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Abstract 

Background:  Predicting the response of cancer cell lines to specific drugs is an 
essential problem in personalized medicine. Since drug response is closely associated 
with genomic information in cancer cells, some large panels of several hundred human 
cancer cell lines are organized with genomic and pharmacogenomic data. Although 
several methods have been developed to predict the drug response, there are many 
challenges in achieving accurate predictions. This study proposes a novel feature 
selection-based method, named Auto-HMM-LMF, to predict cell line-drug associations 
accurately. Because of the vast dimensions of the feature space for predicting the drug 
response, Auto-HMM-LMF focuses on the feature selection issue for exploiting a subset 
of inputs with a significant contribution.

Results:  This research introduces a novel method for feature selection of mutation 
data based on signature assignments and hidden Markov models. Also, we use the 
autoencoder models for feature selection of gene expression and copy number vari-
ation data. After selecting features, the logistic matrix factorization model is applied 
to predict drug response values. Besides, by comparing to one of the most powerful 
feature selection methods, the ensemble feature selection method (EFS), we showed 
that the performance of the predictive model based on selected features introduced in 
this paper is much better for drug response prediction. Two datasets, the Genomics of 
Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) are used to 
indicate the efficiency of the proposed method across unseen patient cell-line. Evalua-
tion of the proposed model showed that Auto-HMM-LMF could improve the accuracy 
of the results of the state-of-the-art algorithms, and it can find useful features for the 
logistic matrix factorization method.

Conclusions:  We depicted an application of Auto-HMM-LMF in exploring the new 
candidate drugs for head and neck cancer that showed the proposed method is useful 
in drug repositioning and personalized medicine. The source code of Auto-HMM-LMF 
method is available in https​://githu​b.com/emdad​i/Auto-HMM-LMF.

Keywords:  Cancer, Drug response, Autoencoder, Hidden Markov model, Matrix 
factorization, Personalized treatment
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Background
Computational models for personalized medicine make it possible to understand can-
cer cell lines on the basis of genomic information. This knowledge makes it possible to 
recommend individualized therapies to patients with different types of cancer by meas-
uring drug responses. Many effective anticancer drugs have already been developed for 
each cancer type, such as breast cancer, lung cancer, ovary cancer and Brain cancer. For 
example, docetaxel, paclitaxel, carboplatin, cisplatin, vinorelbine and eribulin are just a 
few examples of drugs used to treat breast cancer. Since drug response to cancer treat-
ment depends on multiple factors such as the patient’s genomic profile, this process is a 
complicated problem in cancer treatment. These challenges have generated large-scale 
experiments on human cancer cell lines and various anticancer drugs. For instance, two 
datasets Genomics of Drug Sensitivity in Cancer [1] (GDSC) and Cancer Cell Line Ency-
clopedia [2] (CCLE) are created based on drug sensitivity data of established anticancer 
drugs against diverse cancer cell lines. The various genetic features for the panels of can-
cer cell lines, such as gene expression profile, copy number alteration, single nucleotide 
mutation and methylation data, have been provided. By using these databases, machine 
learning algorithms are increasingly being applied to the predictions of drug responses 
by integrating data from different sources in a statistically meaningful way.

Several recommender system-based models were proposed for predicting drug 
response. Wang et  al. adopted a similarity-regularized matrix factorization (SRMF) 
method to predict anticancer drug responses of cell lines using the gene expression 
profile in cell lines and drugs’ chemical structures. They indicated that rapamycin (an 
mTOR inhibitor) could be a new therapeutic agent for non-small cell lung cancer [3]. 
Suphavilai et  al. developed a model, termed Cancer Drug Response prediction using 
a Recommender System (CaDRReS), to learn projections for drugs and cell lines into 
a latent space. Also, they demonstrated how to explore drug mechanisms and drug-
pathway associations using the achieved features [4]. Emdadi et al. proposed DSPLMF 
method based on a logistic matrix factorization approach for predicting anticancer drug 
response. DSPLMF focuses on discovering significant features and latent vectors of cell 
lines and drugs for computing the probability of the cell lines are sensitive to drugs. They 
used the obtained latent vectors to identify subtypes of the cancer cell line and drug-
pathway associations [5].

Identifying the optimal subset of features from many genetic candidate features is a 
crucial issue for classification models for predicting drug response. Thus, a large num-
ber of algorithms have proposed using different approaches for feature selection. Xu 
et  al. proposed AutoBorutaRF method based on feature selection for predicting drug 
response. This method first built an autoencoder network, and it used Boruta algorithm 
[6] to select important features for applying the RandomForest classifier to predict drug 
response [7]. Dong et al. proposed a model termed Support Vector Machine Recursive 
Feature Elimination (SVM-RFE), which used a wrapper method using a recursive feature 
selection and SVM classifier to predict drug response [8].

This study presents a feature selection-based method for drug response prediction, 
named Auto-HMM-LMF, to efficiently predict cell line-drug associations. Gene expres-
sion profile, copy number alteration, single-nucleotide mutation, tissue type informa-
tion of the cell line, and drugs’ chemical structure information were incorporated. Two 
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strategies based on autoencoder and hidden Markov model-multinomial mixture model 
are used for selecting the essential features of input information. The autoencoder net-
works are applied on gene expression profile, copy number alteration data. Also, hidden 
Markov model and multinomial mixture model are applied on mutation data. A proper 
evaluation of the Auto-HMM-LMF method using tenfold cross-validation was carried 
out to compare it with the state-of-the-art methods. Results show its performance is 
superior for the tested data sets. Also, by comparing to the ensemble feature selection 
method (EFS), we showed that two considered strategies for feature selection in the 
Auto-HMM-LMF method could select proper features that significantly improved the 
prediction result.

