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Background
The microbiome plays a large, sometimes even causal, role in the conditions of their 
environment [1–5]. The drive to understand the interplay between microbiota com-
munity structure and host pathophysiology has sparked active research across several 
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fields. Technological advances in sequencing accuracy, depth, and throughput now allow 
comprehensive analysis of microbial communities through both targeted (i.e., marker-
gene surveys, such as 16S rRNA genes) and untargeted (i.e., shotgun metagenomics) 
approaches. However, the high dimensional nature of these data can be difficult to man-
age. Research projects often involve management and integration of multiple sequence-
based datasets, along with the corresponding clinical data. Merging these data sets 
together into a workable format can be difficult and time consuming.

This problem inspired microbiome analysis pipelines to construct their own data 
structures for data management, the most popular in R [6] being the phyloseq-class [7, 
8]. The majority of omics analysis pipelines available in R rely on “S4” level objects since 
they provide flexibility beyond data frames and lists. However, these data structures 
impose severe limitations to the users’ control over their analysis and do not accom-
modate functions from external packages. Furthermore, popular microbiome pipelines 
focus heavily on community level analyses and exploratory visualizations (e.g. ordina-
tion plots, stacked bar charts of raw abundances). Those who offer taxon level models 
do not provide model visualization techniques. Model visualizations tailored to microbi-
ome data would improve collaboration and convey “big picture” results better than using 
large summary tables alone.

We introduce a new R package, “tidyMicro,” that extends typical components of micro-
biome analysis tools by incorporating several new data analysis and visualization tools 
while following the principles of the tidyverse [9]. These data structures and workflow 
principles grant the capability to adopt user extensions and integrate external functions, 
a unique feature that distinguishes tidyMicro from other R-based microbiome analysis 
pipelines. The viability of the pipeline was evaluated using published sequencing data 
from a study on bacterial community relationships to bronchopulmonary dysplasia in 
preterm infants [10] and data from a study on the nasal microbiome of hospital inpa-
tients suffering from Staphylococcus aureus infections [11]. The package is currently 
available through GitHub and CRAN.

Implementation
The tidyMicro pipeline consists of 5 macro operations with several options within each  
(Fig.  1). All operations are implemented and supported through R, with graphics and 
coding style following the general style of the tidyverse. The first step in the pipeline is 
merging OTU table(s) and clinical data together into a “tidy” format (Fig. 1a). From here, 
several functions are provided to explore the data visually (Fig. 1b), calculate and analyze 
community diversity measures (i.e. alpha-diversity and beta-diversity analyses; Fig. 1c), 
model abundance and prevalence of individual taxa (Fig. 1d), and summarize and visual-
ize model results (Fig. 1e).

In this paper, we demonstrate a standard workflow using two published data sets. 
We use data from a study that set out to define the nasal microbiome of hospital inpa-
tients who are persistently colonized with methicillin-resistant Staphylococcus aureus 
(MRSA) compared with matched, non-colonized controls [11] as our primary exam-
ple set. We also use a subset of a published data set from a study assessing connections 
between airway taxa and bronchopulmonary dysplasia  (BPD) severity in prematurely 
born infants [10]. The BPD study allows us to demonstrate a new visualization technique 
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for longitudinal data and the package’s ability to handle multiple OTU tables. These 
examples do not illustrate all possible options and functions available through tidyMi-
cro. Instead they serve as a useful overview of the pipeline’s primary functions with full 
descriptions of novel features. It also demonstrates the pipeline’s ability to create repro-
ducible microbiome analyses through popular open source software.

Motivating examples

MRSA study

In the MRSA study researchers acquired samples from an active MRSA screening from 
the Department of Veterans Affairs Eastern Colorado Health Care System. Patients were 
screened for nasal MRSA colonization at admission, inter-ward transfer, weekly inter-
vals of a ≥ 7 day stay in any ward, discharge, and death. An MRSA persistent carrier case 
was defined as someone from whom at least 5 swabs had been taken, at least 1  week 
apart, and ≥ 80% of nasal swabs were positive for MRSA. An MRSA noncarrier control 
was defined as a someone from whom at least 5 swabs had been taken, at least 1 week 
apart, and all swabs were negative for MRSA. Noncarrier controls were then matched 
to persistent carriers based on known colonization risk factors including age, diabetes 
mellitus, long-term care residence (nursing home), and several others. Bacterial profiles 
were determined by broad-range amplification and sequence analysis of 16S ribosomal 
RNA (rRNA) genes. We have classified the sequencing reads into their genus level taxo-
nomic ranks. This cohort’s demographics are summarized in Table 1.

