [23] and SMO package (using default parameters) within WEKA are utilized.

SVM is a data-driven supervised algorithm that constructs separating hyperplanes
in high-dimensional space and selects the maximum-margin one for classification [34].
Based on its solid theoretical foundations, SVM has been successfully applied in various
recognition and classification studies, including text classification [35], which is utilized
in this research. SVM has also been successfully and widely used for high-dimensional
biological data, including examination of gene expression profiles [36], mass spectra and
genomics projects [37]. Comparing to other classifiers, such as artificial neural networks,
SVM shows higher accuracy, particularly when the numbers of features are large [37].
Furthermore, to improve the performance of the SVM model, a program is designed to
determine the optimum value of the weight vector for each model in this research. As
for adjusting gamma and cost value, a program in the LIBSVM package [38] is applied to
each model.

However, SVM does have some problems, including complexity and slow training
speed for large-scale data. To solve these problems, another algorithm, SMO, is also
applied for classification and shows both faster speed and better performance. SMO is
a new algorithm for training SVMs, which breaks large quadratic programming (QP)
optimization problem, a significant obstacle in the original SVM algorithm, into a series
of smallest possible QP problem. By solving those smaller QP problems analytically, a
time-consuming numerical QP optimization as an inner loop could be circumvented,

and thus the computational time is shortened. The SVM maximization problem is as:
m 1 m n m
m}axz )Lj — 5 Z Z ijikyjykxjxk, 0< )7' <C, V]’, Zyj)uj =0
Coj=1 j=1 k=1 j=1

where A is the Lagrange multiplier, x is the input data and y represent the class label. In
SMO, two Lagrange multipliers 11, /3 are optimized while all the other multipliers are
kept constant using this equation [39]:

m
Myt doyr == Ay =c.
=3

Moreover, since SMO only utilizes linear amount of memory, it can handle very large
training sets [22], which is perfectly aligned with the need in the biological data analysis.
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To compute a linear SVM, only one weight vector needs to be stored. The stored weight

vector can be easily updated to reflect new Lagrange multiplier values by:
WY = 5+ (o[iww _ 011) x4 7 (a;ew,clipped _ 012) %1 [23]

This algorithm has shown success in some biological applications, such as metabo-
lism studies [40, 41], genomics [42] and molecular studies [43, 44].

Parameter optimization

In the SVM model training process, the probability distribution of positive prediction
and negative prediction are listed as P™ and P™. Then a weight, ranging from 0.1 to
10 with 0.1 as the interval, is multiplied to both P* and P~. Classification is redone
according to:

positive, if weight x Pt > weight x P~

Result = { negative, if weight x PT < weight x P~

In this way, the performance of the training model is changed. The weight that con-
tributes to the highest accuracy of the training model is chosen as the final param-
eter and then be applied on the testing dataset, which leads to the final testing
performance.

Performance evaluation

To evaluate the performance of machine learning models, four indexes are calcu-
lated: accuracy, specificity (SP), sensitivity (SN) and Matthews correlation coefficient
(MCC). Details of these metrics are shown as the following equations:

TN

P=—7—
TN + FP

P
N=——
TP + FN

3 TP + TN
" TP+ TN + FP + EN

ACC

MCC TP x TN — FP x EN
V(TP + EP)(TP + EN)(IN + EP)(IN + EN)

where TP-true positive-represents the number of correctly predicted positive labels,
TN-true negative-refers to the number of corrected predict negative labels, FP-false pos-
itive-represents the number of negative labels that are wrongly predicted as positive, and
EN-false negative-refers to the number of positive labels that are wrongly predicted as
negative by the classifier. In addition to those evaluation metrics, the receiver operating
characteristic (ROC) curve (Fig. 6) is also generated in the step of weight adjustment to
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Fig. 6 ROC curve for training models using SYM

visualize the relationship of true positive rate and false positive rate, and used for com-
parison of performance.

Cross-validation and independent testing sets

To test potential overfitting and evaluate the model, ten-fold cross-validation is applied in
the model training step. Also, to evaluate the model built in this research and compare its
performance with that of other existing tools, independent testing datasets are constructed
in the dataset preparation step.
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