Methods
This paper proposes a novel method (Auto-HMM-LMF) to efficiently predict cell line-
drug associations by combining and effectively using feature selection approaches. The 
main scheme of the Auto-HMM-LMF algorithm is represented in Fig. 1. In the first step, 
two strategies for selecting the important features of input data are used. A feature selec-
tion approach based on autoencoder networks is applied to the gene expression profile 
of cell lines, and the similarity matrix (SimEXP) is constructed using selected features. 
Similarly, the similarity matrix (SimCNV) is created using the selected feature by apply-
ing the autoencoder feature selection method on copy number alteration information. 
In the next step, the similarity matrix (SimMUT) is generated using a novel feature selec-
tion approach based on the hidden Markov model and multinomial mixture model on 
single-nucleotide mutation data. Two similarity matrices (SimIC50) and (SimTISSUE) are 
achieved using IC50 values of cell lines across the drugs and tissue type information 
of each cell line, respectively. Finally, for constructing the latent vectors for each cell 

Fig. 1  Schematic overview of Auto-HMM-LMF. Two feature selection models based on autoencoder are used 
for gene expression, and copy number alteration information. A novel feature selection method based on 
the hidden Markov model (HMM) and multinomial mixture model (MMM) is applied for single-nucleotide 
mutation data. In the next step, the five similarities between each pair of cell lines and the similarity between 
each pair of drugs are defined. For the prediction of the drug response of the cell lines across the drugs, the 
logistic matrix factorization method is applied
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line and the drug and predicting whether the cell line is sensitive to the drug or not, 
the logistic matrix factorization method is applied. For assigning the IC50 values to two 
labels, sensitivity and resistance, we used the strategy introduced in previous researches 
[5, 7, 9], which used the median of the IC50 values for individual drugs as a threshold for 
the classification model. A cell line assigned to the sensitivity or class with label 1, if its 
IC50 value is smaller than the median of cell lines for an individual drug, and a cell line 
assigned to the resistance or class with label 0, otherwise. In the next section, we first 
describe the datasets used in the study and data preprocessing, and then the details of 
each above step are explained.

Datasets and preprocessing

In this work, we use the GDSC dataset, consisting of 1001 cancer cell lines and 265 
tested drugs and the CCLE dataset that has analyzed 1457 cancer cell lines and their 
genomic profiles against 24 drugs. In these datasets, cell lines were characterized by 
genomic features such as gene expression profile, copy number alteration, and sin-
gle nucleotide mutation. The half-maximal inhibitory concentration (IC50) values 
are used for the sensitivity measure of cell lines across drugs. We focused on the 98 
and 24 drugs for which SDF format (encoding the chemical structure of the drugs) 
were available from the NCBI PubChem Repository in GDSC and CCLE, respectively. 
There was no missing value in the gene expression features in these datasets. How-
ever, some cell lines have missing values for the response value, the single nucleotide 
mutation features, and the copy number alteration features. In the first step, the cell 
lines that contain missing values for more than half of the features were removed.

The known values of k-nearest neighbors imputed the remaining missing values. 
The Euclidean distance for each pair of cell lines ci and cj based on their gene expres-
sion profiles xi and xj are defined as follows:

Then the mean feature value among k-nearest cell lines for cell line c was used to 
impute the missing drug response value (IC50) of drug d as follows:

Similarly, the mean feature value among k-nearest cell lines for cell line c was used 
to impute the missing copy number alteration value (CNV) of gene g as follows:

The values of single-nucleotide mutation features are binary-valued, i.e., 1 for muta-
tion and 0 for wild type. The mean feature value among k-nearest cell lines for cell 
line c was considered to impute the missing MUT (single-nucleotide mutation) value 
of gene g as follows:

(1)DisE
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Finally, 555 cell lines and 98 drugs are considered for GDSC dataset and 363 cell lines 
and 24 drugs for CCLE dataset.

Feature selection using autoencoder

Feature selection methods aim to reduce data dimensionality by identifying the subset 
of informative and non-redundant features in a dataset. Autoencoder is a non-recurrent 
neural network for unsupervised learning that reduces the datasets from initial feature 
space to a more significant feature space. It has an input layer, an output layer, and one or 
more hidden layers. The number of nodes (neurons) in the output layer is the same as in 
the input layer. Autoencoder learns the weight vector by assuming the output layer vec-
tor as the input layer vector. For constructing the autoencoder network for feature selec-
tion of the gene expression profile and copy number alteration information, the strategy 
introduced by Xu et al. [7] is used. Two autoencoder networks with a single hidden layer 
(with 100 neurons) and hyperbolic tangent as the activation functions are considered 
for screening out the gene expression features and copy number alteration data. After 
selecting the subset of features, a further small set of significant features was identified 
as two categories of inputs for the logistic matrix factorization model using the Boruta 
algorithm [6]. For determining the essential genes, the set of selected features by autoen-
coder networks along with the label of sensitivity and resistance corresponding to cell 
lines and drugs imported to the Boruta algorithm. Boruta algorithm is a wrapper built 
based on random forest classification that iteratively removes the less significant features 
by a statistical test. This algorithm added copies of all the features obtained using the 
autoencoder and it shuffled the values of the copied features for constructing shadow 
features, and it tried to find essential features. A random forest classifier is run on the 
extended information system, and Z-score values compute the importance of all attrib-
utes. Boruta algorithm repeats the finding procedure (finding the maximum Z-score 
among attributes) until the importance is assigned for all the attributes [6].

The first autoencoder with single-hidden-layer and Boruta algorithm are applied to the 
gene expression profile of 11, 712 and 19, 389 genes for two datasets GDSC and CCLE, 
respectively. The numbers of selected essential genes are 798 and 1189 for GDSC and 
CCLE, respectively. Also, the similar autoencoder and Boruta algorithm are applied to 
copy number alteration of 24, 959 and 24, 960 genes for two GDSC and CCLE datasets. 
67 and 127 features selected for GDSC and CCLE datasets, respectively.