Bronchopulmonary dysplasia

In the BPD study, tracheal aspirate samples were collected at 7, 14, and 21 days of life 
(± 48 h) from pre-term infants requiring mechanical ventilation. This subset of the origi-
nal data set contains sequences from 24 infants, all ventilated at 7 days of life. Only 15 
of these 24 had samples from all 3 time points. Bacterial profiles were determined by 
broad-range amplification and sequence analysis of 16S rRNA genes. We have classified 

Fig. 1  Flowchart of the tidyMicro pipeline. The supplied OTU table(s) must be in the standard format output 
by QIIME with column names that match a sequencing library names column in the clinical data. The initial 
step is merging all OTU tables and clinical data using the tidy_micro function (a). From here, the tidyMicro set 
can be used for exploratory visuals (b), community level analyses (c), and taxa level analyses (d, e)
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the sequencing reads into their phylum, class, order, and family level taxonomic ranks to 
demonstrate the pipeline’s ability to manage multiple OTU tables. These cohort demo-
graphics are summarized in Table 2.

Results:
Data Structure

In a typical OTU table format [12–14], the first column contains OTU names and the 
following columns contain sequence read counts for each sample (sequencing library). 
The tidy_micro function can read in any number of OTU tables from targeted or untar-
geted sequencing methods and merge them with clinical data into a tidy data format. 
Merging four OTU tables from sequences classified to the phylum, class, order, and fam-
ily level taxonomic ranks is demonstrated below:

This creates a data frame with a hierarchical structure with a “block” for each OTU 
table and taxa “blocks” within each OTU table block (Fig. 2). The taxa blocks will contain 
the taxa counts for each sample and the samples’ corresponding clinical information.

Within each taxa block tidy_micro also calculates taxa presence/absence, relative 
abundance, and centered log ratio (CLR) transformed counts Zp = log

(

Xp

g(Xp)

)

, where 

g
(

Xp

)

=

(

∏

pXp

)1/P
 , Xp is the observed count of taxa p , and P is the number of taxa in 

the OTU table. Aitchison introduced the CLR as a useful transformation of composi-
tional data to a Euclidean space [15]. We add 1

sequencing depth to each taxa’s count before 
the CLR transformation in order to avoid issues with log(0) . Once data are wrangled into 
this framework the high dimensional nature of the data becomes manageable.

tidy_micro
(

otu_tabs = list
(

Phylum = bpd_phy,

Class = bpd_cla,Order = bpd_ord, Family = bpd_fam
)

,

clinical = bpd_clin, complete_clin = TRUE).

Fig. 2  Structure of a tidyMicro data set. A tidyMicro data set is a data frame with a hierarchical structure where 
each OTU table creates a block containing taxa blocks for each taxa within the table. Clinical data is repeated 
within each taxa block. This structure allows users to easily create custom extensions
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Object Flexibility

The tidyMicro data format complies to the three primary principles of tidy data [16]: 
1. each variable forms a column, 2. each observation forms a row, and 3. each type of 
observational unit forms a table. This malleable data structure allows users to easily 
work with familiar packages and functions outside of this pipeline. For example, creat-
ing a subset of a tidyMicro set is easily accomplished using standard operations within 
R such as subset or filter. New functions necessary for unique analyses can easily be 
applied within the OTU table or taxa blocks through apply functions or the tidyverse’s 
d_ply family. Similarly, all visualizations are created using ggplot2, meaning they can be 
easily customized through additional “geoms”. This ability to integrate base and external 
functions is unique among microbiome analysis pipelines. This flexibility will be key in 
fostering innovation from future users and encouraging the collaborative nature of open 
source software.

Exploratory data analyses

Preliminary data exploration is straightforward with a tidyMicro set. We provide sev-
eral wrapper functions for basic summary statistics of taxa abundance. Tabular outputs 
are complemented by graphical representations of abundance data, which can be much 
easier to interpret. We provide several standard data visualization tools including ordi-
nation plots (Fig. 3a, b), stacked bar charts (Fig. 3c), and heatmaps (Fig. 3d), as well as 
two novel visualization methods. The Rocky Mountain plot (Fig. 4) is a variant of the 
Manhattan plot that displays both the direction and magnitude of correlations between 
a variable of interest and each taxon within an OTU table, resembling the peaks and val-
leys seen along the front range of the Rocky Mountains. All taxa are colored by phylum, 
and correlations that exceed a desired magnitude will be automatically labeled using 