Feature selection using hidden Markov model and multinomial mixture model

Understanding the activity of the mutational processes is critical for cancer treatment 
and personalized therapy. Since the mutational processes leave signatures of their activ-
ity in cancer genomes, characterizing the signatures of active mutational processes in 
patients from their patterns of single base substitutions is very important. In this study, 
we used the strategy proposed by Wojtowicz et al. for assigning the known signatures to 
the corresponding individual mutations for selecting essential mutated genes in cancer 
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types [10]. In this work, we consider only the validated mutation signatures of the Cata-
logue of Somatic Mutations in Cancer (COSMIC) [11], and we focused on the signatures 
previously identified as active in cancer types [12]. Table 1 shows the active signatures of 
14 cancer types corresponding to cancer cell lines in GDSC and CCLE datasets (only the 
cancer types with at least 15 cell lines in GDSC and CCLE datasets are considered).

Because there are six classes of base substitution (C:G > A:T, C:G > T:A, C:G > G:C, 
A:T > C:G, A:T > T:A, A:T > G:C) and four possible 5′, we categorized mutations in a can-
cer genome into 96 categories that include its base substitution and four possible 3′ bases 
[13, 14]. We downloaded single base substitutions of cancer types from the International 
Cancer Genome Consortium Data Portal [15]. We analyzed single base substitutions of 
several patients from considered cancer types, and the number of these patients (patient 
group1) corresponding to each cancer type is shown in Table 2. For each cancer type, 
the following hidden Markov model and multinomial mixture model are applied, and 
the important genes for the considered cancer type will be determined. In this model, 
the number of states for each cancer type is determined based on the number of the cor-
responding signature that is shown in Table 1. For example, the number of states (t) in 
BRCA cancer is 12.

The detailed step-wise feature selection procedure is described as follows:

Identifying close and isolated mutations

We classified the mutations into two classes, close and isolated mutations, using a dis-
tance threshold of 2000 bp (isolated mutations are distant from any other mutation). We 
set the first mutation of each mutation sequence to close. For other mutations, if the 
corresponding distance to the previous mutation is greater than 2000 bp, the mutation 
is labeled as isolated, and close otherwise. Therefore from a sequence of mutation of the 
patient, we can obtain several subsequences, some corresponding to close and some cor-
responding to isolated mutations. For example, two subsequences corresponding to the 
isolated, and three subsequences corresponding to the close mutations of a patient with 
BRCA cancer is as follows:

Table 1  The active signatures of  14 cancer types corresponding to  cell lines in  GDSC 
and CCLE datasets

BRCA​ BLCA ESCA HNSC LUAD OV SKCM STAD COAD PACA​ MALY LIHC BONE CESC

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 4 5 2

3 5 4 4 4 3 5 3 5 3 5 5 6 5

5 10 5 5 5 6 7 5 6 5 9 12 7 13

6 13 6 7 6 13 11 6 7 6 13 16 13 26

8 22 7 13 15 15 13 10 10 13 17 17 30 –

13 – 13 15 17 18 17 13 14 – – 22 – –

17 – 15 16 18 21 – 15 15 – – 23 – –

18 – 16 18 21 26 – 17 21 – – – – –

20 – 17 21 – – – 21 26 – – – – –

26 – 21 26 – – – 26 28 – – – – –

30 – 26 – – – – – 30 – – – – –



Page 7 of 22Emdadi and Eslahchi ﻿BMC Bioinformatics           (2021) 22:33 	

Modeling close mutations

Since the subsequences corresponding to close mutations are close to each other, it can 
be assumed that there is a dependency between them. So these subsequences were mod-
eled using a hidden Markov model (HMM).

An HMM M with t (the number of mutation signatures) hidden states is represented 
by

•	 Σ = {c1, …, cs} is the set of alphabets of all sequences.
•	 Q = {q1, …, qt} is the set of states, each of which is able to emit symbols of alphabet Σ.
•	 πi, ∀i = 1, …, t is the probability to start with ith state.
•	 A = [ai,j]i,j=1,….,t which ai,j is the transition probability from qi to qj.
•	 E = [ei,j]i=1,…,t, j=1,…,s where ei,j is the probability that state qi emits cj.

The model assumes that each observation, representing a mutation category, is emit-
ted by one of the t states. The sequence of states that generated the observed sequence 
is unknown, and each state depends on the previous state. For learning the parameters 
of the model, π, A, E, all obtained close subsequences in the first step considered as the 
training set for estimation of the parameters of HMM. In this study, the AntMarkov 
algorithm (the algorithm for parameter estimation of Hidden Markov Model inspired by 
Ant Colony Optimization) [16] was applied to estimate HMM parameters.

(5)

T > G,T > C ,G > A,C > G,T > C ,︸ ︷︷ ︸
close

G > T ,T > C , ,C > G, . . . ,︸ ︷︷ ︸
isolated

,C > G,T > C ,C > G,C > T ,G > A,︸ ︷︷ ︸
close

G > T ,C > G,C > G,︸ ︷︷ ︸
isolated

T > C .︸ ︷︷ ︸
close

Table 2  The number of  patients for  learning the  HMM and  MMM models (patient 
group1) and  the  number of  patients whose gene expression information is  available 
in the International Cancer Genome Consortium Data Portal (patient group2) for 14 cancer 
types

Cancer type Patient group1 Patient group2

BRCA​ 560 560

BLCA 320 240

ESCA 190 150

HNSC 180 125

LUAD 280 197

OV 200 170

SKCM 135 135

STAD 245 120

COAD 140 127

PACA​ 160 160

MALY 241 241

LIHC 250 210

BONE 280 225

CESC 223 190
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Modeling isolated mutations

Since the isolated subsequences are distant from any other mutation, the assumption 
of dependency between them is less motivated. So, isolated mutations were modeled 
using a multinomial mixture model (MMM). An MMM is parameterized by a vector g 
of t mutation signature marginal probabilities and a t × s emission matrix E, (s = 96). All 
obtained isolated subsequences in the first step considered as the training set for estima-
tion of the parameters of MMM. The vector g and emission matrix E were estimated 
based on counting the number of times the isolated mutations were observed in sam-
ples (experimental distribution). We consider a vector T with size 96, which T[i] is the 
total number of times the ith mutation category were observed as isolated mutations 
in samples. By applying vector T to the initialized vector g and emission matrix E, their 
estimated values were achieved.

Computing mutation sequence occurrence

After training two above models, the probability of sequence occurrence O1, …, OT, 
which is decomposed into close and isolated subsequences,{C1, I1, C2, I2, …, Ck1, Ik2}, is 
formulated as follows:

The Viterbi algorithm [17] was applied to find the paths of the most likely sequence of 
states that generated the close subsequences. To determine the most probable paths cor-
responding to isolated mutations, the estimated values of g vector and emission matrix, 
E are used. As for each isolated mutation category (Ot), the state with maximum prob-
ability value (Qt) is obtained from the following formula:

Finally, we append these two most probable paths of states to construct the final path 
corresponding to the patient. Then, the numbers of observed states (signature) are 
calculated as signature frequency per sample or signature activities for each path. For 
example, a patient with BRCA cancer has a vector with size 12 corresponding to the 
number of signatures, and the elements of this vector are calculated based on the num-
ber of times each state is observed in the final path.

Identifying the important genes

For considering the relationship between signature activities and gene expression pro-
files for each patient, we downloaded the gene expression files for patients from the 
International Cancer Genome Consortium Data Portal [15]. The number of patients 
whose gene expression information is available (patient group2) is shown in Table  2. 
Also, since the information of single nucleotide mutation of 54 and 1667 genes for two 
GDSC and CCLE datasets were accessible, we analyzed these genes’ expression for 
computing the Spearman correlation coefficients. Therefore, the Spearman correlation 

(6)P =

�
k1�
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P(Ci |HMM)

�
∗




k2�

j=1
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coefficients between the expression of 1721 genes and signature activities across samples 
are calculated. In this way, we identified essential genes with a high Spearman correla-
tion coefficient (greater than 0.2) in close and isolated regions in each cancer type. The 
results of the correlation between some genes and signature activity in 14 cancer types 
that have high Spearman correlation coefficients are illustrated in the Additional file 1: 
Table-S1. We considered these genes as essential features for single nucleotide mutation 
data in GDSC and CCLE datasets. Finally, 22 and 72 genes are selected by the above 
strategy based on a hidden Markov model and multinomial mixture model in GDSC and 
CCLE, respectively. The list of these genes is illustrated in the Additional file 1: Table S1.

Similarity definition

Since similar cell lines and similar drugs may have similar drug responses, the similari-
ties between cell lines and drugs can improve drug response prediction [5, 18].

The similarity matrices are required for the identification of the nearest neighbors in 
the logistic matrix factorization model. Gene expression profile, copy number alteration, 
single-nucleotide mutation, and tissue type information are used for cell line similar-
ity, and chemical structures of drugs are used for drug similarity. So, five similarities 
between each pair of cell lines and the similarity between each pair of drugs are defined 
as follows:

Cell line similarity

•	 (SimEXP) is the similarity based on the selected features of the gene expression pro-
file, in which the numbers of identified essential genes for gene expression profile 
by autoencoder are 798 and 1189 for two datasets GDSC and CCLE, respectively. 
SimEXP is defined as the Pearson correlation between the gene expression vector of 
each pair of n cell lines, arranged in an n × n matrix.

•	 (SimCNV) is the similarity based on the selected features of copy number alteration 
data, which 67 and 127 useful features selected by autoencoder in GDSC and CCLE, 
respectively. SimCNV matrix is defined as an n × n matrix by Pearson correlation 
between the copy number alteration vector of each pair of cell lines.

•	 (SimMUT) is the similarity based on the selected features of single nucleotide muta-
tion information by the hidden Markov model and multinomial mixture model. 22 
and 67 essential genes identified by this strategy from GDSC and CCLE datasets, 
respectively. Then, the Jaccard similarity is applied on each pair of single nucleotide 
mutation vectors corresponding to n cell lines, and SimMUT is constructed as an 
n × n matrix.

•	 (SimIC50) is the similarity between cell lines based on their IC50 values. This defi-
nition of similarity between cell lines proposed by Liu is based on the correlation 
between response IC50 values of the cell lines [19]. SimIC50 is defined as the Pearson 
correlation between each of the n cell lines considered an n × n matrix.

•	 (SimTISSUE) is the similarity between cell lines based on tissue type. The complete set of 
samples consisted of GDSC and CCLE datasets cancer cell lines originated from around 
14 tissue sites. SimTISSUE is an n × n binary-valued matrix, which for entry correspond-
ing to row i and column j is 1, if two cell lines ci and cj have the same tissue type and 
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zero otherwise. The SimTISSUE matrices corresponding to GDSC and CCLE cell lines are 
represented in the Additional file 2: Table-S2 and Additional file 3: Table-S3.