Fig. 3  Example exploratory visualizations. a Principle component plot calculated from centered log ratio 
transformed genus level taxa counts, colored by MSRA infection. b Principle coordinate plot calculated from 
genus level Bray–Curtis beta diversity with normal ellipses, colored by MSRA infection. c Stacked bar charts 
of average genus level taxa abundances by MSRA infection. d Heatmap of Spearman correlations between 
centered log ratio transformed genus level taxa counts and subjects’ age
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ggrepel [17]. Neither the CLR transformed counts nor the taxa abundances are nor-
mally distributed, so a rank-based correlation (e.g. Spearman, Kendall) is recommended 
and provided in the package. Three Mode principal component and principle coordi-
nate analyses are tools used to account for the correlation structures of repeated meas-
ures within the ordination framework [18]. They collapse over the time component of 
variation and perform principle component / coordinate analyses on the remaining two 
dimensions (subject and taxa). For the motivating example, we display plots (using the 
15 infants with all 3 sequencing time points) made using principle components (Fig. 5a) 
and principle coordinates (Fig. 5b).

Fig. 4  Rocky mountain plot. Spearman correlations between centered log ratio transformed genus level 
taxa counts and subjects’ age. Correlations are colored by phylum and taxa with correlations above 0.3 in 
magnitude are labeled

Fig. 5  Three mode principle component (a) and three mode principle coordinate (b) plots. Plots created 
from sequences on the 7th, 14th, and 21st day of life of 15 infants collapsing over time component. Colors 
represent the three different time points. Principle coordinate plot created from Bray–Curtis beta diversity
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Taxa filtering

This package provides taxa “filters”. Counts from taxa below a specified prevalence and/
or abundance cutoff will be aggregated into an “Other” taxa category. There is also an 
option to specify taxa that you are not interested in analyzing to be aggregated into this 
“Other” taxa. This is analogous to the “pruning” function in phyloseq. Filtering can be 
applied within the initial tidy_micro step or externally at a later stage. Below is an exam-
ple where counts from taxa present in fewer than 5% of sequence libraries and taxa with 
less than 0.01% abundance in all sequencing libraries are aggregated together.

Diversity calculations and analyses

Community-level analyses are an important step for understanding microbial commu-
nity diversity. The community-level measures summarize key features within individual 
communities (alpha-diversity) and between individual communities (beta-diversity). As 
is standard among microbiome pipelines, tidyMicro provides optimized algorithms for 
calculating the following alpha diversity indices from bootstrapped rarefied sequence 
datasets: Sobs , Chao1, Shannon’s and Simpson’s diversity indices, and Shannon’s and 
Simpson’s evenness indices. Also included is Good’s coverage estimator, with options to 
filter out sequencing libraries with low coverage and/or low sequencing depth. tidyMi-
cro gives the option to calculate alpha diversity indices for every OTU table or only one 
specified table. If the study contains an OTU table from multiple environments, each 
table’s diversity might be useful. Since diversities measure how many different taxa 
are present and how evenly they are distributed, aggregating counts together into few 
groups could bias these estimates. For this reason, we recommend only calculating 
diversity measures on the lowest taxonomic rank if the study has OTU tables of differ-
ent taxonomic ranks from the same site. Calculating alpha diversities for the family level 
OTU table is demonstrated below:

For beta diversity analyses we incorporate the vegan [19] package, which provides a 
large array of methods to generate dissimilarity tables. vegan also provides a func-
tion to test for differences in beta diversities in a pseudo-regression framework using 
PERMANOVA.

Analyses of Individual Taxa

In parallel with community analyses (i.e., alpha- and beta-diversity), identification of 
individual taxa that differ between groups of subjects often is of interest to investigators. 
Taxon abundance can be difficult to model due to strong right skews (Fig. 6a), “U” or “J” 
shapes (Fig. 6b), and sparsity (Fig. 6c). tidyMicro provides multiple modeling options and 
automated model summaries enabling greater user control over their analyses of taxon 
abundances. This level of flexibility and focus on taxa level models is a novel feature of 
tidyMicro.

otu_filter
(

micro_set, prev_cutoff = 5, ra_cutoff = 0.1
)

.

alpha_div
(

micro_set, table = Genus, iter = 100, min_depth = 10, 000, min_goods = 90
)