Since the correlation coefficient between each pair of the above similarity matrices is 
very low, there is no collinearity between matrices, and they can be linearly combined. 
We constructed an integrated matrix similarity, SimCL = [SCij]n×n, using the combination 
of SimEXP, SimCNV, SimMUT, SimIC50 and SimTISSUE by the following formula:

where γ, λ, φ, ψ, and ρ are parameters that control the importance of each of the matrix 
and tuned in the model. We defined the set Nk(ci) that denotes the k-most similar cell 
lines to ci (except ci) using (SimCL) matrix. We constructed adjacency matrix A = [aij]n×n 
that represents cell line neighborhood information as follow:

Drug similarity

The similarity between drugs is constructed based on chemical substructures (SimDRUG​

). For each drug, a zero–one vector of size 881 is considered where 881 is the number of 
known chemical substructures of a drug. In this vector, 1 indicates the presence of a sub-
structure of the drug and 0 otherwise. SimDRUG​ = [SDij]m×m is constructed as an m × m 
matrix by Jaccard similarity between each of the chemical substructures vector corre-
sponding to the m drugs. For a drug di, the set Nk(di) denotes the k-most similar drugs 
to di (except di) using SimDRUG​ matrix. The adjacency matrix, B = [bij]m×m, describes the 
drug neighborhood information as follows:

Logistic matrix factorization

For drug response prediction of cancer cell lines from GDSC and CCLE datasets using 
selected features, the DSPLMF method introduced based on the logistic matrix factori-
zation method [5] is applied based on the following objective function:

where ui and vj are the latent vectors of size L corresponding to the cell line ci and drug 
dj, respectively and the latent vectors of all cell lines and all drugs are denoted by U and 
V. The positive values βci  and βdj  are the bias parameters according to cell line ci and drug 
dj and βcandβd are the bias vectors for cell lines and drugs, respectively [20]. Two 

(8)
�SimEXP + γSimCNV + φSimMUT +ψSimIC50 + ρSimTISSUE

� + γ+ φ+ψ+ ρ

(9)aij =
{
SCij cj ∈ Nk (ci )
0 otherwise

(10)bij =
{
SDij dj ∈ Nk (di )
0 otherwise

(11)
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parameters, λc =  1
σ2c

 , λd =  1
σ2d

 , where σ2c and σ2d are parameters for controlling the variances 

of prior distributions of cell lines and drugs. The parameters α and β determine the 
effectiveness of cell line similarity and drug similarity in the DSPLMF method. (r ≥ 1) is 
a parameter for controlling the importance levels of observed interactions. Since both 
sensitivity and resistance classes have the same importance in drug response prediction 
problem, we set r to be one. Also, Hc = (Ec + Ẽc) − (A + AT), Ec and Ẽc are two diagonal 
matrices with Ecii =

∑n
j=1 (aij ) and Ẽcjj =

∑n
i=1 (aij ) , H

d = (Ed + ̃Ed) − (B + BT) as diago-
nal elements (n is the numbers of cell lines). Ed and Ẽd are two diagonal matrices with 
Edii =

∑m
j=1 (bij ) and Ẽdjj =

∑m
i=1 (bij ) , as diagonal elements (m is the numbers of drugs). 

After training the proposed model, the latent vectors of cell lines and drugs are deter-
mined using the formula 11. Then, for predicting the IC50 values of a given new cell line 
across all drugs, the k-nearest neighbors for the new cell line are selected, and the latent 
vector for this new cell line is estimated based on the average of latent vectors of its 
neighbors. Since the elements of (SimIC50) matrix are unknown, the (SimCL) matrix can-
not be used for finding the k-nearest neighbors for the new cell line. We used the strat-
egy introduced in the DSPLMF method for estimation (SimIC50) matrix. DSPLMF 
method is designed a Decision Tree Classifier model for estimation (SimIC50) matrix 
using the gene expression profile, copy number alteration, and single-nucleotide muta-
tion information of the new cell line [5]. Then by a similar method, we estimated the 
latent vector corresponding to the new cell line to predict the probabilities that the new 
cell line is sensitive to drugs indicated by Eq. 12. For the set of cell lines and drugs, the 
probability of the cell line ci is sensitive to the drug dj can be modeled as a logistic func-
tion as follows:

Finally, a threshold is applied on probabilities to assign a sensitive or resistance class to 
each new cell line-drug pair.

Results
Evaluation of prediction performance of Auto‑HMM‑LMF

Using the feature selection approaches is one of the common methods to reduce the dimen-
sions of the features in drug response prediction problems. In some of the previous predic-
tive methods, such as AutoBorutaRF, the autoencoder approaches are used for selecting 
significant features of genomic information. One of the most powerful methods of selecting 
features is the EFS method proposed by Neumann et al. The EFS method integrated eight 
different feature selection methods and normalized all individual outputs to a common 
scale, an interval from 0 to 1 [21, 22]. First, to evaluate the efficiency of the feature selec-
tion strategies in the Auto-HMM-LMF model, we use the EFS method to select important 
features in the gene expression profile, copy number variation and single nucleotide muta-
tion data. In this method, the number of features selected for each group of data is equal to 
the number of features selected by the Auto-HMM-LMF method. Then we alternated these 
features with features selected by Autoencoder and HMM-MMM in the Auto-HMM-LMF 

(12)pij =
exp

(
ui v

T
j + βci + βdj

)

1+ exp
(
ui v

T
j + βci + βdj

)
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method, and we compared the achieved results to other methods. This method is applied to 
two CCLE and GDSC datasets, and we represent the results of this approach by the name of 
EFS-LMF in Tables 3 and 4. In this study, the tenfold cross-validation is repeated 30 times, 
and the mean value of them is used as criteria for evaluating the predictive performance of 
the AutoHMM-LMF method.