.
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Negative binomial and beta binomial regression are the current gold standards for 
modeling taxon abundance. Each method has advantages and disadvantages. Negative 
binomial models are often adequate and easier to fit, but they are unable to capture any 
“U” shapes that may arise in taxa abundances. Beta binomial models offer more flex-
ibility but require more computational time. The negative binomial model coefficients 
also represent estimated rate ratios, which are a more straightforward representation of 
associations than the odds ratios provided by beta binomial models. tidyMicro has built 
in functions to fit negative binomial models using the MASS package [20] or beta bino-
mial models using the VGAM package [21] to every taxa within a specified OTU table. 
Negative binomial models include sequencing depths as an offset term by default to deal 
with the compositionality of these data, and the beta binomial models handle this by 
directly modeling the taxa RA. We provide several useful summaries of the models and 
taxa abundances. An example of fitting negative binomial models to all genus-level taxa 
with MRSA infection and smoking status as covariates with sequencing depth as an off-
set term is demonstrated below:

These more complicated parametric models may have convergence issues when 
applied to microbiome studies and simpler methods may need to be considered. Conse-
quently, tidyMicro includes functions to perform rank-sum tests on taxa abundance or 
Chi-squared tests on taxa presence to address this potential issue. These functions give 
the user the option to run the test on all taxa or just the taxa for which the regression 
models failed to converge.

Model Summaries and Visualizations

Output from (potentially) hundreds of negative binomial or beta binomial models can 
be difficult to interpret. For this reason, tidyMicro includes model summaries and sev-
eral model-visualization tools. The modeling functions produce summary tables from 
each taxa’s model (Additional file  1 ) and estimate tables that contain rate ratios (or 
odds ratios), Wald confidence intervals, and false discovery rate (FDR) adjusted p-val-
ues (Additional file 2). When interaction terms are present, the appropriate main effect 

nb_mods
(

micro_set, table = genus, MRSA_Positive, Smoking ,Offset = TRUE
)

.

Fig. 6  Examples of common taxa abundance distributions. Strong right skews (a), “U” shaped distributions 
(b), and sparsity (c) are all common patterns
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estimates and covariances are summed together before being exponentiated into rate 
ratios (or odds ratios) and confidence intervals in the estimate table.

tidyMicro includes heatmaps and forest plots of β parameter estimates to help visualize 
consistent trends. The package also introduces novel regression-based rocky mountain 
plots and novel parametric stacked bar charts. The regression-based rocky mountain 
plots are similar to the association based rocky mountain plots used for exploratory data 
analysis (Fig. 4). FDR p-values of a specified covariate are log transformed and the mag-
nitude is plotted along the y-axis. For positive β estimates, the log(FDR p-value) is multi-
plied by -1 so the direction along the y-axis corresponds to the direction of the estimated 
relationship (Fig. 7). Parametric stacked bar charts back-transform estimated β param-
eters to estimated taxa abundance. Back-transformed estimates allow the user to plot 
estimated continuous trends in composition and estimated composition controlling for 
confounders. Both main effects (Fig. 8a) and interactions (Fig. 8b) can be plotted with 
the parametric stacked bar charts. An example of plotting the relationship between age 
and MRSA infection is demonstrated below:

The top_taxa argument is used to aggregate the estimated abundances of all but the 5 
most abundant into an “Other” category. One can also specify an abundance cutoff for 
taxa to be excluded from the “Other” category. This functionality exists in all stacked bar 
chart functions within tidyMicro.

nb_bars(nb_model, bpd ∗MRSA_Positive, top_taxa = 5).

Fig. 7  Rocky mountain plot made from negative binomial models. Relationships between MRSA infection 
and genus level taxa abundance after controlling for smoking status were estimated using negative binomial 
models using log(sequencing depth) as an offset. All models were fit using the glm.nb function in the MASS 
package. False discovery rate (FDR) adjusted p-values of estimated β coefficients are log transformed, and the 
magnitude is plotted along the y-axis. For positive β estimates, the log( FDR p-value) is multiplied by -1, so 
the direction along the y-axis corresponds to the direction of the estimated relationship
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Discussion
As microbiome data and analyses become more common, user accessibility to reli-
able and extensible analysis pipelines has become increasingly important. Boosting user 
control through easily understandable and manipulatable data objects is a key step in 
expanding analysts’ toolkits. The tidyMicro pipeline helps meet this need by introducing 
the principles of tidy data and fully leveraging the tidyverse into microbiome analyses. 
We also extend functionality available in other popular microbiome pipelines with novel 
exploratory visualization methods (e.g., Rocky Mountain plots, Three Mode PCA and 
PCoA), a strong focus on modeling of individual taxa abundances with multiple mod-
eling options, and automated summary and estimate tables.

Fig. 8  Parametric stacked bar charts. Parametric stacked bar charts back transform β parameter estimates to 
get estimated taxa abundance. (a) Parametric stacked bar charts from estimated relationships between MRSA 
infection and genus level taxa abundances after controlling for smoking status. (b) Parametric stacked bar 
charts from estimated relationships between genus level taxa abundance and subject age by MRSA infection. 
All models from both (a) and (b) used log(sequencing depth) as an offset

Table 1  MRSA study cohort demographic information 

Continuous variables summarized using means (sd) and discrete variables are summarized using counts (%).

S. aureus negative (n=26) S. aureus positive (n = 26) Total

Age 71.81 (± 11.24) 71.67 (± 11.38) 71.74 (± 11.20)

 Antibiotics

  No 11 (42.31%) 11 (42.31%) 21 (40.38%)

  Yes 15 (57.69%) 15 (57.69%) 31 (59.62%)

 Diabetes

  No 13 (50.00%) 13 (50.00%) 26 (50.00%)

  Yes 13 (50.00%) 13 (50.00%) 26 (50.00%)

 Nasal steroids

  No 23 (88.46%) 23 (88.46%) 46 (88.46%)

  Yes 3 (11.54%) 3 (11.54%) 6 (11.54%)

 Nursing home

  No 21 (80.77%) 21 (80.77%) 42 (80.77%)

  Yes 5 (19.23%) 5 (19.23%) 10 (19.23%)

 Smoking

  Never 7 (26.92%) 9 (34.62%) 16 (30.77%)

  Former 9 (34.62%) 13 (50.00%) 22 (42.31%)

  Current 10 (38.46%) 4 (15.38%) 14 (26.92%)
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This new tidy data structure paradigm also allows for the extension of tidyMicro to 
other omics data sets. Functions have the generalizability to support count data from 
any omics data in principle. For example, studies containing multiple omics (genomic, 
proteomic, metagenomic, marker gene profiles) could combine tables using the tidy_
micro function as if they were multiple OTU tables and implement Three Mode PCA/
PCoA as a data integration technique. Furthermore, as the analysis of microbiome data 
evolves, other extensions such as alternative modeling (e.g., zero inflated models from 
DESeq2[22]) and other sequence data formats can be easily included given the flexibility 
provided in tidyMicro.

Conclusions
tidyMicro provides a reliable complement to popular microbiome analysis R packages. 
We provide standard tools as well as novel extensions on standard analyses to improve 
interpretability and the analyst’s ability to communicate results while preserving the 
tidy data format to encourage open source collaboration. This new tidy data struc-
ture increases user control over analyses and novel visualizations improve collabora-
tive efforts. External and custom functions can be easily integrated into any workflow. 
All visualizations are created through the ggplot2 package in the tidyverse[9] providing 
publication-quality graphics that can be further customized by the use of “geoms.” A 
full package vignette exploring all functions and function options is available through 
the package and GitHub. The simple examples and full workflow from the package are 
reproducible and can serve as a tutorial to analysts new to microbiome data.
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Additional file 1. Convergent model summary. Column 1: Taxa names. Column 2: Model coefficients. Column 3: β 
parameter estimates. Column 4: 95% profile likelihood confidence intervals for β estimates. Column 5: Z-statistics. 
Column 6: P-values from Wald tests on individual beta coefficients. Column 7: False discovery rate adjusted p-values. 
Column 8: P-values from likelihood ratio test for entire covariate (like an F-test).. 
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rate ratios from exponentiated β estimates. For models with interaction terms, the appropriate β estimates are 
summed before being exponentiated. Column 4: Exponentiated 95% Wald confidence intervals. For models with 
interaction terms, the appropriate β estimates and covariance terms are summed for the Wald intervals. Column 5: 
Z-statistics from β estimates. Column 6: False discovery rate adjusted p-value

Table 2  BPD infant cohort demographic information 

Continuous variables summarized using means (sd) and discrete variables are summarized using counts (%).

Mild (n = 4) Moderate (n = 11) Severe (n = 9) Total (n = 24)

Birth Weight (Kg) 0.81 (± 0.07) 0.74 (± 0.16) 0.82 (± 0.18) 0.78 (± 0.15)

 Sex

  Female 3 (75.00%) 7 (63.64%) 4 (44.44%) 14 (58.33%)

  Male 1 (25.00%) 4 (36.36%) 5 (55.56%) 10 (41.67%)

Gestational age (Wks) 25.25 (± 1.50) 25.27 (± 1.10) 25.67 (± 1.22) 25.42 (±1.18)

 Maternal ethnicity

  Hispanic 2 (50.00%) 5 (45.45%) 2 (22.22%) 9 (37.50%)

  Non-hispanic white 2 (50.00%) 6 (54.55%) 7 (77.78%) 15 (62.50%)
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