We compared the Auto-HMM-LMF method to six classification models, DSPLMF, EFS-
LMF, CaDRReS, SRMF, AutoBorutaRF, and SVM-RFE for different metrics. DSPLMF and 
AutoBorutaRF are designed as the classification models, but the CaDRReS and SRMF 
methods predicted IC50 values as output. So, for comparison of these models with the 
Auto-HMM-LMF and EFS-LMF methods, we applied the median of predicted IC50 val-
ues for each drug as a classification threshold. If the predicted IC50 value corresponding 
to a cell line-drug pair is smaller than this threshold, the sensitive class was assigned to it; 
otherwise, it was labeled with resistance class. Seven metrics Accuracy, Recall, Precision, 
Specificity, F1Score, Matthews correlation coefficient (MCC) and area under the receiver 
operating characteristic curve (AUC) are used that; these criteria are formulated as follows:

Accuracy =
T P + T N

T P + F P + T N + F N

Recall =
T P

T P + F N

Table 3  Performance comparison of  the  different algorithms results based on  seven 
metrics on GDSC dataset

Method Accuracy Recall Precision Specificity F1Score MCC AUC​

Auto-HMM-LMF 0.70 0.78 0.68 0.63 0.73 0.39 0.78
DSPLMF 0.68 0.75 0.67 0.61 0.70 0.37 0.76

EFS-LMF 0.67 0.72 0.67 0.64 0.68 0.35 0.77

CaDRReS 0.54 0.54 0.54 0.54 0.55 0.12 0.51

SRMF 0.51 0.52 0.52 0.51 0.51 0.10 0.49

AutoBorutaRF 0.65 0.65 0.64 0.65 0.65 0.31 0.71

SVM-RFE 0.59 0.58 0.58 0.61 0.58 0.19 0.51

Table 4  Performance comparison of  the  different algorithms results based on  seven 
metrics on CCLE dataset

Method Accuracy Recall Precision Specificity F1Score MCC AUC​

Auto-HMM-LMF 0.79 0.72 0.69 0.84 0.70 0.53 0.83
DSPLMF 0.77 0.72 0.63 0.77 0.67 0.48 0.77

EFS-LMF 0.76 0.67 0.66 0.82 0.65 0.47 0.78

CaDRReS 0.67 0.35 0.49 0.83 0.41 0.20 0.50

SRMF 0.51 0.45 0.34 0.52 0.41 0.10 0.49

AutoBorutaRF 0.76 0.65 0.59 0.81 0.62 0.45 0.82

SVM-RFE 0.73 0.43 0.63 0.81 0.52 0.29 0.55
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where

•	 TP (true positive): The number of cell lines labeled with sensitivity and predicted as 
sensitivity.

•	 TN (true negative): The number of cell lines labeled with resistance and predicted as 
resistance.

•	 FP (false positive): The number of cell lines labeled with resistance and predicted as 
sensitivity.

•	 FN (false negative): The number of cell lines labeled with sensitivity and predicted as 
resistance.

Tables 3 and 4 show the results of comparative experiments conducted on the GDSC 
and CCLE datasets (the bold number represents the best result). As is shown in Table 3, 
the value of Accuracy, Recall, Precision, F1Score, MCC, and AUC criteria have increased 
by 0.02, 0.03, 0.01, 0.03, 0.02, and 0.02 compared to the best algorithm, DSPLMF. In the 
Specificity criterion, the AutoBorutaRF method performs significantly better than the 
other methods. Concerning the other criteria, the Auto-HMM-LMF method has very 
significant results to the results of the AutoBorutaRF method. In Table 4, the value of all 
criteria by Auto-HMM-LMF has increased compared to the result of other algorithms, 
and Auto-HMM-LMF significantly outperformed the state-of-the-art-methods in this 
dataset. As is shown in Tables 3 and 4, the value of all criteria by Auto-HMM-LMF has 
increased compared to the result of other algorithms. These observations demonstrated 
that the selected features by HMM and MMM strategies for mutation data and autoen-
coder technique for gene expression and copy number variation data are very effective 
and essential. Also, the features selected by the EFS method cannot be as powerful as the 
features selected by the Auto-HMM-LMF method in predicting drug response.

Tissue specific of cell line type

To demonstrate the Auto-HMM-LMF method’s performance in different tissue types, 
we examine whether our proposed method can achieve good performance when con-
sidering specific cell line tissue types. In this way, 73 Haematopoietic and lymphoid cell 
lines in the GDSC dataset are considered, and seven criteria evaluate the Auto-HMM-
LMF method. We trained the Auto-HMM-LMF method by these cell lines, and we 
applied a tenfold cross-validation approach for drug response prediction of considered 

Precision =
T P

T P + F P

Specificity =
T N

T N+ F P

F1Score =
2T P

2T P + FP+ F N

(13)MCC =
T P * T N − F P * F N

√
(TP+ FP)(TP+ FN)(FP+ TN)(FN+ TN)
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cell lines. As is shown in Table 5, these results justify that the Auto-HMM-LMF method 
can also achieve consistently or, in some criteria, more performance on Haematopoietic 
and lymphoid cell lines.

Correlation between predicted and observed responses values

We plotted the Bar chart of Pearson correlation coefficients of observed drug responses 
and predicted values for 24 drugs in the CCLE dataset. As is shown in Fig. 2, (70%) above 
correlation coefficients, 17 from 24, are higher than 0.5. For four of these drugs (PD—
0325901, T opotecan, AZD6244 and Irinotecan) correlation coefficients are greater 
than 0.65. These plots show the excellent performance of the Auto-HMM-LMF method 
in predicting drug response values. The scatter plots of observed and predicted drug 
responses by the Auto-HMM-LMF model of 4 above drugs are drawn in Fig. 3, and the 
scatter plots of 20 other drugs in the CCLE dataset are illustrated in the Additional file 4.

Application for drug repositioning

Drug repositioning is the process of selecting a known drug for an alternative pharma-
cological purpose. For this issue, we considered 37 US Food and Drug Administration 
(FDA) approved drugs that were not tested in the GDSC dataset from the study of Choi 
et al. [23]. The Auto-HMM-LMF model was trained on the GDSC dataset and the prob-
ability of sensitivity of 20 cell lines of head and neck cancer (HNSC) across 20 anticancer 
drugs of 37 drugs were predicted and were shown in Fig. 4.

As it can be seen in Fig. 4, 11 following drugs have been identified as an effective treat-
ment of HNSC:

Table 5  Prediction performance of  Auto-HMM-LMF method on  73 Haematopoietic cell 
lines from GDSC dataset based on seven criteria

Method Accuracy Recall Precision Specificity F1Score MCC AUC​

Auto-HMM-LMF 0.71 0.81 0.69 0.63 0.74 0.44 0.78

Fig. 2  Pearson correlation coefficients between predicted and observed response values for 24 drugs in 
CCLE using Auto-HMM-LMF model
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•	 Azacitidine: Azacitidine is a type of drug called a hypomethylating agent, and a 
study reported that Azacitidine and Cisplatin are effective for the treatment of 
head and neck cancer [24].

•	 Regorafenib: Regorafenib is an oral multi-kinase inhibitor that targets receptor 
tyrosine kinase (RTK). Klinghammer et al. established a panel of 65 head and neck 
squamous cell carcinoma, and they demonstrated that combinational treatment of 
regorafenib and Everolimus is useful in these patients [25].

•	 Everolimus: Everolimus is used as an immunosuppressant to prevent rejection 
of organ transplants in the treatment of cancer. Recently, a study showed that 
patients with TP53 mutations benefited significantly from Everolimus in head and 
neck cancer [26].

•	 Fulvestrant: Fulvestrant is a drug used to treat hormone receptor (HR)-positive 
metastatic. Grünow et al. [27] showed that Fulvestrant inhibits irradiationinduced 
ESR2 expression, and their findings demonstrated the efficacy of Fulvestrant in 
combination with radiotherapy for HNSC patients.

•	 InterferonAlf a–2B: InterferonAlf a–2B is an antiviral or antineoplastic drug that 
is an effective treatment in head and neck cancer [28].

Fig. 3  Correlations between observed and predicted activity areas for CCLE cell lines across 4 drugs using 
Auto-HMM-LMF method. The green points represent the observed values and purple points represent the 
predicted values by Auto-HMM-LMF method. a The scatter plot of observed and predicted drug responses 
for PD—0325901 (Pearson correlation coefficient = 0.81). b The scatter plot of observed and predicted drug 
responses for Topotecan (Pearson correlation coefficient = 0.75). c The scatter plot of observed and predicted 
drug responses for AZD6244 (Pearson correlation coefficient = 0.72). d The scatter plot of observed and 
predicted drug responses for Irinotecan (Pearson correlation coefficient = 0.65)
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•	 Porfimer: Porfimer is a photosensitizer, and it is used in radiation therapy in cancer 
treatment. An in  vivo study suggested that this drug can be used in treatment for 
HNSC patients [29].

•	 lmiquimod: Imiquimod (INN) is a prescription drug that acts as an immune 
response modifier used to treat basal cell carcinoma. The study showed that topical 
Imiquimod might offer a reasonable and well-tolerated palliative treatment option 
for patients [30].

•	 Decitabine or 5–aza–2′–deoxycytidine is a nucleic acid synthesis inhibitor for cancer 
treatment. Cisplatin resistance in head and neck squamous cell carcinoma reduces 
survival. Viet et al. [31] showed that Decitabine treatment restored Cisplatin sensitiv-
ity in HNSC cell lines and significantly reduced the Cisplatin dose required to induce 
apoptosis.

•	 Hydroxyurea: Hydroxyurea is an anti-cancer agent used to treat melanoma, resist-
ant, recurrent, and metastatic cancer types. A study displayed Hydroxyurea is a sin-
gle active agent in head and neck cancer. It has been used clinically as a radiation-
enhancing drug with radiotherapy [32].

•	 V andetanib: V andetanib acts as a kinase inhibitor of several cell receptors, and it is 
an anti-cancer drug for the treatment of cancer cell lines. Sano et al. [33] approved 

Fig. 4  The probability of sensitivity to 20 anticancer drugs of 20 HNSC cell lines. Drugs whose names are 
shown in green have been studied for the treatment of HNSC. The probability higher than 0.5 means that the 
corresponding row drug may be a novel repositioned drug for the treatment of the corresponding column 
cell line. Using a diverging color scheme, all values around 0.5 are ignored, and visual importance on either 
highly probable in red versus low probability in blue are added
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the addition of V andetanib to combination therapy with Cisplatin, and radiation can 
overcome resistance in vitro and in vivo models of HNSC.

•	 Carf ilzomib: Carf ilzomib is an anti-cancer drug acting as a selective proteasome 
inhibitor. By upregulation of pro-apoptotic Bik, Carf ilzomib and ONX0912 potently 
induced apoptosis in HNSC cell lines [34].

These results indicate that the Auto-HMM-LMF model can be useful in drug reposi-
tioning. Also, five drugs (Exemestane, Ibrutinib, T halidomide, Romidepsin and Fluox-
ymesterone) may be novel therapeutic drugs for HNSC.

Hyperparameters settings

Since the numbers of cell lines and drugs in the GDSC dataset are higher than the CCLE 
dataset, we tuned the hyperparameters on the GDSC dataset, and we used the obtained 
values of the hyperparameters in both datasets. In this way, the tenfold cross-validation 
procedure is applied to GDSC, and hyperparameters are determined by maximizing the 
AUC criterion.

The learned hyperparameters using the GDSC dataset are shown in Table  6. The 
threshold parameter applied on Eq. 12 for determining the label of the class for each new 
cell line was chosen from {0.1, …,1} and this parameter was set to 0.4. The latent space 
dimension L was chosen from {1, …, min(n, m)}, for GDSC dataset L parameter was set 
to 95 and for CCLE dataset L was set to 23 (where n and m are the numbers of cell lines 
and the numbers of drugs, respectively).

Discussion
This paper proposed the Auto-HMM-LMF method based on feature selection 
approaches and logistic matrix factorization strategy to predict drug response. The pro-
posed prediction model showed higher predictive efficiency than the existing computa-
tional models. Also, we demonstrated that the Auto-HMM-LMF model could be useful 
in drug repositioning. So, we identified five drugs (Exemestane, Ibrutinib, T halidomide, 

Table 6  Learned hyperparameters of Auto-HMM-LMF method based on GDSC dataset

The parameter k were selected from 1 to 50. The impact factors of nearest neighbors α and β in equations were selected 
from {2–5, 2–4, …, 22}. The variance parameters, λc and λd, were chosen from {2–5, 2–4, …, 21}. The five parameters γ, λ, φ, ψ, 
and ρ were selected from 1 to 5

Hyperparameter Description Value

k Number of nearest neighbors (Eq. 9) 20

α Effectiveness of cell line similarity (Eq. 11) 0.5

β Effectiveness of drug similarity (Eq. 11) 0.1

λc Variance parameter of cell lines (Eq. 11) 0.5

λd Variance parameter of drugs (Eq. 11) 0.5

λ Importance of SimEXP (Eq. 8) 2

γ Importance of SimCNV (Eq. 8) 2

φ Importance of SimMUT (Eq. 8) 2

ψ Importance of SimIC50 (Eq. 8) 5

ρ Importance of SimTISSUE (Eq. 8) 2

threshold Threshold parameter 0.4
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Romidepsin and Fluoxymesterone) for HNSC treatment. To illustrate the biological sig-
nificance of the features selected by the hidden Markov model (HMM) and multinomial 
mixture model (MMM) on mutation data in the Auto-HMMLMF method, we further 
consider cancer cell lines related to breast cancer (BRCA) and two important processes, 
namely MMR and HRD. This study selected 30 significant genes by considering the 
Spearman correlation coefficient between their gene expression file and signature activ-
ity for 12 signatures of BRCA cancer cell lines. Among these genes, the gene expression 
of four genes namely PMS2, MLH1, MSH2, and MSH6 has high Spearman correlation 
coefficient with signatures 6, 20, and 26 activities. The results of the Spearman corre-
lation between the expression of these genes and three mutation signature activities 
in BRCA are shown in Fig.  5. On the other hand, a recent study [35] has shown that 
the three 6, 20, and 26 signatures are associated with MMR deficiency in breast cancer. 
Defective DNA mismatch repair (MMR) occurs in many cancer types, and mutations in 
the PMS2, MLH1, MSH2, and MSH6 genes are the most common cause of mismatch 
repair (MMR) deficient. The above genes are known as DNA mismatch repair (MMR) 
genes, and these genes are involved in repairing errors in DNA replication (the errors 
that occur when DNA is copied in preparation for cell division) [36].

Also, the expression of ten other selected genes by proposed model, namely BRCA1, 
BRCA2, ATM, CHEK2, MRE11A, NBN, FANCA, PALB2, RAD51C, RAD50 has high 
Spearman correlation coefficient with activity of mutation signature 3. The Spearman 
correlation coefficients between the expressions of these genes with a signature 3 activ-
ity are shown in Fig. 6. Similarly, in a recent study [35] it was shown that homologous 
recombination deficiency (HRD) is associated with the signature 3 in breast cancer 
patients. Homologous recombination deficiency is the inability to repair double-strand 
breaks in human cells. Several genetic alterations causing HRD include somatic muta-
tions of genes such as the selected 10 genes. The eight other selected genes by the 
Auto-HMM-LMF method for BRCA cancer cell lines are APOBEC3A, APOBEC3B, 

Fig. 5  Spearman correlation comparison of the PMS2, MLH1, MSH2, and MSH6 expression with signature 6, 
20, and 26 activities across BRCA samples. For these three signatures, the mutation counts in both isolated 
and close are positively correlated with expression of considered genes
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APOBEC1, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G and APOBEC4 that 
belong to the APOBEC family. The Spearman correlation coefficients between the 
expression of these genes with 2 and 13 signature activities are shown in Fig. 7. A recent 
study [35] has conducted that APOBEC deamination of cytosine to uracil is thought to 
initiate mutations of signatures 2 and 13. Therefore, these results show that the genes 
selected for breast cancer are biologically essential, and the Auto-HMM-LMF method 
has been able to detect significant features for single nucleotide mutation data. In addi-
tion to increasing the accuracy of drug response prediction compared to other models, 
one of the most important advantages of the Auto-HMM-LMF algorithm is that this 
algorithm’s running time is significantly lower than the running time of the other men-
tioned methods. Since this method is based on the selection of features, one of its limita-
tions is that the results depend on the selected features. So, this method’s results can be 
improved by using a more powerful feature selection approach. The following limitation 
of the method is that it was designed to solve the cold problem for a new cell line, while 
some of the proposed methods can also make predictions for the new drug or new pair 
of cell line-drug.

Conclusion
In this study, we developed a feature selection-based method, Auto-HMM-LMF, to 
predict cancer cell lines’ response to drugs in the GDSC and CCLE datasets. For fea-
ture selection of gene expression and copy number variation data, two autoencoder 
networks are designed. For feature selection of single nucleotide mutation informa-
tion, the novel approach based on the hidden Markov model (HMM) and multinomial 
mixture model (MMM) is applied. Auto-HMM-LMF shows better overall predic-
tion performance than the state-of-the-art prediction methods. Also, by comparing 
to one of the most powerful feature selection methods, the EFS method, we showed 
that the performance of the predictive model based on selected features introduced 

Fig. 6  Spearman correlation comparison of the BRCA1, BRCA2, ATM, CHEK2, MRE11A, NBN, FANCA, PALB2, 
RAD51C, RAD50 expression with signature 3 activity across BRCA samples. For this signature, the mutation 
counts in both isolated and close are positively correlated with expression of considered genes
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in this paper is much better for drug response prediction. Also, we suggest that the 
proposed model can be useful in numerous therapeutic research areas, such as drug 
repositioning and personalized medicine. Finally, we found substantial evidence that 
the selected features and predicted responses by Auto-HMM-LMF have significant 
consistency with many previous studies.
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